The Effect of Hydro-Priming and Proline Priming of Lettuce (Lactuca sativa L.) Seeds on Germination, Photosynthetic Pigments and Metal Metabolism under Cadmium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Priming Tretments
2.2. Plant Growing Conditions
2.3. Determination of Germination Percetage and Seedlings Performance
2.4. Determination of Photosynthetic Pigments
2.5. Determination of Mineral Content
2.6. Translocation Factor
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effects of Seed Priming on Germination and Photosynthetic Capacity
3.2. Effect of Seed Priming on Mineral Absorption
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jalmi, S.K.; Bhagat, P.K.; Verma, D.; Noryang, S.; Tayyeba, S.; Singh, K.; Sharma, D.; Sinha, A.K. Traversing the Links between Heavy Metal Stress and Plant Signaling. Front. Plant Sci. 2018, 9, 12. [Google Scholar] [CrossRef] [Green Version]
- Zulfiqar, U.; Jiang, W.; Xiukang, W.; Hussain, S.; Ahmad, M.; Maqsood, M.F.; Ali, N.; Ishfaq, M.; Kaleem, M.; Haider, F.U.; et al. Cadmium Phytotoxicity, Tolerance, and Advanced Remediation Approaches in Agricultural Soils; A Comprehensive Review. Front. Plant Sci. 2022, 13, 15. [Google Scholar] [CrossRef] [PubMed]
- Subašić, M.; Šamec, D.; Selović, A.; Karalija, E. Phytoremediation of Cadmium Polluted Soils: Current Status and Approaches for Enhancing. Soil Syst. 2022, 6, 3. [Google Scholar] [CrossRef]
- Street, R.A.; Kulkarni, M.G.; Stirk, W.A.; Southway, C.; Van Staden, J. Effect of Cadmium on Growth and Micronutrient Distribution in Wild Garlic (Tulbaghia Violacea). S. Afr. J. Bot. 2010, 76, 332–336. [Google Scholar] [CrossRef] [Green Version]
- Matraszek, R.; Hawrylak-Nowak, B.; Chwil, S.; Chwil, M. Macroelemental Composition of Cadmium Stressed Lettuce Plants Grown under Conditions of Intensive Sulphur Nutrition. J. Environ. Manag. 2016, 180, 24–34. [Google Scholar] [CrossRef] [PubMed]
- Nada, E.; Ferjani, B.A.; Ali, R.; Bechir, B.R.; Imed, M.; Makki, B. Cadmium-Induced Growth Inhibition and Alteration of Biochemical Parameters in Almond Seedlings Grown in Solution Culture. Acta Physiol. Plant. 2007, 29, 57–62. [Google Scholar] [CrossRef]
- Shatilov, M.V.; Razin, A.F.; Ivanova, M.I. Analysis of the World Lettuce Market. IOP Conf. Ser. Earth Environ. Sci. 2019, 395, 012053. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Gu, J.; Wu, H.; Rauf, A.; Emran, T.B.; Khan, Z.; Mitra, S.; Aljohani, A.S.M.; Alhumaydhi, F.A.; Al-Awthan, Y.S.; et al. Phytochemicals, Nutrition, Metabolism, Bioavailability, and Health Benefits in Lettuce—A Comprehensive Review. Antioxidants 2022, 11, 1158. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, R.; Zheng, J.; Shen, Z.; Xu, X. Exogenous Foliar Application of Fulvic Acid Alleviate Cadmium Toxicity in Lettuce (Lactuca Sativa L.). Ecotoxicol. Environ. Saf. 2019, 167, 10–19. [Google Scholar] [CrossRef]
- Dawuda, M.M.; Liao, W.; Hu, L.; Yu, J.; Xie, J.; Calderón-Urrea, A.; Wu, Y.; Tang, Z. Foliar Application of Abscisic Acid Mitigates Cadmium Stress and Increases Food Safety of Cadmium-Sensitive Lettuce (Lactuca Sativa L.) Genotype. PeerJ 2020, 8, e9270. [Google Scholar] [CrossRef]
- Tang, W.; Liang, L.; Li, R.; Xie, Y.; Li, X.; Li, H.; Lin, L.; Huang, Z.; Sun, B.; Sun, G.; et al. Effects of Exogenous Melatonin on the Growth and Cadmium Accumulation of Lettuce under Cadmium-stress Conditions. Environ. Prog. Sustain. Energy 2023, 42, 14. [Google Scholar] [CrossRef]
- Chen, H.; Yang, R.; Zhang, X.; Chen, Y.; Xia, Y.; Xu, X. Foliar Application of Gibberellin Inhibits the Cadmium Uptake and Xylem Transport in Lettuce (Lactuca Sativa L.). Sci. Hortic. 2021, 288, 110410. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, Z.; Guo, K.; Huo, Y.; He, G.; Sun, H.; Guan, Y.; Xu, N.; Yang, W.; Sun, G. Toxic Effects of Heavy Metal Cd and Zn on Chlorophyll, Carotenoid Metabolism and Photosynthetic Function in Tobacco Leaves Revealed by Physiological and Proteomics Analysis. Ecotoxicol. Environ. Saf. 2020, 202, 110856. [Google Scholar] [CrossRef]
- Petrić, I.; Šamec, D.; Karalija, E.; Salopek-Sondi, B. Beneficial Microbes and Molecules for Mitigation of Soil Salinity in Brassica Species: A Review. Soil Syst. 2022, 6, 18. [Google Scholar] [CrossRef]
- Karalija, E.; Selović, A.; Bešta-Gajević, R.; Šamec, D. Thinking for the Future: Phytoextraction of Cadmium Using Primed Plants for Sustainable Soil Clean-up. Physiol. Plant. 2022, 174, e13739. [Google Scholar] [CrossRef]
- Alves, R.D.C.; Nicolau, M.C.M.; Checchio, M.V.; Sousa Junior, G.D.S.; Oliveira, F.D.A.D.; Prado, R.M.; Gratão, P.L. Salt Stress Alleviation by Seed Priming with Silicon in Lettuce Seedlings: An Approach Based on Enhancing Antioxidant Responses. Bragantia 2020, 79, 19–29. [Google Scholar] [CrossRef]
- Pereira, A.S.; Bortolin, G.S.; Dorneles, A.O.S.; Meneghello, G.E.; do Amarante, L.; Mauch, C.R. Silicon Seed Priming Attenuates Cadmium Toxicity in Lettuce Seedlings. Environ. Sci. Pollut. Res. 2021, 28, 21101–21109. [Google Scholar] [CrossRef]
- Šabanović, M.; Parić, A.; Briga, M.; Karalija, E. Effect of Salicylic Acid Seed Priming on Lettuce Resistance to High Levels of Cadmium (Lactuca Sativa L.). Genet. Appl. 2018, 2, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Chiang, H.-H.; Dandekar, A.M. Regulation of Proline Accumulation in Arabidopsis Thaliana (L.) Heynh during Development and in Response to Desiccation. Plant Cell Environ. 1995, 18, 1280–1290. [Google Scholar] [CrossRef]
- Sun, L.; Cao, X.; Tan, C.; Deng, Y.; Cai, R.; Peng, X.; Bai, J. Analysis of the Effect of Cadmium Stress on Root Exudates of Sedum Plumbizincicola Based on Metabolomics. Ecotoxicol. Environ. Saf. 2020, 205, 111152. [Google Scholar] [CrossRef]
- Ambreen, S.; Athar, H.-R.; Khan, A.; Zafar, Z.U.; Ayyaz, A.; Kalaji, H.M. Seed Priming with Proline Improved Photosystem II Efficiency and Growth of Wheat (Triticum Aestivum L.). BMC Plant Biol. 2021, 21, 502. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K.; Buschmann, C. Extraction of Phtosynthetic Tissues:Chlorophylls and Carotenoids. Curr. Protoc. Food Anal. Chem. 2001, 1, F4.2.1–F4.2.6. [Google Scholar] [CrossRef]
- Gianella, M.; Bradford, K.J.; Guzzon, F. Ecological, (Epi)Genetic and Physiological Aspects of Bet-Hedging in Angiosperms. Plant Reprod. 2021, 34, 21–36. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Suresh Kumar, J.; Suprasanna, P. Seed ‘Primeomics’: Plants Memorize Their Germination under Stress. Biol. Rev. 2021, 96, 1723–1743. [Google Scholar] [CrossRef] [PubMed]
- Moreira, I.N.; Martins, L.L.; Mourato, M.P. Effect of Cd, Cr, Cu, Mn, Ni, Pb and Zn on Seed Germination and Seedling Growth of Two Lettuce Cultivars (Lactuca Sativa L.). Plant Physiol. Rep. 2020, 25, 347–358. [Google Scholar] [CrossRef]
- Hu, K.-D.; Bai, G.-S.; Li, W.-J.; Yan, H.; Hu, L.-Y.; Li, Y.-H.; Zhang, H. Sulfur Dioxide Promotes Germination and Plays an Antioxidant Role in Cadmium-Stressed Wheat Seeds. Plant Growth Regul. 2015, 75, 271–280. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under Stressful Environments: An Overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Sadeghipour, O. Cadmium Toxicity Alleviates by Seed Priming with Proline or Glycine Betaine in Cowpea ( Vigna Unguiculata (L.) Walp.). Egypt. J. Agron. 2020, 42, 163–170. [Google Scholar] [CrossRef]
- Zorrig, W.; Rouached, A.; Shahzad, Z.; Abdelly, C.; Davidian, J.-C.; Berthomieu, P. Identification of Three Relationships Linking Cadmium Accumulation to Cadmium Tolerance and Zinc and Citrate Accumulation in Lettuce. J. Plant Physiol. 2010, 167, 1239–1247. [Google Scholar] [CrossRef]
- Huang, X.; Duan, S.; Wu, Q.; Yu, M.; Shabala, S. Reducing Cadmium Accumulation in Plants: Structure–Function Relations and Tissue-Specific Operation of Transporters in the Spotlight. Plants 2020, 9, 223. [Google Scholar] [CrossRef] [Green Version]
- Basa, B.; Lattanzio, G.; Solti, Á.; Tóth, B.; Abadía, J.; Fodor, F.; Sárvári, É. Changes Induced by Cadmium Stress and Iron Deficiency in the Composition and Organization of Thylakoid Complexes in Sugar Beet (Beta Vulgaris L.). Environ. Exp. Bot. 2014, 101, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Page, M.T.; Sumida, A.; Tanaka, A.; Terry, M.J.; Tanaka, R. The Iron–Sulfur Cluster Biosynthesis Protein SUFB Is Required for Chlorophyll Synthesis, but Not Phytochrome Signaling. Plant J. 2017, 89, 1184–1194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muneer, S.; Hakeem, K.; Mohamed, R.; Lee, J. Cadmium Toxicity Induced Alterations in the Root Proteome of Green Gram in Contrasting Response towards Iron Supplement. Int. J. Mol. Sci. 2014, 15, 6343–6355. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, C.; Zhang, D.; Wang, B.; Ding, S. The Influence of Iron Application on the Growth and Cadmium Stress Tolerance of Poplar. Forests 2022, 13, 2023. [Google Scholar] [CrossRef]
- Solti, Á.; Sárvári, É.; Tóth, B.; Basa, B.; Lévai, L.; Fodor, F. Cd Affects the Translocation of Some Metals Either Fe-like or Ca-like Way in Poplar. Plant Physiol. Biochem. 2011, 49, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cao, Q.; Jiang, Q.; Li, J.; Yu, R.; Shi, G. Comparative Transcriptome Analysis Reveals Gene Network Regulating Cadmium Uptake and Translocation in Peanut Roots under Iron Deficiency. BMC Plant Biol. 2019, 19, 35. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Dun, Y.; Zhang, Z.; Li, M.; Wu, G. Foliar Application of Selenium and Zinc to Alleviate Wheat (Triticum Aestivum L.) Cadmium Toxicity and Uptake from Cadmium-Contaminated Soil. Ecotoxicol. Environ. Saf. 2020, 190, 110091. [Google Scholar] [CrossRef]
Control | 0.25 mM Cd | |
---|---|---|
Non-primed | 100% a | 84% b |
Hydro-primed | 85% c | 85% b |
Primed with 10 mM proline | 90% bc | 100% a |
Primed with 20 mM proline | 95% ab | 100% a |
Chlorophyl a /Chlorophyl b | Total Chlorophylls/ Total Carotenoids | ||
---|---|---|---|
Non-primed | control | 1.04 d ± 0.01 | 10.64 c ± 0.02 |
0.25 mM Cd | 0.83 e ± 0.01 | 19.72 b ± 2.42 | |
Hydro-primed | control | 0.62 f ± 0.01 | 7.74 cd ± 0.38 |
0.25 mM Cd | 0.68 f ± 0.00 | 17.58 b ± 0.45 | |
Primed with 10 mM proline | control | 2.49 a ± 0.07 | 5.11 d ± 0.18 |
0.25 mM Cd | 1.21 c ± 0.01 | 9.66 c ± 0.19 | |
Primed with 20 mM proline | control | 1.00 d ± 0.03 | 19.32 b ± 1.36 |
0.25 mM Cd | 1.45 b ± 0.00 | 56.59 a ± 1.31 |
Cd mg/g dw | Fe mg/g dw | Zn mg/g dw | |||||
---|---|---|---|---|---|---|---|
Roots | Shoot | Roots | Shoot | Roots | Shoot | ||
Non-primed | control | 6.82 d ± 4.57 | 1.17 f ± 0.84 | 1461.21 b ± 8.62 | 122.56 c ± 2.81 | 81.97 f ± 4.24 | 235.02 c ± 1.49 |
0.25 mM Cd | 469.04 a ± 0.00 | 174.21 d ± 0.96 | 1276.3 c ± 10.32 | 32.59 g ± 2.24 | 75.86 g ± 3.84 | 124.04 h ± 1.80 | |
Hydro-primed | control | 7.35 d ± 2.01 | 3.29 ef ± 0.70 | 1943.18 a ± 5.35 | 203.01 a ± 1.64 | 151.84 a ± 0.50 | 187.07 e ± 2.60 |
0.25 mM Cd | 287.44 b ± 1.27 | 210.87 c ± 2.41 | 1159.58 d ± 4.12 | 54.58 f ± 0.63 | 135.85 b ± 0.44 | 147.91 g ± 0.09 | |
Primed with 10 mM proline | control | 3.06 d ± 0.31 | 1.82 f ± 0.69 | 330.33 h ± 132.59 | 185.88 b ± 2.98 | 107.81 d ± 3.24 | 282.60 a ± 0.91 |
0.25 mM Cd | 298.27 b ± 5.67 | 223.03 b ± 3.51 | 446.78 g ± 7.01 | 110.82 d ± 0.06 | 87.46 e ± 5.12 | 202.33 d ± 3.99 | |
Primed with 20 mM proline | control | 2.24 d ± 1.87 | 6.92 e ± 1.24 | 531.76 f ± 0.37 | 120.80 c ± 3.34 | 111.21 d ± 0.52 | 251.05 b ± 1.45 |
0.25 mM Cd | 202.26 c ± 3.19 | 235.24 a ± 2.49 | 807.46 e ± 15.24 | 95.86 e ± 1.15 | 129.35 c ± 0.54 | 202.19 d ± 0.23 |
TF (Cd) | TF (Fe) | TF (Zn) | ||
---|---|---|---|---|
Non-primed | control | 0.23 d ± 0.25 | 0.08 b± 0.00 | 2.87 a ± 0.13 |
0.25 mM Cd | 0.37 cd ± 0.00 | 0.03 b ± 0.00 | 1.64 b ± 0.06 | |
Hydro-primed | control | 0.45 cd ± 0.03 | 0.10 b ± 0.00 | 1.23 b ± 0.01 |
0.25 mM Cd | 0.73 bc ± 0.01 | 0.05 b ± 0.00 | 1.09 b ± 0.00 | |
Primed with 10 μM proline | control | 0.61 c ± 0.27 | 0.64 a ± 0.29 | 2.95 a ± 1.28 |
0.25 mM Cd | 0.75 bc ± 0.01 | 0.25 b ± 0.00 | 2.32 ab ± 0.18 | |
Primed with 20 μM proline | control | 6.76 a ± 0.34 | 0.23 b ± 0.01 | 2.26 ab ± 0.02 |
0.25 mM Cd | 1.16 b ± 0.01 | 0.12 b ± 0.00 | 1.56 b ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selović, A.; Karalija, E.; Demir, A.; Parić, A.; Šamec, D. The Effect of Hydro-Priming and Proline Priming of Lettuce (Lactuca sativa L.) Seeds on Germination, Photosynthetic Pigments and Metal Metabolism under Cadmium Stress. Agriculture 2023, 13, 1472. https://doi.org/10.3390/agriculture13081472
Selović A, Karalija E, Demir A, Parić A, Šamec D. The Effect of Hydro-Priming and Proline Priming of Lettuce (Lactuca sativa L.) Seeds on Germination, Photosynthetic Pigments and Metal Metabolism under Cadmium Stress. Agriculture. 2023; 13(8):1472. https://doi.org/10.3390/agriculture13081472
Chicago/Turabian StyleSelović, Alisa, Erna Karalija, Arnela Demir, Adisa Parić, and Dunja Šamec. 2023. "The Effect of Hydro-Priming and Proline Priming of Lettuce (Lactuca sativa L.) Seeds on Germination, Photosynthetic Pigments and Metal Metabolism under Cadmium Stress" Agriculture 13, no. 8: 1472. https://doi.org/10.3390/agriculture13081472