Effect of Using Germinated and Fermented Lupin and Oats as a Dietary Protein Source on Laying Hen Performance and Egg Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Site of Trial and Feed Preparation
2.3. Animals and Trial Design
2.4. Egg Physical Parameters
2.5. Chemical Analyses
2.6. Statistical Analysis
3. Results
3.1. Composition of the Grains and the Diets
3.2. Animal Performance
3.3. Egg Physical Parameters
3.4. Egg Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gautron, J.; Dombre, C.; Nau, F.; Feidt, C.; Guillier, L. Review: Production factors affecting the quality of chicken table eggs and egg products in Europe. Animal 2022, 16, 100425. [Google Scholar] [CrossRef] [PubMed]
- Medina-Cruz, M.F.; Zarate-Contreras, D.; Perez-Ruiz, R.V.; Aguilar-Toalá, J.E.; Rosas-Espejel, M.; Cruz-Monterrosa, R.G. Nutritional aspects, production and viability in the market of organic chicken eggs: Review. Food Chem. Adv. 2024, 4, 100595. [Google Scholar] [CrossRef]
- Kasprowicz-Potocka, M.; Chilomer, K.; Zaworska, A.; Nowak, W.; Frankiewicz, A. The effect of feeding raw and germinated Lupinus luteus and Lupinus angustifolius seeds on the growth performance of young pigs. J. Anim. Feed Sci. 2013, 22, 116–121. [Google Scholar] [CrossRef]
- Sujak, A.; Kotlarz, A.; Strobel, W. Compositional and nutritional evaluation of several lupin seeds. Food Chem. 2006, 98, 711–719. [Google Scholar] [CrossRef]
- Biel, W.; Jacyno, E.; Kawęcka, M. Chemical composition of hulled, dehulled and naked oats grains. S. Afr. J. Anim. Sci. 2014, 44, 189–197. [Google Scholar] [CrossRef]
- Hammershøj, M.; Steenfeldt, S. Effects of blue lupin (Lupinus angustifolius) in organic layer diets and supplementation with foraging material on egg production. Poult. Sci. 2005, 84, 723–733. [Google Scholar] [CrossRef]
- Wrinkler, L.R.; Murphy, K.M.; Hermes, J.C. Three hulless oats varieties show economic potential as organic layer feed grain. Renew. Energy Agri-Food Syst. 2017, 33, 418–431. [Google Scholar] [CrossRef]
- Sterna, V.; Zute, S.; Brunava, L. Oat grain composition and its nutrition benefice. Agric. Agric. Sci. Procedia 2016, 8, 252–256. [Google Scholar] [CrossRef]
- Alemayehu, G.F.; Forsido, S.F.; Tola, Y.B.; Amare, E. Nutritional and phytochemical composition and associated health benefits of oat (Avena sativa) grains and oat-based fermented food products. Sci. World J. 2023, 2023, 2730175. [Google Scholar] [CrossRef]
- Directive 63/2010/EU on the Protection of Animals Used for Experimental Purposes; The European Parliament: Strasbourg, France; The Council of the European Union: Brussels, Belgium, 2010.
- Council Directive 1999/74/EC Laying Down Minimum Standards for the Protection of Laying Hens; The Council of the European Union: Brussels, Belgium, 1999.
- Brah, N.; Houndonougbo, F.M.; Issa, S.; Chrysostome, A.A.M. Tableur Ouest Africain de Formulation d’Aliments de Volailles (TOAFA–Volaille). Int. J. Biol. Chem. Sci. 2019, 13, 1308–1320. [Google Scholar] [CrossRef]
- Directive 86/174/EEC Fixing the Method of Calculation for the Energy Value of Compound Poultry Feed; The Commission of the European Communities: Brussels, Belgium, 1986.
- Macelline, S.P.; Toghyani, M.; Chrystal, P.V.; Selle, P.H.; Liu, S. Amino acid requirements for laying hens: A comprehensive review. Poult. Sci. 2021, 100, 101036. [Google Scholar] [CrossRef]
- Regulation 2018/848 of the European Parliament and of the Council, 2018. Regulation on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007; The European Parliament: Strasbourg, France; The Council of the European Union: Brussels Belgium, 2018.
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; The Association of Official Analytical Chemists: Arlington, VA, USA, 2006. [Google Scholar]
- Folch, J.; Lees, M.; Sloane Stanley, G.M. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Morrison, W.R.; Smith, L. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lip. Res. 1964, 5, 600–608. [Google Scholar] [CrossRef]
- Aparicio-García, N.; Martínez-Villaluenga, C.; Frias, J.; Peñas, E. Sprouted oats as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chem. 2021, 338, 127972. [Google Scholar] [CrossRef]
- Sugiharto, S.; Agusetyaningsih, I.; Widiastuti, E.; Wahyuni, H.I.; Yudiarti, T.; Sartono, T.A. Germinated papaya seed alone or in combination with chitosan on growth, health and meat quality of broilers during grower period. Vet. Anim. Sci. 2022, 18, 100273. [Google Scholar] [CrossRef] [PubMed]
- Omri, B.; Chalghoumi, R.; Abdouli, H. Effect of dietary addition of unprocessed, autoclaved, or pre-germinated fenugreek seeds on laying hens’ performance and egg quality. Rev. Colom. Cienc. Pecua. 2017, 30, 147–158. [Google Scholar] [CrossRef]
- Fafiolu, A.O.; Oduguwa, O.O.; Ikeobi, C.O.N.; Onwuka, C.F.I. Utilization of malted sorghum sprout in the diet of rearing pullets and laying hens. Arch. Zootec. 2006, 55, 361–371. [Google Scholar]
- Hohne, A.; Aulrich, K.; Witten, S.; Bussemas, R.; Baldinger, L. Effect of common vetch (Vicia sativa L.) seeds in organic diets for broiler chickens: Acceptance and precaecal digestibility of crude protein and amino acids from raw, germinated and ensiled vetches. Anim. Feed Sci. Technol. 2022, 294, 115506. [Google Scholar] [CrossRef]
- Hwang, E.T. Management of the poultry red mite Dermanyssus gallinae with physical control methods by inorganic material and future perspectives. Poult. Sci. 2023, 102, 102772. [Google Scholar] [CrossRef] [PubMed]
- Hadi Al-Jebory, H.M.; Khalil, I.; Al-Saeedi, I.L.; Al-Jaryan, T.M.; Al-Thuwaini, T.; Ahmed, A.; Qotbi, A. Role of pelleted fermented feed in poultry: A review. Int. J. Multidisci. Res. Growth Eval. 2023, 4, 287–301. [Google Scholar]
- Guo, W.; Xu, L.; Guo, X.; Wang, W.; Hao, Q.; Wang, S.; Zhu, B. The impacts of fermented feed on laying performance, egg quality, immune function, intestinal morphology and microbiota of laying hens in the late laying cycle. Animal 2022, 16, 100676. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Ma, R.; Qi, R.; Lu, J.; Wang, Z.; Ma, Q.; Liu, W.; Li, J.; Li, Y.K. Effects of dietary fermented peony seed dreg on the laying performance, albumen quality, antioxidant capacity, and n-3 PUFA-enriching property of laying hens. Front. Vet. Sci. 2023, 9, 1109869. [Google Scholar] [CrossRef]
- Kopacz, M.; Drazbo, A.A.; Smiecinska, K.; Ognik, K. Performance and egg quality of laying hens fed diets containing raw, hydrobarothermally treated and fermented rapeseed cake. Animals 2021, 11, 3083. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.M.; Bak, D.J.; Jeon, W.M.; Song, J.C.; Kim, S.K.; An, B.K.; Kang, C.W.W.; Jung, S.; Kim, J.M. Effects of germinated and fermented unmarketable soybean on laying performance and egg quality in laying hens. Korean J. Food Sci. Anim. 2015, 28, 667–674. [Google Scholar] [CrossRef]
- Kowalska, E.; Kucharska-Gaca, J.; Kuzniacka, J.; Lewko, L.; Gornowicz, E.; Biesek, J.; Adamski, M. Quality of eggs, concentration of lysozyme in albumen, and fatty acids in yolk in relation to blue lupin-rich diet and production cycle. Animals 2020, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Loh, T.C.; Law, F.L.; Goh, Y.M.; Foo, H.L.; Zulkifli, I. Effects of feeding fermented fish on egg cholesterol content in hens. Anim. Sci. J. 2009, 80, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, X.; Cao, F.; Sun, D.; Wang, T.; Wang, G. Effect of dietary supplementation with fermented Ginkgo-leaves on performance, egg quality, lipid metabolism and egg-yolk fatty acids composition in laying hens. Livest. Sci. 2013, 155, 77–85. [Google Scholar] [CrossRef]
- Strakova, E.; Vsetickova, L.; Kutlvasr, M.; Timova, I.; Suchy, P. Beneficial effects of substituting soybean meal for white lupin (Lupinus albus, cv. Zulika) meal on the biochemical blood parameters of laying hens. Ital. J. Anim. Sci. 2021, 20, 352–358. [Google Scholar] [CrossRef]
- Paudel, D.; Dhungana, B.; Caffe, M.; Krishnan, P. A review of health-beneficial properties of oats. Foods 2021, 10, 2591. [Google Scholar] [CrossRef]
- McNaughton, J.L. Effect of dietary fiber on egg yolk, liver, and plasma cholesterol concentrations of the laying hen. J. Nutr. 1978, 198, 1842–1848. [Google Scholar] [CrossRef] [PubMed]
Grain | Lupin Grain | Fermented Lupin Grain | Germinated Lupin Grain | Germinated Fermented Lupin Grain | Oat Grain | Fermented Oat Grain | Germinated Oat Grain | Germinated Fermented Oat Grain |
---|---|---|---|---|---|---|---|---|
Components (g/kg) | ||||||||
Dry matter | 958 | 953 | 975 | 952 | 969 | 980 | 984 | 975 |
Crude protein | 372 | 363 | 403 | 422 | 102 | 95 | 115 | 117 |
Lipid | 60 | 53 | 57 | 60 | 65 | 60 | 63 | 69 |
Ash | 37 | 40 | 33 | 33 | 21 | 22 | 27 | 26 |
Insoluble fibers | 394 | 400 | 402 | 396 | 194 | 195 | 193 | 197 |
Soluble fibers | 20 | 21 | 24 | 25 | 129 | 130 | 130 | 132 |
Total fibers | 414 | 421 | 426 | 421 | 323 | 325 | 326 | 329 |
Calcium | 25.2 | 31.2 | 30.0 | 30.0 | 7.2 | 7.1 | 10 | 11.2 |
Phosphorus | 4 | 3.5 | 4.0 | 4.7 | 3.6 | 3.7 | 3.5 | 3.4 |
Calculated AMEn (MJ/kg) | 9 | 8 | 10 | 10 | 10 | 9 | 10 | 10 |
Essential amino acids (EAAs) (g/100 g protein) | ||||||||
Arginine | 11.5 | 11.2 | 9.6 | 7.8 | 6.7 | 6.7 | 6.5 | 5.6 |
Cysteine | 1.1 | 1.5 | 1.1 | 1.1 | 2.9 | 2.9 | 3.1 | 2.8 |
Histidine | 2.6 | 2.9 | 2.6 | 2.5 | 2.0 | 2.5 | 2.1 | 2.0 |
Isoleucine | 3.9 | 4.0 | 3.9 | 3.9 | 3.7 | 4.1 | 4.0 | 3.8 |
Leucine | 6.5 | 7.1 | 6.4 | 6.3 | 7.1 | 8.1 | 7.6 | 7.0 |
Lysine | 4.7 | 5.0 | 4.4 | 4.0 | 4.1 | 4.5 | 4.3 | 3.8 |
Methionine | 0.6 | 0.6 | 0.6 | 0.6 | 1.6 | 1.5 | 1.7 | 1.6 |
Phenylalanine | 3.8 | 4.0 | 3.7 | 1.5 | 5.0 | 5.6 | 5.2 | 4.9 |
Theonine | 3.4 | 4.1 | 3.3 | 3.3 | 3.4 | 3.9 | 3.8 | 3.6 |
Tyrosine | 3.8 | 3.4 | 3.5 | 3.1 | 3.6 | 3.8 | 3.7 | 3.4 |
Valine | 3.6 | 4.1 | 3.6 | 3.6 | 4.7 | 5.5 | 5.1 | 5.0 |
Tryptophan | 0.8 | 1.0 | 0.8 | 0.8 | 1.3 | 1.5 | 1.3 | 1.3 |
Total EAAs | 46.5 | 48.9 | 43.6 | 38.5 | 46.2 | 50.7 | 48.4 | 44.8 |
Non-essential amino acids (NEAAs) (g/100 g protein) | ||||||||
Alanine | 3.1 | 3.6 | 3.7 | 3.8 | 4.6 | 5.2 | 5.9 | 5.4 |
Aspartate | 10.0 | 10.3 | 12.5 | 9.9 | 8.3 | 9.1 | 8.0 | 8.4 |
Glutamine | 21.4 | 20.7 | 18.8 | 17.0 | 18.1 | 20.5 | 18.7 | 17.4 |
Glycine | 4.0 | 4.5 | 3.7 | 3.7 | 5.0 | 5.1 | 5.2 | 5.0 |
Proline | 3.9 | 4.5 | 3.8 | 3.6 | 4.9 | 5.9 | 5.2 | 4.8 |
Serine | 4.9 | 5.1 | 4.8 | 4.3 | 4.9 | 5.3 | 5.0 | 4.5 |
Total NEAAs | 47.4 | 48.8 | 47.5 | 42.4 | 45.8 | 51.1 | 48.2 | 50.5 |
Total of all AAs | 93.9 | 97.7 | 91.1 | 80.9 | 92.0 | 101.8 | 96.6 | 90.3 |
Ingredients (g/kg) | C | F | Fd | G | Gd | GF | GFd |
---|---|---|---|---|---|---|---|
Yellow corn | 249 | 249 | 249 | 249 | 249 | 249 | 249 |
Soybean meal | 171 | 115 | 115 | 115 | 115 | 115 | 115 |
Triticale | 190 | 190 | 190 | 190 | 190 | 190 | 190 |
Sunflower meal | 132 | 90 | 90 | 90 | 90 | 90 | 90 |
Wheat | 97 | 97 | 97 | 97 | 97 | 97 | 97 |
Lucerne | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
Wheat bran | 18 | 18 | 18 | 18 | 18 | 18 | 18 |
Soybean oil | 7 | 5 | 5 | 5 | 5 | 5 | 5 |
Carbonate | 86 | 86 | 86 | 86 | 86 | 86 | 86 |
Plant extract | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
Fermented grains | - | 100 | - | - | - | - | - |
Fermented grains with dehulled oats | - | - | 100 | - | - | - | - |
Germinated grains | - | - | - | 100 | - | - | - |
Germinated grains with dehulled oats | - | - | - | - | 100 | - | - |
Germinated fermented grains | - | - | - | - | - | 100 | - |
Germinated fermented grains with dehulled oats | - | - | - | - | - | - | 100 |
Vitamin–Mineral premix | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
Calculated content (g/kg) | |||||||
ME (MJ/kg) | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 | 11.7 |
Digestible lysine | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 | 11.5 |
Digestible threonine | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 | 5.4 |
Digestible methionine | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 | 2.6 |
Digestible methionine + cysteine | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 |
Analyzed content (g/kg) | |||||||
Dry matter | 906 | 909 | 901 | 906 | 909 | 895 | 901 |
Ashes | 161 | 151 | 138 | 124 | 138 | 118 | 130 |
Crude protein (CP) | 180 | 178 | 177 | 177 | 180 | 180 | 177 |
Crude fat (CF) | 55 | 54 | 55 | 54 | 57 | 52 | 54 |
Insoluble fibers | 164 | 171 | 156 | 187 | 157 | 181 | 172 |
Soluble fibers | 19 | 29 | 25 | 24 | 26 | 32 | 21 |
Total fibers | 183 | 200 | 181 | 211 | 183 | 213 | 193 |
Calcium | 460 | 441 | 450 | 362 | 381 | 332 | 373 |
Phosphorus | 4.9 | 4.6 | 4.6 | 4.6 | 5.2 | 5.2 | 4.8 |
Ingredients (g/kg) | C | F | Fd | G | Gd | GF | GFd |
---|---|---|---|---|---|---|---|
Fatty acids (FAs), g/100 g total FAs | |||||||
SFAs | 16.5 | 14.4 | 14.9 | 14.6 | 14.3 | 14.5 | 14.5 |
MUFAs | 39.4 | 45.6 | 44.6 | 45.2 | 45.1 | 44.9 | 44.8 |
PUFAs | 44.1 | 40.0 | 40.5 | 40.2 | 40.6 | 40.6 | 40.7 |
n − 3 | 3.4 | 3.0 | 2.8 | 3.0 | 3.0 | 3.0 | 3.1 |
n − 6 | 40.7 | 37.0 | 37.6 | 37.2 | 37.6 | 37.6 | 37.6 |
PUFAs/SFAs | 2.7 | 2.8 | 2.7 | 2.7 | 2.8 | 2.9 | 2.8 |
n − 6/n − 3 | 11.8 | 12.3 | 13.2 | 12.5 | 13.0 | 12.9 | 12.0 |
Essential amino acids (EAAs) (g/100 g protein) | |||||||
Arginine | 6.3 | 7.1 | 6.2 | 6.1 | 6.8 | 6.2 | 6.1 |
Cysteine | 1.4 | 1.6 | 1.6 | 1.6 | 1.5 | 1.6 | 1.5 |
Histidine | 2.3 | 2.5 | 2.4 | 2.4 | 2.2 | 2.4 | 2.3 |
Isoleucine | 3.7 | 4.0 | 3.8 | 3.9 | 3.7 | 3.8 | 3.3 |
Leucine | 7.0 | 7.5 | 7.2 | 6.3 | 6.8 | 7.2 | 7.2 |
Lysine | 4.5 | 4.3 | 4.3 | 4.0 | 4.0 | 4.3 | 4.2 |
Methionine | 1.2 | 1.3 | 1.3 | 1.2 | 1.2 | 1.3 | 1.1 |
Phenylalanine | 4.4 | 4.6 | 4.4 | 4.3 | 4.2 | 4.4 | 4.3 |
Threonine | 3.4 | 3.6 | 3.4 | 3.5 | 3.5 | 3.4 | 3.7 |
Tyrosine | 2.9 | 3.2 | 3.1 | 3.1 | 2.8 | 3.1 | 3.0 |
Valine | 4.3 | 4.7 | 4.5 | 4.4 | 4.3 | 4.2 | 3.9 |
Tryptophan | 1.1 | 1.2 | 1.1 | 1.1 | 1.1 | 1.1 | 1.1 |
Total EAAs | 42.6 | 45.6 | 43.4 | 42.1 | 42.2 | 43.1 | 42.0 |
Non-Essential amino acids (NEAAs) (g/100 g protein) | |||||||
Alanine | 4.2 | 4.5 | 4.4 | 4.5 | 4.1 | 4.3 | 4.5 |
Aspartate | 9.3 | 10.2 | 9.6 | 9.7 | 9.8 | 9.2 | 9.1 |
Glutamine | 17.6 | 19.1 | 17.8 | 16.8 | 17.3 | 16.8 | 16.9 |
Glycine | 4.1 | 4.5 | 4.3 | 4.4 | 4.1 | 4.3 | 4.3 |
Proline | 5.0 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.1 |
Serine | 4.4 | 4.7 | 4.4 | 4.6 | 4.5 | 4.4 | 4.4 |
Total NEAAs | 44.6 | 48.1 | 46.3 | 45.2 | 44.9 | 44.2 | 45.3 |
Total of all AAs | 87.3 | 93.7 | 89.7 | 87.3 | 87.1 | 87.3 | 87.3 |
Item | C | F | Fd | G | Gd | GF | GFd | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
Initial body weight (g) | 1923 | 1986 | 1954 | 1977 | 1958 | 1948 | 1945 | 33.9 | 0.60 |
Final body weight (g) | 1901 | 1954 | 1922 | 1881 | 1873 | 1868 | 1857 | 35.3 | 0.13 |
Body weight loss (g)/hen | 22.5 b | 31.7 b | 31.5 b | 96.2 a | 85.0 a | 79.2 a | 87.5 a | 5.4 | 1.14 × 10−12 |
Body weight loss (%)/hen | 1.2 b | 1.6 b | 1.6 b | 4.9 a | 4.3 a | 4.1 a | 4.5 a | 0.3 | 1.34 × 10−12 |
Daily feed intake (g) | 137.8 a | 137.4 a | 137.0 a | 130.2 b | 127.3 b | 131.2 b | 130.0 b | 2.3 | 1.09 × 10−7 |
Laying rate (%) | 86.1 a | 85.9 a | 78.6 ab | 76.3 b | 74.5 b | 76.0 b | 75.0 b | 3.5 | 3.52 × 10−3 |
% downgraded eggs | 1.4 b | 0.6 d | 1.0 c | 2.2 a | 0.8 cd | 1.6 b | 1.2 c | 0.2 | 2.39 × 10−7 |
Egg weight (g) | 63.5 | 62.3 | 62.6 | 61.6 | 61.7 | 62.1 | 61.8 | 0.6 | 0.061 |
Feed to egg ratio | 2.5 b | 2.6 b | 2.7 ab | 2.7 ab | 2.9 ab | 3.0 a | 2.8 ab | 0.1 | 3.73 × 10−3 |
Item | C | F | Fd | G | Gd | GF | GFd | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
Height (mm) | 57.7 | 57.9 | 57.8 | 58.0 | 57.0 | 58.5 | 57.6 | 0.5 | 0.15 |
Diameter (mm) | 44.7 | 44.6 | 44.7 | 44.1 | 44.3 | 44.6 | 44.7 | 0.3 | 0.45 |
Shape index (SI) | 78 | 77 | 77 | 76 | 78 | 76 | 76 | 0.7 | 0.07 |
Albumen (g) | 40.7 | 40.7 | 41.2 | 40.1 | 40.1 | 41.5 | 39.4 | 0.8 | 0.15 |
Vitellus (g) | 16.9 | 16.8 | 16.7 | 16.1 | 16.1 | 16.5 | 16.1 | 0.4 | 0.06 |
Shell (g) | 7.8 | 7.9 | 7.8 | 7.6 | 7.6 | 7.8 | 7.65 | 0.2 | 0.29 |
Albumen proportion (%) | 62.2 | 62.2 | 62.6 | 62.8 | 62.8 | 62.9 | 62.4 | 0.6 | 0.66 |
Vitellus proportion (%) | 25.8 | 25.6 | 25.4 | 25.2 | 25.2 | 25.1 | 25.4 | 0.4 | 0.64 |
Shell proportion (%)c | 12.0 | 12.1 | 11.9 | 11.9 | 12.0 | 11.9 | 12.1 | 0.2 | 0.89 |
Shell thickness (mm) | 0.42 | 0.43 | 0.43 | 0.43 | 0.43 | 0.42 | 0.43 | 0.0 | 0.53 |
Haugh unit | 81.1 | 78.5 | 81.3 | 81.4 | 81.6 | 80.7 | 79.9 | 1.6 | 0.50 |
Yolk color (1–15) | 11.2 | 11.7 | 11.7 | 11.7 | 11.1 | 11.5 | 10.6 | 0.5 | 0.18 |
Item | C | F | Fd | G | Gd | GF | GFd | SEM | p-Value |
---|---|---|---|---|---|---|---|---|---|
Albumen | |||||||||
Dry matter (%) | 11.9 | 12.0 | 12.1 | 11.7 | 11.9 | 12.0 | 11.9 | 0.1 | 0.17 |
Protein (%) | 10.4 | 10.6 | 10.9 | 10.7 | 10.6 | 10.9 | 10.5 | 0.3 | 0.27 |
Vitellus | |||||||||
Dry matter (%) | 51.9 b | 51.4 cd | 51.3 d | 51.9 b | 51.7 c | 51.3 d | 52.0 a | 0.2 | 6.84 × 10−4 |
Protein (%) | 16.7 | 16.8 | 17.2 | 17.1 | 17.1 | 17.1 | 16.9 | 0.2 | 0.102 |
Lipids (%) | 33.9 a | 31.8 b | 32.8 ab | 32.9 ab | 33.7 ab | 34.4 a | 34.5 a | 0.6 | 2.72 × 10−4 |
Cholesterol (mg/g of vitellus) | 19.7 a | 16.4 b | 16.8 b | 17.2 b | 17.0 b | 16.5 b | 17.4 b | 0.5 | 2.91 × 10−11 |
Fatty acid (FA) composition (% of total FA) | |||||||||
SFAs | 32.4 | 31.3 | 31.3 | 31.5 | 33.0 | 31.7 | 32.2 | 0.7 | 1.34 |
MUFAs | 46.5 | 48.0 | 47.2 | 47.3 | 48.0 | 47.8 | 47.0 | 0.6 | 1.12 |
PUFAs | 21.1 | 20.7 | 21.5 | 21.2 | 18.9 | 20.4 | 20.8 | 1.1 | 1.83 |
n − 6 | 19.3 | 19.0 | 19.7 | 19.4 | 17.3 | 18.7 | 19.0 | 1.0 | 1.70 |
n − 3 | 1.8 | 1.7 | 1.8 | 1.8 | 1.6 | 1.8 | 1.8 | 0.1 | 0.17 |
PUFAs/SFAs | 0.6 | 0.7 | 0.7 | 0.7 | 0.6 | 0.6 | 0.6 | 0.1 | 0.08 |
18:2n − 6/18:3n − 3 | 23.3 | 26.9 | 26.2 | 24.8 | 28.1 | 28.0 | 25.1 | 2.3 | 3.88 |
n − 6/n − 3 | 10.7 | 10.8 | 11.0 | 10.7 | 11.0 | 10.5 | 10.4 | 0.5 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kponouglo, K.; Koné, G.A.; Good, M.; Grosset, N.; Gautier, M.; Kouba, M. Effect of Using Germinated and Fermented Lupin and Oats as a Dietary Protein Source on Laying Hen Performance and Egg Quality. Agriculture 2024, 14, 1942. https://doi.org/10.3390/agriculture14111942
Kponouglo K, Koné GA, Good M, Grosset N, Gautier M, Kouba M. Effect of Using Germinated and Fermented Lupin and Oats as a Dietary Protein Source on Laying Hen Performance and Egg Quality. Agriculture. 2024; 14(11):1942. https://doi.org/10.3390/agriculture14111942
Chicago/Turabian StyleKponouglo, Koffigan, Gningnini Alain Koné, Margaret Good, Noel Grosset, Michel Gautier, and Maryline Kouba. 2024. "Effect of Using Germinated and Fermented Lupin and Oats as a Dietary Protein Source on Laying Hen Performance and Egg Quality" Agriculture 14, no. 11: 1942. https://doi.org/10.3390/agriculture14111942
APA StyleKponouglo, K., Koné, G. A., Good, M., Grosset, N., Gautier, M., & Kouba, M. (2024). Effect of Using Germinated and Fermented Lupin and Oats as a Dietary Protein Source on Laying Hen Performance and Egg Quality. Agriculture, 14(11), 1942. https://doi.org/10.3390/agriculture14111942