Bridging the Gap: Scaling Up the Sustainable Production of the Yellow Mealworm with Agricultural By-Products—Insights into Larval Growth and Body Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect Rearing and Experimental Design
2.2. By-Products
2.3. Proximate Composition
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. By-Products’ Proximate Composition
3.2. Final Individual Larval Weight
3.3. Total Harvest
3.4. Feed Conversion Ratio, Efficiency of Conversion of Ingested Food, Specific Growth Rate, Economic Conversion Ratio
3.5. Insects’ Body Proximate Composition (Dry Matter, Lipid, Ash, and Protein Content)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.; Zhang, T.; Zhao, Y.; Jiang, L.; Sui, X. Structural, extraction and safety aspects of novel alternative proteins from different sources. Food Chem. 2023, 436, 137712. [Google Scholar] [CrossRef]
- Mancini, M.C.; Antonioli, F. Italian consumers standing at the crossroads of alternative protein sources: Cultivated meat, insect-based and novel plant-based foods. Meat Sci. 2022, 193, 108942. [Google Scholar] [CrossRef] [PubMed]
- Salter, A.M.; Lopez-Viso, C. Role of novel protein sources in sustainably meeting future global requirements. Proc. Nutr. Soc. 2021, 80, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Gasco, L. Insects as feed for livestock production. Science 2023, 379, 138–139. [Google Scholar] [CrossRef] [PubMed]
- FAO. How to Feed the World in 2050, Expert Meeting on How to Feed the World in 2050; FAO Headquarters: Rome, Italy, 2009; Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/expert_paper/How_to_Feed_the_World_in_2050.pdf (accessed on 10 February 2024).
- Kurek, M.A.; Onopiuk, A.; Pogorzelska-Nowicka, E.; Szpicer, A.; Zalewska, M.; Półtorak, A. Novel protein sources for applications in meat-alternative products—Insight and challenges. Foods 2022, 11, 957. [Google Scholar] [CrossRef]
- Smetana, S.; Spykman, R.; Heinz, V. Environmental aspects of insect mass production. J. Insects Food Feed 2021, 7, 553–571. [Google Scholar] [CrossRef]
- Oonincx, D.G.; De Boer, I.J. Environmental impact of the production of mealworms as a protein source for humans—A life cycle assessment. PLoS ONE 2012, 7, e51145. [Google Scholar] [CrossRef] [PubMed]
- Van Huis, A.; Rumpold, B.A.; Van der Fels-Klerx, H.J.; Tomberlin, J.K. Advancing edible insects as food and feed in a circular economy. J. Insects Food Feed 2021, 7, 935–948. [Google Scholar] [CrossRef]
- Frasnetti, E.; Sadeqi, H.; Lamastra, L. Integrating insects into the agri-food system of northern Italy as a circular economy strategy. Sustain. Prod. Consum. 2023, 43, 181–193. [Google Scholar] [CrossRef]
- Bermúdez-Serrano, I.M. Challenges and opportunities for the development of an edible insect food industry in Latin America. J. Insects Food Feed 2020, 6, 537–556. [Google Scholar] [CrossRef]
- Gasco, L.; Biancarosa, I.; Liland, N.S. From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Curr. Opin. Green Sustain. Chem. 2020, 23, 67–79. [Google Scholar] [CrossRef]
- Niyonsaba, H.H.; Höhler, J.; Kooistra, J.; Van der Fels-Klerx, H.J.; Meuwissen, M.P.M. Profitability of insect farms. J. Insects Food Feed 2021, 7, 923–934. [Google Scholar] [CrossRef]
- Lienhard, A.; Rehorska, R.; Pöllinger-Zierler, B.; Mayer, C.; Grasser, M.; Berner, S. Future Proteins: Sustainable Diets for Tenebrio molitor Rearing Composed of Food By-Products. Foods 2023, 12, 4092. [Google Scholar] [CrossRef] [PubMed]
- Gourgouta, M.; Rumbos, C.I.; Michail, V.; Athanassiou, C.G. Valorization of agricultural side-streams for the rearing of larvae of the lesser mealworm, Alphitobius diaperinus (Panzer). Sustainability 2022, 14, 7680. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Oonincx, D.G.A.B.; Karapanagiotidis, I.T.; Vrontaki, M.; Gourgouta, M.; Asimaki, A.; Mente, E.; Athanassiou, C.G. Agricultural by-products from Greece as feed for yellow mealworm larvae: Circular economy at a local level. J. Insects Food Feed 2022, 8, 9–22. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Bliamplias, D.; Gourgouta, M.; Michail, V.; Athanassiou, C.G. Rearing Tenebrio molitor and Alphitobius diaperinus larvae on seed cleaning process byproducts. Insects 2021, 12, 293. [Google Scholar] [CrossRef]
- Ruschioni, S.; Loreto, N.; Foligni, R.; Mannozzi, C.; Raffaelli, N.; Zamporlini, F.; Pasquini, M.; Roncolini, A.; Cardinali, F.; Osimani, A. Addition of olive pomace to feeding substrate affects growth performance and nutritional value of mealworm (Tenebrio molitor L.) larvae. Foods 2020, 9, 317. [Google Scholar] [CrossRef]
- Scala, A.; Cammack, J.A.; Salvia, R.; Scieuzo, C.; Franco, A.; Bufo, S.A.; Tomberlin, J.K.; Falabella, P. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 2020, 10, 19448. [Google Scholar] [CrossRef]
- Bordiean, A.; Krzyżaniak, M.; Aljewicz, M.; Stolarski, M.J. Influence of different diets on growth and nutritional composition of yellow mealworm. Foods 2022, 11, 3075. [Google Scholar] [CrossRef]
- Montalbán, A.; Sánchez, C.J.; Hernández, F.; Schiavone, A.; Madrid, J.; Martínez-Miró, S. Effects of agro-industrial byproduct-based diets on the growth performance, digestibility, nutritional and microbiota composition of mealworm (Tenebrio molitor L.). Insects 2022, 13, 323. [Google Scholar] [CrossRef]
- Mancini, S.; Fratini, F.; Turchi, B.; Mattioli, S.; Dal Bosco, A.; Tuccinardi, T.; Nozic, S.; Paci, G. Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals 2019, 9, 484. [Google Scholar] [CrossRef] [PubMed]
- Melis, R.; Braca, A.; Sanna, R.; Spada, S.; Mulas, G.; Fadda, M.L.; Sassu, M.M.; Serra, G.; Anedda, R. Metabolic response of yellow mealworm larvae to two alternative rearing substrates. Metabolomics 2019, 15, 113. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.; Van Broekhoven, S.; Van Huis, A.; van Loon, J.J. Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE 2015, 10, e0144601. [Google Scholar] [CrossRef] [PubMed]
- Kotsou, K.; Chatzimitakos, T.; Athanasiadis, V.; Bozinou, E.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Athanassiou, C.I.; Lalas, S.I. Waste Orange Peels as a Feed Additive for the Enhancement of the Nutritional Value of Tenebrio molitor. Foods 2023, 12, 783. [Google Scholar] [CrossRef] [PubMed]
- Fasce, B.; Ródenas, L.; López, M.C.; Moya, V.J.; Pascual, J.J.; Cambra-López, M. Nutritive value of wheat bran diets supplemented with fresh carrots and wet brewers’ grains in yellow mealworm. J Insect Sci. 2022, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Brai, A.; Vagaggini, C.; Pasqualini, C.; Poggialini, F.; Tarchi, F.; Francardi, V.; Dreassi, E. Use of distillery by-products as Tenebrio molitor mealworm feed supplement. J. Insects Food Feed 2023, 9, 611–623. [Google Scholar] [CrossRef]
- López-Gámez, G.; del Pino-García, R.; López-Bascón, M.A.; Verardo, V. Improving Tenebrio molitor Growth and Nutritional Value through Vegetable Waste Supplementation. Foods 2024, 13, 594. [Google Scholar] [CrossRef]
- Liu, C.; Masri, J.; Perez, V.; Maya, C.; Zhao, J. Growth performance and nutrient composition of mealworms (Tenebrio molitor) fed on fresh plant materials-supplemented diets. Foods 2020, 9, 151. [Google Scholar] [CrossRef]
- Rovai, D.; Ortgies, M.; Amin, S.; Kuwahara, S.; Schwartz, G.; Lesniauskas, R.; Garza, J.; Lammert, A. Utilization of carrot pomace to grow mealworm larvae (Tenebrio Molitor). Sustainability 2021, 13, 9341. [Google Scholar] [CrossRef]
- European Commission (EC). EU Commission Regulation 2017/893 of 24 May 2017 Amending Annexes I and IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council and Annexes X, XIV and XV to Commission Regulation (EU) No 142/2011 as Regards the Provisions on Processed Animal Protein. Off. J. Eur. Union L 2017, 138, 92–116. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32017R0893&from=EN (accessed on 10 February 2024).
- European Commission (EC). Commission Regulation (EC) 2021/1372 of 17 August 2021 amending Annex IV to Regulation (EC) No 999/2001 of the European Parliament and of the Council as Regards the Prohibition to Feed Non-Ruminant Farmed Animals, Other Than Fur Animals, with Protein Derived from Animals. Off. J. Eur. Union L 2021, 295, 1–17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L:2021:295:FULL&from=EN (accessed on 10 February 2024).
- European Food Safety Authority (EFSA) NDA Panel (EFSA Panel on Nutrition, Novel Foods and Food Allergens); Turck, D.; Castenmiller, J.; De Henauw, S.; Hirsch-Ernst, K.I.; Kearney, J.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; Naska, A.; et al. Safety of dried yellow mealworm (Tenebrio molitor larva) as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J. 2021, 19, 6343. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; Finke, M.D. Nutritional value of insects and ways to manipulate their composition. J. Insects Food Feed 2021, 7, 639–659. [Google Scholar] [CrossRef]
- Shumo, M.; Osuga, I.M.; Khamis, F.M.; Tanga, C.M.; Fiaboe, K.K.; Subramanian, S.; Ekesi, E.; Van Huis, A.; Borgemeister, C. The nutritive value of black soldier fly larvae reared on common organic waste streams in Kenya. Sci. Rep. 2019, 9, 10110. [Google Scholar] [CrossRef] [PubMed]
- Van Broekhoven, S.; Oonincx, D.G.; Van Huis, A.; Van Loon, J.J. Growth performance and feed conversion efficiency of three edible mealworm species (Coleoptera: Tenebrionidae) on diets composed of organic by-products. J. Insect Physiol. 2015, 73, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Elorduy, J.; González, E.A.; Hernández, A.R.; Pino, J.M. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol 2002, 95, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Deruytter, D.; Coudron, C.L.; Teerlinck, S. Influence of crate size, oviposition time, number of adults and cannibalism on the reproduction of Tenebrio molitor. J. Insects Food Feed 2019, 5, 247–255. [Google Scholar] [CrossRef]
- Adamaki-Sotiraki, C.; Deruytter, D.; Rumbos, C.I.; Athanassiou, C.G. Cross-breeding of Tenebrio molitor strains from a large-scale perspective. J. Insects Food Feed 2023, 1, 1–10. [Google Scholar] [CrossRef]
- Adamaki-Sotiraki, C.; Choupi, D.; Vrontaki, M.; Rumbos, C.I.; Athanassiou, C.G. Go local: Enhancing sustainable production of Tenebrio molitor through valorization of locally available agricultural byproducts. J. Environ. Manag. 2024, 355, 120545. [Google Scholar] [CrossRef] [PubMed]
- Morales-Ramos, J.A.; Kay, S.; Rojas, M.G.; Shapiro-Ilan, D.I.; Tedders, W.L. Morphometric analysis of instar variation in Tenebrio molitor (Coleoptera: Tenebrionidae). Ann. Entomol. 2015, 108, 146–159. [Google Scholar] [CrossRef]
- Janssen, R.H.; Vincken, J.-P.; Van Den Broek, L.A.M.; Fogliano, V.; Lakemond, C.M.M. Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. J. Agric. Food Chem. 2017, 65, 2275–2278. [Google Scholar] [CrossRef] [PubMed]
- Karapanagiotidis, I.T.; Psofakis, P.; Mente, E.; Malandrakis, E.; Golomazou, E. Effect of fishmeal replacement by poultry by-product meal on growth performance, proximate composition, digestive enzyme activity, haematological parameters and gene expression of gilthead seabream (Sparus aurata). Aquac. Nutr. 2018, 25, 3–14. [Google Scholar] [CrossRef]
- Morales-Ramos, J.A.; Rojas, M.G.; Kelstrup, H.C.; Emery, V. Self-selection of agricultural by-products and food ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and impact on food utilization and nutrient intake. Insects 2020, 11, 827. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Tomberlin, J.K. Comparing selected life-history traits of black soldier fly (Diptera: Stratiomyidae) larvae produced in industrial and bench-top-sized containers. J. Insect Sci. 2020, 20, 25. [Google Scholar] [CrossRef]
- Kim, S.Y.; Kim, H.G.; Lee, K.Y.; Yoon, H.J.; Kim, N.J. Effects of Brewer’s spent grain (BSG) on larval growth of mealworms, Tenebrio molitor (Coleoptera: Tenebrionidae). Int. J. Indust Entomol. IJIE 2016, 32, 41–48. [Google Scholar] [CrossRef]
- Kröncke, N.; Benning, R. Self-selection of feeding substrates by Tenebrio molitor larvae of different ages to determine optimal macronutrient intake and the influence on larval growth and protein content. Insects 2022, 13, 657. [Google Scholar] [CrossRef]
- Riudavets, J.; Castañé, C.; Agustí, N.; Del Arco, L.; Diaz, I.; Castellari, M. Development and biomass composition of Ephestia kuehniella (Lepidoptera: Pyralidae), Tenebrio molitor (Coleoptera: Tenebrionidae), and Hermetia illucens (Diptera: Stratiomyidae) reared on different byproducts of the agri-food industry. J. Insect Sci. 2020, 20, 17. [Google Scholar] [CrossRef]
- Rumbos, C.I.; Karapanagiotidis, I.T.; Mente, E.; Psofakis, P.; Athanassiou, C.G. Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Sci. Rep. 2020, 10, 11224. [Google Scholar] [CrossRef] [PubMed]
- Kröncke, N.; Benning, R. Determination of moisture and protein content in living mealworm larvae (Tenebrio molitor L.) using near-infrared reflectance spectroscopy (NIRS). Insects 2022, 13, 560. [Google Scholar] [CrossRef] [PubMed]
By-Products | Dry Matter (%) | Protein (%DM) | Ash (%DM) |
---|---|---|---|
Wheat bran (control) | 85.8 ± 0.1 c | 17.4 ± 0.5 | 4.6 ± 0.1 d |
Oat by-product | 97.1 ± 0.0 a | 14.7 ± 2.2 | 6.8 ± 0.0 c |
Brewer’s spent-grains | 95.6 ± 0.0 ab | 23.4 ± 0.6 | 7.2 ± 0.1 b |
Maize by-product | 95.8 ± 0.1 ab | 9.3 ± 0.6 | 3.4 ± 0.1 e |
Animal feed mill leftover | 93.3 ± 0.1 bc | 5.6 ± 0.5 | 1.0 ± 0.0 f |
Rice bran | 91.7 ± 0.2 bc | 17.4 ± 0.6 | 7.6 ± 0.1 a |
p-value | 0.006 | 0.11 | <0.001 |
By-Products | FILW (mg) | Total Harvest (g) | FCR | ECI (%) | SGR (%/Day) |
---|---|---|---|---|---|
Wheat bran (control) | 98.4 ± 1.0 a | 872.3 ± 33.9 a | 2.3 ± 0.0 abc | 43.8 ± 0.8 ab | 10.7 ± 0.0 a |
Oat by-product | 82.6 ± 3.8 bc | 708.9 ± 21.2 abc | 2.0 ± 0.0 a | 50.8 ± 1.1 a | 8.5 ± 0.1 bcd |
Brewer’s spent-grains | 90.7 ± 0.7 ab | 914.4 ± 49.6 a | 2.0 ± 0.1 ab | 50.9 ± 3.3 ab | 8.8 ± 0.1 ab |
Maize by-product | 44.1 ± 2.6 bc | 434.4 ± 43.4 bc | 3.9 ± 0.4 cd | 26.3 ± 2.7 cd | 8.6 ± 0.2 abc |
Animal feed mill leftover | 35.6 ± 1.9 c | 335.3 ± 12.3 c | 4.9 ± 0.1 d | 20.4 ± 0.4 d | 5.9 ± 0.0 d |
Rice bran | 90.7 ± 1.9 ab | 748.0 ± 41.7 ab | 2.8 ± 0.2 bc | 36.1 ± 1.9 bc | 7.8 ± 0.0 cd |
p-value | 0.001 | 0.001 | <0.001 | <0.001 | <0.001 |
By-Products | ECR (EUR/ton Larvae) | Price (EUR/ton) | Supplier |
---|---|---|---|
Wheat bran (control) | 342.5 ± 6.5 b | 150 | Animal Feed Anastasiadi Single Member P.C. |
Oat by-product | 138.0 ± 6.2 a | 70 | Animal Feed Anastasiadi Single Member P.C. |
Brewer’s spent-grains | 555.9 ± 65.0 c | 280 | Animal Feed Anastasiadi Single Member P.C. |
Maize by-product | 275.1 ± 58.2 b | 70 | Animal Feed Anastasiadi Single Member P.C. |
Animal feed mill leftover | 73.6 ± 3.2 a | 15 | Animal Feed Anastasiadi Single Member P.C. |
Rice bran | 558.3 ± 60.2 c | 200 | Hellenic Feedstuff Industries S.A. |
p-value | <0.001 |
By-Products | Dry Matter (%) | Lipid Content (%) | Ash (%) | Protein Content (%) |
---|---|---|---|---|
Wheat bran (control) | 33.8 ± 0.2 ab | 28.2 ± 1.0 bc* | 4.4 ± 0.2 ab | 37.7 ± 0.9 ab |
Oat by-product | 35.3 ± 0.8 bc | 39.0 ± 1.9 ab* | 4.0 ± 0.1 bc | 34.4 ± 0.4 bcd |
Brewer’s spent-grains | 23.9 ± 0.4 a | 9.0 ± 0.1 c | 5.5 ± 0.1 a | 49.0 ± 0.6 a |
Maize by-product | 36.6 ± 1.8 bc | 40.5 ± 1.5 ab* | 3.9 ± 0.1 bc* | 32.0 ± 0.4 cd* |
Animal feed mill leftover | 39.1 ± 0.3 c | 44.3 ± 0.5 ab | 3.7 ± 0.0 c | 29.2 ± 0.3 d |
Rice bran | 35.8 ± 0.1 bc | 35.7 ± 0.3 bc | 3.9 ± 0.1 bc | 36.7 ± 0.2 abc* |
p-value | 0.001 | 0.001 | 0.002 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vrontaki, M.; Adamaki-Sotiraki, C.; Rumbos, C.I.; Anastasiadis, A.; Athanassiou, C.G. Bridging the Gap: Scaling Up the Sustainable Production of the Yellow Mealworm with Agricultural By-Products—Insights into Larval Growth and Body Composition. Agriculture 2024, 14, 520. https://doi.org/10.3390/agriculture14040520
Vrontaki M, Adamaki-Sotiraki C, Rumbos CI, Anastasiadis A, Athanassiou CG. Bridging the Gap: Scaling Up the Sustainable Production of the Yellow Mealworm with Agricultural By-Products—Insights into Larval Growth and Body Composition. Agriculture. 2024; 14(4):520. https://doi.org/10.3390/agriculture14040520
Chicago/Turabian StyleVrontaki, Mariastela, Christina Adamaki-Sotiraki, Christos I. Rumbos, Anastasios Anastasiadis, and Christos G. Athanassiou. 2024. "Bridging the Gap: Scaling Up the Sustainable Production of the Yellow Mealworm with Agricultural By-Products—Insights into Larval Growth and Body Composition" Agriculture 14, no. 4: 520. https://doi.org/10.3390/agriculture14040520
APA StyleVrontaki, M., Adamaki-Sotiraki, C., Rumbos, C. I., Anastasiadis, A., & Athanassiou, C. G. (2024). Bridging the Gap: Scaling Up the Sustainable Production of the Yellow Mealworm with Agricultural By-Products—Insights into Larval Growth and Body Composition. Agriculture, 14(4), 520. https://doi.org/10.3390/agriculture14040520