Effects of Adding Agro-Industrial By-Products of Babassu to Guinea Grass Silage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Origin of the Babassu by-Product
2.2. Treatments and Experimental Design
2.3. Preparation of Diets and Ensiling
2.4. Fermentative Profile
2.5. Chemical Composition
2.6. Aerobic Stability
2.7. Statistical Analysis
- Yik is a measurement-dependent variable in the experimental unit ‘k’ of the experience silage ‘i’;
- μ is the general constant;
- Si is the effect of silage;
- εik is the random error effect.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Mapping Supply and Demand for Animal-Source Foods to 2030 (T. Robinson, F. Pozzi, Eds.). Animal Production and Health Working Paper. Available online: http://www.fao.org/3/i2425e/i2425e00.pdf (accessed on 23 January 2023).
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; 282p. [Google Scholar]
- Ávila, C.L.D.S.; Pinto, J.C.; Figueiredo, H.C.P.; Morais, A.R.D.; Pereira, O.G.; Schwan, R.F. Estabilidade aeróbia de silagens de capim-mombaça tratadas com Lactobacillus buchneri. Rev. Bras. Zootec. 2009, 38, 779–787. [Google Scholar] [CrossRef]
- Rodrigues, P.H.M.; Lobo, J.R.; Silva, E.J.A. Efeito da inclusão de polpa cítrica peletizada na confecção de silagem de capim-elefante (Pennisetum purpureum, Schum.). Rev. Bras. Zootec. 2007, 36, 1751–1760. [Google Scholar] [CrossRef]
- Mochel Filho, W.; Carneiro, M.D.S.; Andrade, A.C.; Pereira, E.S.; de Andrade, A.P.; Cândido, M.D.D. Produtividade e composição bromatológica de Panicum maximum cv. Mombaça sob irrigação e adubação azotada. Rev. Cienc. Agr. 2016, 39, 81–88. [Google Scholar] [CrossRef]
- Ferreira, D.; Bandeira, D.; Zanine, A.; Parente, H.; Parente, M.; Santos, E.; Lima, A.G.; Pinho, R.; Oliveira, J.; Santos, F.N. Mixed Ration Silage Containing Tanzania Grass and Babassu By-Products for Dairy Cows. Agronomy 2022, 12, 3043. [Google Scholar] [CrossRef]
- Nishino, N.; Harada, H.; Sakaguchi, E. Evaluation of fermentation and aerobic stability of wet brewers grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agr. 2003, 83, 557–563. [Google Scholar] [CrossRef]
- Cao, Y.; Takahashi, T.; Horiguchi, K. Effects of addition of food by-procucts on the fermentation quality of a total mixed ration with whole crop rice and its digestibility, preference, and rumen fermentation in sheep. Anim. Feed Sci. Technol. 2009, 151, 1–11. [Google Scholar] [CrossRef]
- Weinberg, Z.; Chen, Y.; Miron, D.; Raviv, Y.; Nahim, E.; Bloch, A.; Yosef, E.; Nikbahat, M.; Miron, J. Preservation of total mixed rations for dairy cows in bales wrapped with polyethylene stretch film—A commercial scale experiment. Anim. Feed Sci. Technol. 2011, 164, 125–129. [Google Scholar] [CrossRef]
- Gusmão, J.O.; Danes, M.A.C.; Casagrande, D.R.; Bernardes, T.C. Total mixed ration silage containing elephant grass for small-scale dairy farms. Grass Forage Sci. 2018, 73, 717–726. [Google Scholar] [CrossRef]
- Kondo, M.; Shimizu, K.; Jayanegara, A.; Mishima, T.; Matsui, H.; Karita, S.; Gotoa, M.; Fujihara, T. Changes in nutrient composition andin vitroruminal fermentation of total mixed ration silage stored at different temperatures and periods. J. Sci. Food Agr. 2015, 96, 1175–1180. [Google Scholar] [CrossRef]
- Köppen, W.; Geiger, R. Klimate der Erde; Wall-Map b150 cm × 200 cm; Verlag Justus Perthes: Gotha, Germany, 1928. [Google Scholar]
- National Research Council—NRC. Nutrient Requirements of Small Ruminants; National Academy Press: Washington, DC, USA, 2007; 381p. [Google Scholar]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef]
- Bolsen, K.K.; Lin, C.; Brent, C.R. Effects of silage additives on the microbial succession and fermentation process of alfafa and corn silages. J. Dairy Sci. 1992, 75, 3066–3083. [Google Scholar] [CrossRef]
- Nogueira, A.R.A.; Souza, G.B. Manual de Laboratórios: Solo, Agua, Nutrição Vegetal, Nutrição Animal e Alimentos; Embrapa Pecuária Sudeste: São Carlos, Brazil, 2005; 313p. [Google Scholar]
- Playne, M.J.; Mcdonald, P.T. The buffering constituents of herbage and of silage. J. Sci. Food Agr. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Siegfried, V.R.; Ruckemann, H.; Stumpf, G. Method for the determination of organic acids in silage by high performance liquid chromatography. Landwirtsch. Forsch. 1984, 37, 298–304. [Google Scholar]
- Zanine, A.D.M.; Santos, E.M.; Dórea, J.R.R.; Dantas, P.A.D.S.; Silva, T.C.D.; Pereira, O.G. Evaluation of elephant grass silage with the addition of cassava scrapings. Rev. Bras. Zootec. 2010, 39, 2611–2616. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Carbohydrate methodology, metabolism, and nutritional implications in dairy caltle. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J. Use of detergents in the analysis of fibrous feed. II. A rapid method for the determination of fiber and lignin. J. AOAC Int. 1990, 73, 491–497. [Google Scholar] [CrossRef]
- Sniffen, C.J.; O’Connor, J.D.; Van Soest, P.J.; Fox, D.G.; Russel, J.B. A net carbohydrate and protein system for evaluating cattle diets. II. Carbohydrate and protein availability. J. Anim. Sci. 1992, 70, 3562–3577. [Google Scholar] [CrossRef] [PubMed]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.S.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.E.; Azevedo, J.A.G. Métodos Para Análise de Alimentos—INCT—Ciência Animal, 1st ed.; Suprema: Visconde do Rio Branco, Brazil, 2012; 214p. [Google Scholar]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smitch, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Harlan, D.W.; Holter, J.B.; Hayes, H.H. Detergent fiber traits to predict productive energy of forages fed free choice to non-lactating dairy cattle. J. Dairy Sci. 1991, 74, 1337–1353. [Google Scholar] [CrossRef]
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Comino, L.; Tabacco, E.; Righi, F.; Revello-Chion, A.; Quarantelli, A.; Borreani, G. Effects of an inoculant containing a Lactobacillus buchneri that produces ferulate-esterase on fermentation products, aerobic stability, and fibre digestibility of maize silage harvested at different stages of maturity. Anim. Feed Sci. Technol. 2014, 198, 94–106. [Google Scholar] [CrossRef]
- SAS Institute. SAS/STAT 9.1 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2003; 5121p. [Google Scholar]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; 340p. [Google Scholar]
- Tomich, T.R.; Pereira, L.G.R.; Gonçalves, L.C.; Tomich, R.G.P.; Borges, I. Características Químicas Para Avaliação do Processo Fermentativo de Silagens: Uma Proposta Para Qualificação da Fermentação; Série Documentos da EMBRAPA; Embrapa Pantanal: Corumbá, Brazil, 2003. [Google Scholar]
- Hepered, A.C.; Kung, L. An enzyme additive on composition of corn: Effects on silage composition and animal performace. J. Dairy Sci. 1996, 79, 1767–1773. [Google Scholar]
- Borges, E.N.; Araújo, C.A.; Monteiro, B.S.; Silva, A.S.; Albuquerque, L.F.; Araújo, G.G.L.; Campos, F.S.; Gois, G.C.; Souza, R.C.; Araújo, A.O. Buffel grass pre-dried as a modulator of the fermentation, nutritional and aerobic stability profile of cactus pear silage. N. Z. J. Agric. Res. 2023, 16, 1–16. [Google Scholar] [CrossRef]
- Portela, Y.N.; Zanine, A.M.; Ferreira, D.J.; Parente, M.O.M.; Parente, H.N.; Santos, E.M.; Perazzo, A.F.; Nascimento, T.V.C.; Cunha, I.A.L.; Lima, A.G.V.O.; et al. Mixed ration silage containing sugarcane and babassu byproducts as a nutritional alternative for livestock. N. Z. J. Agric. Res. 2022, 6, 1–17. [Google Scholar] [CrossRef]
- Zanine, A.; De Sá, C.; Ferreira, D.; Parente, H.; Parente, M.; Santos, E.M.; Rodrigues, R.; Santos, F.N.; Lima, A.G.; Cunha, I.A.; et al. The Effect of Babassu Industry By-Products as an Alternative Feed for Dairy Cows. Agronomy 2023, 13, 491. [Google Scholar] [CrossRef]
- Itavo, L.C.V.; Itavo, C.C.B.F.; Morais, M.G.; Dias, A.M.; Coelho, E.M.; Jeller, H.; Souza, A.D.V. Composição química e parâmetros fermentativos de silagens de capim-elefante e cana-de-açúcar tratadas com aditivos. Rev. Bras. Saúde Prod. Anim. 2010, 11, 606–617. [Google Scholar]
- Gerlach, K.; Roß, F.; Weiß, K.; Buscher, W.S.; Udeku, K.H. Aerobic exposure of grass silages and its impact on dry matter intake and preference by goats. Small Rumin. Res. 2014, 117, 131–141. [Google Scholar] [CrossRef]
- Scherer, R.; Gerlach, K.; Sudekun, K.H. Biogenic amines and gamma-amino butyric acid in silage: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed Sci. Technol. 2015, 210, 1–16. [Google Scholar] [CrossRef]
- Roth, G.; Undersander, D. Silage additives. In Corn Silage Production Management and Feeding; Madison American Society of Agronomy: Madison, WI, USA, 1995; pp. 27–29. [Google Scholar]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schimdt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Conaghan, P.; O’Kiely, P.; O’Mara, F.P. Conservation characteristics of wilted perennial ryegrass silage made using biological or chemical additives. J. Dairy Sci. 2010, 93, 628–643. [Google Scholar] [CrossRef] [PubMed]
Item, %DM | Guinea Grass | Babassu Flour | Babassu Cake |
---|---|---|---|
Dry matter | 22.6 | 87.0 | 89.0 |
Ash | 8.52 | 3.8 | 4.1 |
Crude protein | 6.82 | 5.21 | 16.0 |
NDFap 1 | 73.32 | 65.0 | 63.5 |
Acid detergent fiber | 64.20 | 54.7 | 53.7 |
Hemicellulose | 9.12 | 11.2 | 9.78 |
Cellulose | 58.5 | 38.0 | 43.0 |
Acid detergent lignin | 5.72 | 17.0 | 10.0 |
Ether extract | 2.33 | 2.20 | 12.0 |
Total carbohydrates | 82.33 | 89.6 | 68.4 |
Non-fiber carbohydrate | 9.01 | 23.6 | 4.90 |
Item, g/kg DM | Silages | |||
---|---|---|---|---|
TGS 1 | TMRS 2 | TMRF 3 | TMRC 4 | |
Ingredients | ||||
Guinea grass silage | 1000 | 500 | 500 | 500 |
Corn meal | 0 | 300 | 150 | 150 |
Soybean meal | 0 | 135 | 135 | 135 |
Molasses | 0 | 50 | 50 | 50 |
Babassu cake | 0 | 0 | 0 | 150 |
Babassu flour | 0 | 0 | 150 | 0 |
Urea | 0 | 2 | 4 | 0 |
Mineral mixture 1 | 0 | 12 | 12 | 12 |
Chemical composition | ||||
Dry matter | 226 | 545 | 547 | 546 |
Ash | 85.2 | 74.7 | 77.1 | 77.5 |
Crude protein | 68.2 | 128 | 128 | 133 |
NDFap 5 | 733 | 436 | 514 | 511 |
Acid detergent fiber | 642 | 349 | 425 | 423 |
Hemicellulose | 91.2 | 86.9 | 88.7 | 87.95 |
Cellulose | 585 | 320 | 371 | 380 |
Acid detergent lignin | 57.2 | 28.6 | 54.1 | 43.6 |
Ether extract | 23.3 | 44.6 | 37.3 | 52.0 |
Total carbohydrates | 823 | 753 | 757 | 737 |
Non-fiber carbohydrate | 90.1 | 317 | 244 | 226 |
Water-soluble carbohydrates | 8.77 | 11.8 | 10.7 | 10.6 |
Metabolizable energy (Mcal/day) | 1.34 | 2.09 | 1.90 | 1.90 |
Item | Silages | SEM | p-Value | |||
---|---|---|---|---|---|---|
TGS 1 | TMRS 2 | TMRF 3 | TMRC 4 | |||
pH | 5.15 b | 4.99 c | 5.16 b | 5.34 a | 0.03 | <0.001 |
Buffer capacity (E. mg NaOH) | 0.81 | 0.71 | 0.78 | 0.80 | 0.02 | 0.234 |
NH3-N (%N total) | 11.19 a | 7.30 c | 6.74 c | 8.94 b | 0.41 | <0.001 |
Gas losses (%DM) | 0.214 a | 0.102 b | 0.105 b | 0.110 b | 0.01 | <0.001 |
Effluent losses (kg/ton) | 23.89 a | 14.72 b | 13.30 b | 13.05 b | 1.21 | <0.001 |
Dry matter recovery (%DM) | 85.93 b | 97.01 a | 96.67 a | 96.88 a | 1.29 | <0.001 |
Water-soluble carbohydrates (g/kg DM) | 55.4 b | 90.9 a | 82.0 a | 80.2 a | 0.38 | <0.001 |
Lactic acid (g/kg DM) | 40.15 b | 52.25 a | 52.01 a | 53.08 a | 0.37 | <0.001 |
Acetic acid (g/kg DM) | 2.8 | 3.28 | 3.3 | 3.32 | 0.02 | 0.243 |
Butyric acid (g/kg DM) | 2.62 a | 2.19 b | 2.13 b | 2.22 b | 0.01 | <0.001 |
Propionic acid (g/kg DM) | 1.2 | 1.31 | 1.28 | 1.44 | 0.36 | 0.124 |
Ethanol (g/kg DM) | 14.3 | 12.37 | 12.71 | 13.31 | 0.26 | 0.148 |
LA:FP (%) 5 | 61.07 b | 71.40 a | 71.43 a | 73.37 a | 0.01 | <0.001 |
Item (g/kg DM) | Silages | SEM | p-Value | |||
---|---|---|---|---|---|---|
TGS 1 | TMRS 2 | TMRF 3 | TMRC 4 | |||
Dry matter | 206.30 c | 310.06 a | 306.03 ab | 298.65 b | 0.99 | <0.001 |
Ash | 105.07 a | 81.58 b | 84.59 b | 98.67 a | 0.24 | <0.001 |
Organic matter | 894.93 b | 918.42 a | 915.41 a | 901.33 b | 0.24 | <0.001 |
Crude protein | 65.53 b | 125.77 a | 129.58 a | 130.52 a | 0.62 | <0.001 |
NDFap 5 | 696.36 a | 465.52 c | 545.93 b | 582.81 b | 2.00 | <0.001 |
Acid detergent fiber | 606.43 a | 414.11 c | 411.60 c | 461.58 b | 1.83 | <0.001 |
Acid detergent lignin | 130.61 ab | 120.43 b | 161.28 a | 140.68 ab | 0.56 | 0.048 |
Hemicellulose | 89.93 ab | 51.41 b | 134.33 a | 121.24 a | 0.90 | <0.001 |
Cellulose | 475.81 a | 293.68 b | 250.33 c | 320.901 b | 1.27 | <0.001 |
Ether extract | 17.45 | 18.65 | 19.22 | 19.35 | 0.08 | 0.847 |
Total carbohydrates | 812.0 a | 774.0 b | 766.6 b | 751.5 b | 0.45 | <0.001 |
Non-fiber carbohydrate | 115.6 c | 308.5 a | 220.7 b | 168.7 b | 1.91 | <0.001 |
Total digestible nutrients | 594.01 b | 665.69 a | 632.89 a | 652.80 a | 1.51 | 0.003 |
In vitro digestibility of DM | 522.69 b | 635.39 a | 623.57 a | 628.07 a | 14.4 | 0.007 |
Metabolizable energy (Kcal/day) | 2.12 c | 2.38 a | 2.27 b | 2.34 a | 0.04 | <0.001 |
Item | Silages | SEM | p-Value | |||
---|---|---|---|---|---|---|
TGS 1 | TMRS 2 | TMRF 3 | TMRC 4 | |||
Ambient Temperature (°C) | 25.00 | 25.00 | 25.00 | 25.00 | ------ | ------ |
Aerobic stability (hours) | >114 | >114 | >114 | >114 | ------ | ------ |
Max temperature in 120 h (°C) | 25.50 a | 25.12 b | 25.00 b | 25.00 b | 0.06 | <0.001 |
Hours/Max temperature | 48.69 a | 13.30 ab | 0.00 b | 0.00 b | 9.51 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, D.; Bandeira, D.; Zanine, A.; Parente, H.; Parente, M.; Rodrigues, R.; Santos, E.M.; Lima, A.G.; Ribeiro, M.; Pinho, R.; et al. Effects of Adding Agro-Industrial By-Products of Babassu to Guinea Grass Silage. Agriculture 2023, 13, 1697. https://doi.org/10.3390/agriculture13091697
Ferreira D, Bandeira D, Zanine A, Parente H, Parente M, Rodrigues R, Santos EM, Lima AG, Ribeiro M, Pinho R, et al. Effects of Adding Agro-Industrial By-Products of Babassu to Guinea Grass Silage. Agriculture. 2023; 13(9):1697. https://doi.org/10.3390/agriculture13091697
Chicago/Turabian StyleFerreira, Daniele, Danrley Bandeira, Anderson Zanine, Henrique Parente, Michelle Parente, Rosane Rodrigues, Edson Mauro Santos, Anny Graycy Lima, Marinaldo Ribeiro, Ricardo Pinho, and et al. 2023. "Effects of Adding Agro-Industrial By-Products of Babassu to Guinea Grass Silage" Agriculture 13, no. 9: 1697. https://doi.org/10.3390/agriculture13091697