Characterization of Melon, (Cucumis melo L.) Silage with Different Biomass Mixtures and Dry Matter Contents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Statistical Design and Treatments
2.2. Collection of Melon Plant Biomass and Silage Making
2.3. Silage Chemical Composition and Loss Quantification
2.4. Silage Fermentation Indicators, Microbiological Analysis and Organic Acids Determination
2.5. Aerobic Stability
2.6. Statistical Analysis
3. Results
3.1. Silage Yield and Chemical Composition
3.2. Losses and Fermentation Indicators
3.3. Microbiology Analysis and Organic Acids of Silages
3.4. Aerobic Stability and Microbiology Analysis
4. Discussion
4.1. Silage Yield and Chemical Composition
4.2. Losses, DM Recovery and Fermentation Indicators
4.3. Microbiology Analysis and Organic Acids of Silages
4.4. Aerobic Stability and Microbiology Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Melo, V.L.D.L.; Batista, N.V.; Pinto, M.M.F.; Teófilo, T.D.S.; De Oliveira, P.V.C.; Lima, P.D.O. Melão in natura como dieta exclusiva para bovinos: Um estudo de caso. Res. Soc. Dev. 2020, 9, e289108341. [Google Scholar] [CrossRef]
- Jurgilevich, A.; Birge, T.; Kentala-Lehtonen, J.; Korhonen-Kurki, K.; Pietikäinen, J.; Saikku, L.; Schösler, H. Transition towards Circular Economy in the Food System. Sustainability 2016, 8, 69. [Google Scholar] [CrossRef] [Green Version]
- Serrapica, F.; Masucci, F.; Raffrenato, E.; Sannino, M.; Vastolo, A.; Barone, C.M.A.; Di Francia, A. High Fiber Cakes from Mediterranean Multipurpose Oilseeds as Protein Sources for Ruminants. Animals 2019, 9, 918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, B.C.R.; Moreira, Y.R.; Alfaiate, M.B.; Souza, M.H.; Mendonça, P.P.; Deminics, B.B. Utilização de subprodutos e resíduos de frutas na suplementação de ovinos (Ovis aries). Arch. Vet. Sci. 2017, 22, 8–17. [Google Scholar] [CrossRef]
- Sousa-Alves, W.; Rigueira, J.-P.S.; Almeida-Moura, M.M.; De-Jesus, D.L.S.; Monção, F.P.; Rocha-Júnior, V.R.; Aspiazú, I.; De-Jesus, N.G.; De-Melo, J.A.R.; Da-Silva, M.F.P. Fermentative characteristics and nutritional value of sugarcane silage added with two types of urea. Rev. Colomb. Cienc. Pecu. 2019, 33, 182–194. [Google Scholar] [CrossRef] [Green Version]
- Freitas, P.M.; Carvalho, G.G.; Santos, E.M.; Araújo, G.G.; Oliveira, J.S.; Pires, A.J.; Maranhão, C.M.; Rodrigues, T.C.; Pinto, L.F. Qualitative parameters of pearl millet silage ammoniated with urea, at different compaction densities. Pesqui. Agropecu. Bras. 2017, 52, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Martinkoski, L.; Vogel, G.F. Utilização de sorgo como alternativa na produção de silagem. Rev. Verde Agroecol. Desenvolv. Sustent. 2013, 8, 177–187. [Google Scholar]
- Borreani, G.; Tabacco, E.; Schmidt, R.; Holmes, B.; Muck, R. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [Green Version]
- Nascimento, R.R.d.; Edvan, R.L.; Nascimento, K.d.S.; Alves Barros, D.M.; Rocha, A.M.; Dias e Silva, T.P.; Santos, E.M.; Miranda, R.d.S.; Biagiotti, D.; Araújo, M.J.d. Fermentation Profile, Nutritional Quality and Microbial Populations of Melon Plant Biomass Silage Ensiled with Corn Bran. Agronomy 2023, 13, 1049. [Google Scholar] [CrossRef]
- Nascimento, R.R.D.; Edvan, R.L.; Nascimento, K.D.S.; Barros, L.D.S.; Bezerra, L.R.; Miranda, R.D.S.; Perazzo, A.F.; de Araújo, M.J. Quality of Silage with Different Mixtures of Melon Biomass with Urea as an Additive. Agronomy 2023, 13, 293. [Google Scholar] [CrossRef]
- Silva, H.D.; Costa, N.D. Melon Production: Technical Aspects; Embrapa Informação Tecnológica: Brasília, Brasil, 2003. [Google Scholar]
- Salman, A.K.D.; Soares, J.P.G.; Canesin, R.C. Métodos de Amostragem para Avaliação Quantitativa de Pastagens; Circular Técnica 84; Embrapa: Brasilia, Brazil, 2006. [Google Scholar]
- Sbrissia, A.F.; Duchini, P.G.; Zanini, G.D.; Santos, G.T.; Padilha, D.A.; Schmitt, D. Defoliation Strategies in Pastures Submitted to Intermittent Stocking Method: Underlying Mechanisms Buffering Forage Accumulation over a Range of Grazing Heights. Crop Sci. 2018, 58, 945–954. [Google Scholar] [CrossRef]
- Souza, G.B.; Nogueira, A.R.A.; Rassini, J.B. Determinação de Matéria Seca e Umidade em Solos e Plantas com Forno de Microondas Doméstico; Embrapa Pecuária Sudeste: São Carlos, Brazil, 2002; Volume 9. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; The Association of Official Analytical Chemist: Washington, DC, USA, 2005. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Nelson, N. A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem. 1944, 153, 375–380. [Google Scholar] [CrossRef]
- Mizubuti, I.Y.; Pinto, A.P.; Pereira, E.S.; Ramos, B.M.O. Métodos Laboratoriais de Avaliação de Alimentos para Animais; Eduel: Londrina, Brazil, 2009. [Google Scholar]
- Jobim, C.C.; Nussio, L.G.; Reis, R.A.; Schmidt, P. Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev. Bras. Zootec. 2007, 36, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Detmann, E.; Souza, M.; Valadares Filho, S.C.; Queiroz, A.; Berchielli, T.; Saliba, E.; Azevedo, J. Métodos Para Análise de Alimentos; SUPREMA: Visconde do Rio Branco, Brazil, 2012; 214p. [Google Scholar]
- Da Silva, L.D.; Pereira, O.G.; Roseira, J.P.S.; Agarussi, M.C.N.; Da Silva, V.P.; Da Silva, T.C. Fermentative profile of maize silage inoculated with Lactobacillus buchneri. Rev. Ciênc. Agrár. 2019, 62, 2924. [Google Scholar] [CrossRef]
- Erwin, E.; Marco, G.; Emery, E. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Kung, L.; Taylor, C.; Lynch, M.; Neylon, J. The Effect of Treating Alfalfa with Lactobacillus buchneri 40788 on Silage Fermentation, Aerobic Stability, and Nutritive Value for Lactating Dairy Cows. J. Dairy Sci. 2003, 86, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Alves, G.S.; Alves, J.E.D.A.; Aragão, C.S.B.; Marques, L.F.; Silva, C.E.P.; Alves, K.M.C.; de Araújo, C.O.N. Processamento de Suco Concentrado Adicionado de Farinha de Semente de Melão Amarelo. Rev. Semiárido Visu 2019, 7, 3–14. [Google Scholar] [CrossRef]
- McDonald, I.M.; Solow, R.M. Wage bargaining and employment. Am. Econ. Rev. 1981, 71, 896–908. [Google Scholar]
- Ítavo, L.C.V.; Ítavo, C.C.B.F.; Morais, M.G.; Coelho, E.M.; Dias, A.M. Composição química e parâmetros fermentativos de silagens de capim-elefante e cana-de-açúcar tratadas com aditivos. Rev. Bras. Saúde Prod. Anim. 2010, 11, 606–617. [Google Scholar]
- Possenti, R.A.; Junior, E.F.; Bueno, M.S.; Bianchini, D.; Leinz, F.F.; Rodrigues, C.F. Parâmetros bromatológicos e fermentativos das silagens de milho e girassol. Ciênc. Rural 2015, 35, 1185–1189. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L. The role of dietary fats in effciency of ruminants. J. Nutr. 1994, 124, 1377. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994; pp. 334–336. [Google Scholar] [CrossRef]
- Figueiredo, R.R.; Freire, A.P.S.S.; França, A.M.S.; Ferreira, I.C.; Guimarães, E.C. Composição química da silagem de milho com aditivos. Pub. Med. Vet. Zootec. 2018, 12, 133. [Google Scholar] [CrossRef] [Green Version]
- Zamarchi, G.; Pavinato, P.S.; Menezes, L.F.G.; Martin, T.N. Silagem de aveia branca em função da adubação nitrogenada e pré-murchamento. Semin. Ciênc. Agrár. 2014, 35, 2185. [Google Scholar] [CrossRef]
- Ribeiro, L.S.O.; Pires, A.J.V.; de Carvalho, G.G.P.; dos Santos, A.B.; Ferreira, A.R.; Bonomo, P.; da Silva, F.F. Composição química e perdas fermentativas de silagem de cana-de-açúcar tratada com ureia ou hidróxido de sódio. Rev. Bras. Zootec. 2010, 39, 1911–1918. [Google Scholar] [CrossRef] [Green Version]
- Machado, F.; Rodríguez, N.; Rodrigues, J.; Ribas, M.; Teixeira, A.; Júnior, G.R.; Velasco, F.; Gonçalves, L.; Júnior, R.G.; Pereira, L. Qualidade da silagem de híbridos de sorgo em diferentes estádios de maturação. Arq. Bras. Med. Vet. 2012, 64, 711–720. [Google Scholar] [CrossRef] [Green Version]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- França, A.F.; Oliveira, R.P.; Santos, J.A.; Miyagi, R.E.; Silva, A.G.; Peron, M.H.J.; Abreu, J.B.; Bastos, D.C. Características fermentativas de silagem de híbridos de sorgo sob doses de nitrogênio. Ciênc. Ani. Bras. 2011, 12, 383–391. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.B.; Dos Reis, R.H.P.; Cabral, L.D.S.; De Abreu, J.G.; Sousa, D.D.P.; Pedreira, B.C.; Mombach, M.A.; Balbinot, E.; De Carvalho, P.; Carvalho, A.P.D.S. Fermentation characteristics of different purpose sorghum silage. Semin. Ciênc. Agrár. 2017, 38, 2607–2618. [Google Scholar] [CrossRef] [Green Version]
- McDonald, P.; Henderson, A.R.E.; Heron, S.J.E. The Biochemistry of Silage, 2nd ed.; Chalcomb Publisher: Marlow, UK, 1991. [Google Scholar]
- Silva, V.P.; Pereira, O.G.; Leandro, E.S.; Paula, R.A.; Agarussi, M.C.N.; Ribeiro, K.G. Selection of Lactic Acid Bacteria from Alfalfa Silage and Its Effects as Inoculant on Silage Fermentation. Agriculture 2020, 10, 518. [Google Scholar] [CrossRef]
- Napasirth, V.; Napasirth, P.; Sulinthone, T.; Phommachanh, K.; Cai, Y. Microbial population, chemical composition and silage fermentation of cassava residues. Anim. Sci. J. 2015, 86, 842–848. [Google Scholar] [CrossRef]
- Rezende, A.; Rabelo, C.; Rabelo, F.; Nogueira, D.; Junior, D.F.; Barbosa, L. Perdas fermentativas e estabilidade aeróbia de silagens de cana-de-açúcar tratadas com cal virgem e cloreto de sódio. Rev. Bras. Zootec. 2011, 40, 739–746. [Google Scholar] [CrossRef] [Green Version]
- Weinberg, Z.G.; Ashbell, G.; Hen, Y.; Azrieli, A. Efeito da aplicação de bactérias lácticas na ensilagem na estabilidade aeróbia de silagens. J. Appl. Bacter. 1993, 75, 512–518. [Google Scholar] [CrossRef]
- Negrão, F.D.M.; Zanine, A.D.M.; De Souza, A.L.; Cabral, L.D.S.; Ferreira, D.D.J.; Dantas, C.C.O. Perdas, perfil fermentativo e composição química das silagens de capim Brachiaria decumbens com inclusão de farelo de arroz. Rev. Bras. Saúde Prod. 2016, 17, 13–25. [Google Scholar] [CrossRef] [Green Version]
- Pinedo, L.A.; Dos Santos, B.R.C.; Firmino, S.S.; Assis, L.C.D.S.L.C.; Braga, A.P.; Lima, P.D.O.; De Oliveira, P.V.C.; Pinto, M.M.F. Silagem de sorgo aditivada com coproduto alternativo da torta de semente de cupuaçu/Sorghum silage enriched whit by-products the cupuaçu seed cake. Braz. J. Dev. 2019, 5, 29633–29645. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.O.; Spoelstra, S.F. Microbiologia da ensilagem. In Silage Science and Technology; American Society of Agronomy: Madison, WI, USA, 2003; Volume 42, pp. 31–93. [Google Scholar]
- Garcez, K.F.; Hoch, G.C.; Rodrigues, A.T.; Schneider, C.R.; da Costa Soares, D.; Castagnara, D.D. Perfil fermentativo, valor nutricional e microbiológico da silagem da raiz de mandioca com aditivos alimentares. Res. Soc. Dev. 2022, 11, e265111032612. [Google Scholar] [CrossRef]
- Tangni, E.K.; Pussemier, L.; Van Hove, F. Mycotoxin Contaminating Maize and Grass Silages for Dairy Cattle Feeding: Current State and Challenges. J. Anim. Sci. Adv. 2013, 3, 492–511. [Google Scholar]
Analyses | 100% Plant | 90% Plant + 10% Fruit | 100% Fruit |
---|---|---|---|
Dry matter (g/kg) | 150.2 | 145.3 | 98.8 |
Ash (g/kg DM) | 79.1 | 73.5 | 80.6 |
Crude protein (g/kg DM) | 46.5 | 50.6 | 57.4 |
NDF 1 (g/kg DM) | 652.0 | 457.2 | 472.9 |
ADF 2 (g/kg DM) | 428.8 | 319.2 | 276.7 |
pH | 7.29 | 5.57 | 6.53 |
N-NH3 3 (%) | 0.68 | 0.70 | 0.95 |
CHO 4 (g/kg) | 92.7 | 120.0 | 174.0 |
Buffer Cap. 5 | 22.62 | 10.29 | 6.74 |
Deh. 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Silage yield | ||||||
Fresh | 3.96 Bb | 4.91 Ba | 1.75 Bc | 0.001 | 0.001 | 0.001 |
Dehydrated | 6.50 Ab | 6.13 Aa | 3.28 Ac | |||
Dry matter (g/kg) | ||||||
Fresh | 215 aB | 205 aB | 135 bB | 0.001 | 0.001 | 0.001 |
Dehydrated | 297 aA | 293 aA | 249 bA | |||
Crude Protein (g/kg DM) | ||||||
Fresh | 60.8 | 56.5 | 61.5 | 0.173 | 0.619 | 0.566 |
Dehydrated | 60.9 | 60.4 | 55.4 | |||
Acid Detergent Fiber (g/kg DM) | ||||||
Fresh | 387 | 439 | 424 | 0.265 | 0.411 | 0.867 |
Dehydrated | 372 | 391 | 402 | |||
Ether Extract (g/kg DM) | ||||||
Fresh | 35.0 cA | 50.8 bA | 88.8 aA | 0.021 | 0.001 | 0.001 |
Dehydrated | 31.1 cA | 45.8 bB | 84.1 aA | |||
Ash (g/kg DM) | ||||||
Fresh | 73.0 | 77.5 | 82.4 | 0.124 | 0.238 | 0.085 |
Dehydrated | 82.2 | 94.8 | 76.0 |
Deh. 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Neutral Detergent Fiber (g/kg DM) | ||||||
Fresh | 653 | 604 | 651 | 0.231 | 0.050 | 0.576 |
Dehydrated | 670 | 661 | 608 | |||
Soluble Carbohydrates (g/kg DM) | ||||||
Fresh | 62.5 | 79.9 | 152 | 0.895 | 0.001 | 0.334 |
Dehydrated | 69.8 | 76.3 | 150 | |||
DM Recovery (%) | ||||||
Fresh | 79.2 | 79.2 | 62.5 | |||
Dehydrated | 78.1 | 69.7 | 67.6 | 0.643 | 0.001 | 0.274 |
pH | ||||||
Fresh | 7.9 | 7.8 | 4.7 | |||
Dehydrated | 7.4 | 7.3 | 4.1 | 0.654 | 0.001 | 0.531 |
Deh. 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Effluent (kg/t AF) | ||||||
Fresh | 49.9 | 51.2 | 53.1 | 0.743 | 0.398 | 0.754 |
Dehydrated | 50.3 | 49.3 | 57.0 | |||
Gases (% DM) | ||||||
Fresh | 2.0 Ab | 2.0 Ab | 4.5 Aa | 0.001 | 0.001 | 0.001 |
Dehydrated | 2.0 Ac | 1.4 Bb | 3.5 Ba | |||
N-NH3 (% TN) 2 | ||||||
Fresh | 0.9 Aa | 0.4 Bb | 0.9 Aa | 0.434 | 0.023 | 0.001 |
Dehydrated | 0.5 Bb | 0.7 Aa | 0.8 Aa |
Deh 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Lactic acid bacteria (CFU/g) 2 | ||||||
Fresh | 4.1 | 4.8 | 5.7 | |||
Dehydrated | 5.3 | 5.2 | 7.7 | 0.083 | 0.001 | 0.964 |
Yeasts (CFU/g) | ||||||
Fresh | 0.0 | 0.0 | 4.95 | |||
Dehydrated | 0.0 | 0.0 | 4.59 | 0.756 | 0.001 | 0.904 |
Enterobacteria (CFU/g) | ||||||
Fresh | 3.4 | 3.5 | 0.0 | |||
Dehydrated | 2.7 | 2.4 | 0.0 | 0.137 | 0.001 | 0.131 |
Butyric acid (g/kg DM) | ||||||
Fresh | 4.1 | 3.5 | 1.5 | |||
Dehydrated | 6.3 | 4.4 | 1.1 | 0.084 | 0.001 | 0.145 |
pH | ||||||
Fresh | 8.1 | 7.1 | 3.9 | |||
Dehydrated | 8.1 | 4.4 | 4.2 | 0.667 | 0.001 | 0.274 |
Deh. 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Molds (CFU/g) | ||||||
Fresh | 2.5 Aa | 0.0 Bb | 3.6 Aa | 0.001 | 0.001 | 0.001 |
Dehydrated | 2.8 Aa | 4.0 Aa | 3.1 Aa | |||
Lactic acid (g/kg DM) | ||||||
Fresh | 0.7 Bb | 2.2 Bb | 11.2 Aa | 0.001 | 0.001 | 0.001 |
Dehydrated | 4.4 Ac | 6.5 Ab | 12.7 Aa | |||
Acetic acid (g/kg DM) | ||||||
Fresh | 14.9 Aa | 14.1 Aa | 3.8 Ab | 0.001 | 0.001 | 0.001 |
Dehydrated | 9.2 Ba | 5.5 Bb | 4.5 Ab | |||
Propionic acid (g/kg DM) | ||||||
Fresh | 5.7 Aa | 4.4 Ab | 1.1 Bb | 0.001 | 0.001 | 0.001 |
Dehydrated | 3.6 Ba | 2.1 Bb | 2.3 Ab |
Deh 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Hours | ||||||
Fresh | 28.0 Bc | 88.0 Aa | 64.0 Ab | 0.001 | 0.001 | 0.001 |
Dehydrated | 36.0 A | 36.0 B | 48.0 B | |||
Internal temperature (°C) | ||||||
Fresh | 28.7 | 27.5 | 27.8 | 0.556 | 0.158 | 0.887 |
Dehydrated | 28.2 | 27.5 | 27.6 |
Deh 1 | Percentage of Fruit (PF) | p-Value | ||||
---|---|---|---|---|---|---|
0% | 10% | 100% | Deh. 1 | PF | Deh. 1 × PF | |
Lactic acid bacteria (CFU/g) | ||||||
Fresh | 5.2 | 4.2 | 5.3 | 0.951 | 0.308 | 0.729 |
Dehydrated | 5.0 | 4.7 | 5.0 | |||
Molds (CFU/g) | ||||||
Fresh | 2.5 Bb | 5.2 Aa | 0.0 Bc | 0.968 | 0.001 | 0.001 |
Dehydrated | 3.5 Aa | 1.9 Bb | 3.4 Aa | |||
Enterobacteria (CFU/g) | ||||||
Fresh | 2.9 Aa | 3.0 Aa | 0.0 Ab | 0.001 | 0.001 | 0.001 |
Dehydrated | 0.0 B | 0.0 B | 0.0 A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento, R.R.d.; Edvan, R.L.; Nascimento, K.d.S.; Alves Barros, D.M.; Barros, L.d.S.; Camboim, L.F.R.; Dias e Silva, T.P.; Miranda, R.d.S.; Araújo, M.J.d.; Lima Neto, A.F.; et al. Characterization of Melon, (Cucumis melo L.) Silage with Different Biomass Mixtures and Dry Matter Contents. Agriculture 2023, 13, 1536. https://doi.org/10.3390/agriculture13081536
Nascimento RRd, Edvan RL, Nascimento KdS, Alves Barros DM, Barros LdS, Camboim LFR, Dias e Silva TP, Miranda RdS, Araújo MJd, Lima Neto AF, et al. Characterization of Melon, (Cucumis melo L.) Silage with Different Biomass Mixtures and Dry Matter Contents. Agriculture. 2023; 13(8):1536. https://doi.org/10.3390/agriculture13081536
Chicago/Turabian StyleNascimento, Romilda Rodrigues do, Ricardo Loiola Edvan, Keuven dos Santos Nascimento, Dhiéssica Morgana Alves Barros, Lucas de Souza Barros, Luan Felipe Reis Camboim, Tairon Pannunzio Dias e Silva, Rafael de Souza Miranda, Marcos Jácome de Araújo, Anisio Ferreira Lima Neto, and et al. 2023. "Characterization of Melon, (Cucumis melo L.) Silage with Different Biomass Mixtures and Dry Matter Contents" Agriculture 13, no. 8: 1536. https://doi.org/10.3390/agriculture13081536