Influence of Living Mulch and Nitrogen Dose on Yield and Fruit Quality Parameters of Malus domestica Borkh. cv. ‘Sampion’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment and Plant Material
2.2. Fruit Quality Parameters
2.3. Analysis of Individual Sugars and Organic Acids
2.4. Analysis of Individual Phenolic Compounds
2.5. Determination of the Total Phenolic Content
2.6. Extraction of Aroma Compounds
2.7. Chemicals and Standards
2.8. Statistical Evaluation
3. Results and Discussion
3.1. Growth and Yield of Tree, and Fruit Size
3.2. Red Blush Area and Fruit Color
3.3. Sugars and Acids Content
3.4. Content of Phenolic Compounds in Apple Peel and Flesh
3.4.1. Phenolic Acids
3.4.2. Flavanols
3.4.3. Dihydrochalcones
3.4.4. Flavonols
3.4.5. Anthocyanins
3.5. Apple Volatile Organic Compounds (VOCs) Content
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Hyson, D.A. A Comprehensive Review of Apples and Apple Components and Their Relationship to Human Health. Adv. Nutr. 2011, 2, 408–420. [Google Scholar] [CrossRef]
- Nezbedova, L.; McGhie, T.; Christensen, M.; Heyes, J.; Nasef, N.A.; Mehta, S. Onco-Preventive and Chemo-Protective Effects of Apple Bioactive Compounds. Nutrients 2021, 13, 4025. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Laskowski, P. Polyphenolic Compounds and Antioxidant Activity of New and Old Apple Varieties. J. Agric. Food Chem. 2008, 56, 6520–6530. [Google Scholar] [CrossRef] [PubMed]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P.; Tuszyński, T. The Profile of Polyphenols and Antioxidant Properties of Selected Apple Cultivars Grown in Poland. J. Fruit Ornam. Plant Res. 2010, 18, 39–50. [Google Scholar]
- Bahukhandi, A.; Dhyani, P.; Jugran, A.K.; Bhatt, I.D.; Rawal, R.S. Total Phenolics, Tannins and Antioxidant Activity in Twenty Different Apple Cultivars Growing in West Himalaya, India. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 89, 71–78. [Google Scholar] [CrossRef]
- Li, H.; Subbiah, V.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A.R. Phenolic Profiling of Five Different Australian Grown Apples. Appl. Sci. 2021, 11, 2421. [Google Scholar] [CrossRef]
- Celik, F.; Gundogdu, M.; Ercisli, S.; Kaki, B.; Berk, S.; Ilhan, G.; Sagbas, H.I. Variation in Organic Acid, Sugar and Phenolic Compounds in Fruits of Historical Apple Cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2018, 46, 622–629. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gławdel, E.; Cebulak, T.; Ochmian, I. Determination of Phytochemical Composition and Antioxidant Capacity of 22 Old Apple Cultivars Grown in Poland. Eur. Food Res. Technol. 2017, 244, 647–662. [Google Scholar] [CrossRef]
- Oszmiański, J.; Lachowicz, S.; Gamsjäger, H. Phytochemical Analysis by Liquid Chromatography of Ten Old Apple Varieties Grown in Austria and Their Antioxidative Activity. Eur. Food Res. Technol. 2020, 246, 437–448. [Google Scholar] [CrossRef]
- Polat, M.; Okatan, V.; Güçlü, S.F.; Çolak, A.M. Determination of Some Chemical Characteristics and Total Antioxidant Capacity in Apple Varieties Grown in Posof/Ardahan Region. Int. J. Agric. Environ. Food Sci. 2018, 2, 131–134. [Google Scholar] [CrossRef]
- Gundogdu, M.; Canan, I.; Okatan, V. Bioactive Contents and Some Horticultural Characteristics of Local Apple Genotypes from Turkey. J. Anim. Plant Sci. 2018, 28, 865–874. [Google Scholar]
- Gundogdu, M.A.; Gür, E.; Seker, M. Comparison of Aroma Compounds and Pomological Characteristics of the Fruits of ’cv. Mondial Gala‘ and Local Apple Genotype ’Gelin‘ Cultivated in Çanakkale, Turkey. J. Tekirdag Agric. Fac. 2021, 18, 10–20. [Google Scholar] [CrossRef]
- Stracke, B.A.; Rufer, C.E.; Weibel, F.P.; Bub, A.; Watzl, B. Three-Year Comparison of the Polyphenol Contents and Antioxidant Capacities in Organically and Conventionally Produced Apples (Malus domestica Borkh. Cultivar ’Golden Delicious’). J. Agric. Food Chem. 2009, 57, 4598–4605. [Google Scholar] [CrossRef] [PubMed]
- Roussos, P.A.; Gasparatos, D. Apple Tree Growth and Overall Fruit Quality under Organic and Conventional Orchard Management. Sci. Hortic. 2009, 123, 247–252. [Google Scholar] [CrossRef]
- Le Bourvellec, C.; Bureau, S.; Renard, C.M.G.C.; Plenet, D.; Gautier, H.; Touloumet, L.; Girard, T.; Simon, S. Cultivar and Year Rather than Agricultural Practices Affect Primary and Secondary Metabolites in Apple Fruit. PLoS ONE 2015, 10, e0141916. [Google Scholar] [CrossRef]
- Veberic, R.; Trobec, M.; Herbinger, K.; Hofer, M.; Grill, D.; Stampar, F. Phenolic Compounds in Some Apple (Malus Domestica Borkh) Cultivars of Organic and Integrated Production. J. Sci. Food Agric. 2005, 85, 1687–1694. [Google Scholar] [CrossRef]
- Mikulic-Petkovsek, M.; Slatnar, A.; Stampar, F.; Veberic, R. The Influence of Organic/Integrated Production on the Content of Phenolic Compounds in Apple Leaves and Fruits in Four Different Varieties over a 2-Year Period. J. Sci. Food Agric. 2010, 90, 2366–2378. [Google Scholar] [CrossRef]
- Veberic, R. The Impact of Production Technology on Plant Phenolics. Horticulturae 2016, 2, 8. [Google Scholar] [CrossRef]
- Kviklys, D.; Liaudanskas, M.; Janulis, V.; Viškelis, P.; Rubinskiene, M.; Lanauskas, J.; Uselis, N. Rootstock Genotype Determines Phenol Content in Apple Fruits. Plant Soil Environ. 2014, 60, 234–240. [Google Scholar] [CrossRef]
- Butkeviciute, A.; Abukauskas, V.; Janulis, V.; Kviklys, D. Phenolic Content and Antioxidant Activity in Apples of the ‘Galaval’ Cultivar Grown on 17 Different Rootstocks. Antioxidants 2022, 11, 266. [Google Scholar] [CrossRef]
- Slatnar, A.; Licznar-Malanczuk, M.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R. Long-Term Experiment with Orchard Floor Management Systems: Influence on Apple Yield and Chemical Composition. J. Agric. Food Chem. 2014, 62, 4095–4103. [Google Scholar] [CrossRef] [PubMed]
- Slatnar, A.; Kwiecinska, I.; Licznar-Malanczuk, M.; Veberic, R. The Effect of Green Cover within Rows on the Qualitative and Quantitative Fruit Parameters of Full-Cropping Apple Trees. Hortic. Environ. Biotechnol. 2020, 61, 41–49. [Google Scholar] [CrossRef]
- Honda, C.; Moriya, S. Anthocyanin Biosynthesis in Apple Fruit. The Hortic. J. 2018, 87, 305–314. [Google Scholar] [CrossRef]
- Drkenda, P.; Ćulah, A.; Spaho, N.; Akagić, A.; Hudina, M. How Do Consumers Perceive Sensory Attributes of Apple? Foods 2021, 10, 2667. [Google Scholar] [CrossRef] [PubMed]
- Treutter, D. Biosynthesis of Phenolic Compounds and Its Regulation in Apple. Plant Growth Regul. 2001, 34, 71–89. [Google Scholar] [CrossRef]
- Jakopic, J.; Schmitzer, V.; Veberic, R.; Smrke, T.; Stampar, F. Metabolic Response of ‘Topaz’ Apple Fruit to Minimal Application of Nitrogen during Cell Enlargement Stage. Horticulturae 2021, 7, 266. [Google Scholar] [CrossRef]
- Medina, S.; Perestrelo, R.; Pereira, R.; Câmara, J.S. Evaluation of Volatilomic Fingerprint from Apple Fruits to Ciders: A Useful Tool to Find Putative Biomarkers for Each Apple Variety. Foods 2020, 9, 1830. [Google Scholar] [CrossRef]
- Yang, S.; Meng, Z.; Fan, J.; Yan, L.; Yang, Y.; Zhao, Z. Evaluation of the Volatile Profiles in Pulp of 85 Apple Cultivars (Malus domestica) by HS–SPME Combined with GC–MS. J. Food Meas. Charact. 2021, 15, 4215–4225. [Google Scholar] [CrossRef]
- Fogliatto, S.; Ferrero, A.; Vidotto, F. Current and Future Scenarios of Glyphosate Use in Europe: Are There Alternatives? Adv. Agron. 2020, 163, 219–278. [Google Scholar] [CrossRef]
- Hammermeister, A.M. Organic Weed Management in Perennial Fruits. Sci. Hortic. 2016, 208, 28–42. [Google Scholar] [CrossRef]
- Licznar-Małańczuk, M. Occurrence of Weeds in an Orchard Due to Cultivation of Long-Term Perennial Living Mulches. Acta Agrobot. 2020, 73. [Google Scholar] [CrossRef]
- Mia, M.J.; Massetani, F.; Murri, G.; Neri, D. Sustainable Alternatives to Chemicals for Weed Control in the Orchard—A Review. Hortic. Sci. 2020, 47. [Google Scholar] [CrossRef]
- Bałuszyńska, U.B.; Rowińska, M.; Licznar-Małańczuk, M. Grass Species as Living Mulches—Comparison of Weed Populations and Their Biodiversity in Apple Tree Rows and Tractor Alleys. Acta Agrobot. 2022, 75. [Google Scholar] [CrossRef]
- Granatstein, D.; Sanchez, E. Research Knowledge and Needs for Orchard Floor Management in Organic Tree Fruit Systems. Int. J. Fruit Sci. 2009, 9, 257–281. [Google Scholar] [CrossRef]
- Żelazny, W.R.; Licznar-Małańczuk, M. Soil Quality and Tree Status in a Twelve-Year-Old Apple Orchard under Three Mulch-Based Floor Management Systems. Soil Tillage Res. 2018, 180, 250–258. [Google Scholar] [CrossRef]
- Brunetto, G.; Oliveira, B.S.; Ambrosini, V.G.; Couto, R.D.R.; Sete, P.B.; dos Santos Junior, E.; Loss, A.; Stefanello da Silva, L.O.; Gatiboni, L.C. Nitrogen Availability in an Apple Orchard with Weed Management. Cienc. Rural 2018, 48. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M.G. Long-Term Effects of Four Groundcover Management Systems in an Apple Orchard. HortScience 2011, 46, 1176–1183. [Google Scholar] [CrossRef]
- Tahir, I.I.; Svensson, S.-E.; Hansson, D. Floor Management Systems in an Organic Apple Orchard Affect Fruit Quality and Storage Life. HortScience 2015, 50, 434–441. [Google Scholar] [CrossRef]
- Andersen, L.; Kühn, B.F.; Bertelsen, M.; Bruus, M.; Larsen, S.E.; Strandberg, M. Alternatives to Herbicides in an Apple Orchard, Effects on Yield, Earthworms and Plant Diversity. Agric. Ecosyst. Environ. 2013, 172, 1–5. [Google Scholar] [CrossRef]
- Licznar-Małańczuk, M. Suitability of Blue Fescue (Festuca ovina L.) as Living Mulch in an Apple Orchard—Preliminary Evaluation. Acta Sci. Pol. Hortorum Cultus 2015, 14, 163–174. [Google Scholar]
- Kowalczyk, W.; Wrona, D.; Przybyłko, S. Effect of Nitrogen Fertilization of Apple Orchard on Soil Mineral Nitrogen Content, Yielding of the Apple Trees and Nutritional Status of Leaves and Fruits. Agriculture 2022, 12, 2169. [Google Scholar] [CrossRef]
- Wrona, D. The Influence of Nitrogen Fertilization on Growth, Yield and Fruit Size of ’Jonagored‘ Apple Trees. Acta Sci. Pol. Hortorum Cultus 2011, 10, 3–10. [Google Scholar]
- Muder, A.; Garming, H.; Dreisiebner-Lanz, S.; Kerngast, K.; Rosner, F.; Klickova, K.; Kurthy, G.; Cimer, K.; Bertazzoli, A.; Altamura, V.; et al. Apple Production and Apple Value Chains in Europe. Eur. J. Hortic. Sci. 2022, 87, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Sobiczewski, P. Metodyka Integrowanej Produkcji Jabłek (Methodology of Integrated Apple Production); Sobiczewski, P., Ed.; Instytut of Horticulture: Skierniewice, Poland, 2020. [Google Scholar]
- Medic, A.; Zamljen, T.; Hudina, M.; Veberic, R. Identification and Quantification of Naphthoquinones and Other Phenolic Compounds in Leaves, Petioles, Bark, Roots, and Buds of Juglans regia L., Using HPLC-MS/MS. Horticulturae 2021, 7, 326. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin–Ciocalteu Reagent. In Methods in Enzymology; Academic Press: London, UK, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Harrington, K.C.; Hartley, M.J.; Rahman, A.; James, T.K. Long Term Ground Cover Options for Apple Orchards. New Zealand Plant Prot. 2005, 58, 164–168. [Google Scholar] [CrossRef]
- Ping, X.Y.; Wang, T.M.; Yao, C.Y.; Lu, X.S. Impact of Floor Management Practices on the Growth of Groundcover Species and Soil Properties in an Apple Orchard in Northern China. Biol. Rhythm Res. 2018, 49, 597–609. [Google Scholar] [CrossRef]
- Licznar-Małańczuk, M.; Sygutowska, I. The Weed Composition in an Orchard as a Result of Long-Term Foliar Herbicide Application. Acta Agrobot. 2016, 69. [Google Scholar] [CrossRef]
- Gudarowska, E.; Szewczuk, A. Yielding of Apple Tree Cvs. ’Fiesta‘ and ’Pinova‘ Depending on the Age of Planting Material and Methods of Its Production in a Nursery. Sodinink Darzinink 2006, 25, 90–97. [Google Scholar]
- Gudarowska, E.; Szewczuk, A. The Influence of Agro-Technical Methods Used in the Nursery on Quality of Planting Material and Precocity of Bearing in Young Apple Trees in the Orchard. J. Fruit Ornam. Plant Res. 2004, 12, 91–96. [Google Scholar]
- Kühn, B.F.; Lindhard Pedersen, H. Cover Crop and Mulching Effects on Yield and Fruit Quality in Unsprayed Organic Apple. Eur. J. Hortic. Sci. 2009, 74, 247–253. [Google Scholar]
- Hecke, K.; Herbinger, K.; Veberič, R.; Trobec, M.; Toplak, H.; Štampar, F.; Keppel, H.; Grill, D. Sugar-, Acid- and Phenol Contents in Apple Cultivars from Organic and Integrated Fruit Cultivation. Eur. J. Clin. Nutr. 2006, 60, 1136–1140. [Google Scholar] [CrossRef]
- Markowski, M.; Płocharski, W. Determination of Phenolic Compounds in Apples and Processed Apple Products. J. Fruit Ornam. Plant Res. 2006, 14, 133–142. [Google Scholar]
- Petersen, B.; Egert, S.; Bosy-Westphal, A.; Müller, M.J.; Wolffram, S.; Hubbermann, E.M.; Rimbach, G.; Schwarz, K. Bioavailability of Quercetin in Humans and the Influence of Food Matrix Comparing Quercetin Capsules and Different Apple Sources. Food Res. Int. 2016, 88, 159–165. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Turkiewicz, I.P.; Tkacz, K.; Hernandez, F. Comparison of Bioactive Compounds and Health Promoting Properties of Fruits and Leaves of Apple, Pear and Quince. Sci. Rep. 2021, 11, 20253. [Google Scholar] [CrossRef] [PubMed]
- Maffei, M.E. Sites of Synthesis, Biochemistry and Functional Role of Plant Volatiles. S. Afr. J. Bot. 2010, 76, 612–631. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Song, H.; Liang, Y.; Zhao, C.; Li, H. Volatile Compound Profiles of Malus Baccata and Malus Prunifolia Wild Apple Fruit. J. Am. Soc. Hortic. Sci. 2017, 142, 126–134. [Google Scholar] [CrossRef]
Specification | Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
Mean yield 2019–2022 (kg·tree−1) | 9.62 ± 1.81 a | 5.38 ± 1.48 a | 5.67 ± 2.05 a | 4.74 ± 2.42 a | 9.32 ± 3.29 a | 5.94 ± 2.73 a | 6.43 ± 2.26 a | 4.95 ± 1.78 a | NS | ** | NS |
TCSA increment 2015–2022 (cm2) | 9.8 ± 0.73 a | 7.94 ± 0.92 a | 6.27 ± 3.17 a | 7.61 ± 1.17 a | 8.6 ± 2.11 a | 7.87 ± 1.25 a | 6.16 ± 1.5 a | 7.62 ± 2.6 a | NS | NS | NS |
Crop efficiency coefficient 2019–2022 (kg·cm−2) | 0.98 ± 0.15 a | 0.56 ± 0.18 a | 0.87 ± 0.31 a | 0.89 ± 0.77 a | 0.94 ± 0.23 a | 0.64 ± 0.36 a | 0.90 ± 0.23 a | 0.76 ± 0.46 a | NS | NS | NS |
Specification | Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
% of fruit with blush on skin surface area: | |||||||||||
>75% | 49.4 ± 5.9 ac | 76.0 ± 7.6 e | 53.5 ± 8.8 acd | 73.1 ± 14.8 de | 43.6 ± 5.5 ab | 61.2 ± 7.4 bce | 39.8 ± 5.7 a | 65.6 ± 8.3 ce | * | *** | NS |
25–75% | 38.2 ± 7.9 ad | 21.1 ± 4.2 a | 44.1 ± 9.1 bd | 26.4 ± 14.0 ab | 50.0 ± 6.4 cd | 37.9 ± 7.3 ad | 56.1 ± 5.7 d | 34.0 ± 7.8 abc | ** | *** | NS |
<25% | 12.3 ± 2.8 b | 2.9 ± 3.7 a | 2.4 ± 3.4 a | 0.5 ± 0.8 a | 6.4 ± 4.9 ab | 0.9 ± 0.8 a | 4.1 ± 0.3 a | 0.3 ± 0.6 a | *** | *** | NS |
% of fruit with diameter: | |||||||||||
>7.5 cm | 11.5 ± 2.7 a | 13.3 ± 7.9 a | 8.8 ± 5.4 a | 15.8 ± 7.3 a | 8.1 ± 4.3 a | 14.2 ± 6.0 a | 3.8 ± 1.2 a | 18.8 ± 13.1 a | NS | ** | NS |
6.5–7.5 cm | 25.4 ± 8.5 ab | 34.3 ± 6.8 ab | 29.0 ± 7.8 ab | 43.0 ± 6.6 b | 24.4 ± 15.4 ab | 44.0 ± 4.5 b | 20.4 ± 10.4 a | 41.3 ± 5.0 b | NS | *** | NS |
<6.5 cm | 63.1 ± 6.4 ab | 52.4 ± 14.5 ab | 62.2 ± 9.4 ab | 41.2 ± 5.3 a | 67.6 ± 18.9 ab | 41.8 ± 9.5 a | 75.8 ± 11.5 b | 39.9 ± 18.0 a | NS | *** | NS |
Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
Fruit weight (g) | 100 ± 13 ab | 119 ± 10 b | 90 ± 9 ab | 124 ± 17 b | 98 ± 18 ab | 115 ± 17 ab | 79 ± 12 a | 118 ± 25 b | NS | *** | NS |
Color red blush: | |||||||||||
L | 38.1 ± 1.4 a | 34.7 ± 1.8 a | 36.5 ± 1.7 a | 36.2 ± 2.7 a | 37.5 ± 1.3 a | 37.1 ± 1.9 a | 37.8 ± 0.9 a | 37.2 ± 2.2 a | NS | NS | NS |
a | 34.8 ± 1.5 a | 36.4 ± 1.7 a | 34.5 ± 1.5 a | 36.6 ± 1.6 a | 35.4 ± 0.5 a | 35.2 ± 1.9 a | 34.9 ± 2.2 a | 35.4 ± 1.0 a | NS | NS | NS |
h | 35.0 ± 1.6 b | 30.5 ± 1.2 a | 33.0 ± 1.7 ab | 31.6 ± 2.4 ab | 33.5 ± 2.1 ab | 33.9 ± 2.4 ab | 33.4 ± 1.6 ab | 33.1 ± 2.1 ab | NS | * | NS |
Ground side color: | |||||||||||
L | 60.1 ± 0.8 a | 62.7 ± 1.1 a | 61.0 ± 1.3 a | 61.5 ± 2.2 a | 61.6 ± 1.1 a | 60.1 ± 1.0 a | 61.2 ± 1.1 a | 61.6 ± 1.0 a | NS | NS | * |
a | 3.5 ± 1.4 a | 9.6 ± 1.3 b | 3.8 ± 0.5 a | 5.1 ± 2.2 a | 3.4 ± 1.2 a | 5.0 ± 2.8 a | 3.9 ± 0.7 a | 5.0 ± 2.8 a | NS | *** | * |
h | 85.7 ± 1.6 b | 78.2 ± 1.5 a | 85.1 ± 0.7 b | 83.5 ± 3.0 ab | 85.7 ± 1.5 b | 83.9 ± 3.3 b | 85.2 ± 1.0 b | 83.7 ± 3.6 b | NS | *** | * |
Specification | Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
Sucrose | 24.97 ± 6.99 ab | 34.66 ± 7.26 b | 26.78 ± 3.68 ab | 28.70 ± 4.02 ab | 23.25 ± 5.25 a | 25.28 ± 9.18 ab | 22.84 ± 7.60 a | 29.95 ± 6.07 ab | NS | ** | NS |
Glucose | 29.31 ± 3.60 bc | 20.83 ± 3.85 a | 28.61 ± 2.20 bc | 20.65 ± 3.92 a | 29.87 ± 3.67 bc | 24.79 ± 5.43 ab | 31.06 ± 2.61 c | 22.4 ± 3.29 a | NS | *** | NS |
Fructose | 58.03 ± 2.46 ab | 59.6 ± 6.13 b | 57.79 ± 4.33 ab | 54.76 ± 1.55 ab | 57.04 ± 3.64 ab | 54.07 ± 2.66 ab | 55.79 ± 3.09 ab | 52.56 ± 3.05 a | ** | * | NS |
Sorbitol | 3.44 ± 0.86 a | 4.92 ± 1.02 b | 3.92 ± 0.61 ab | 3.36 ± 0.67 a | 3.42 ± 0.89 a | 3.76 ± 1.12 ab | 4.02 ± 0.62 ab | 3.85 ± 0.91 ab | NS | NS | ** |
Total sugars | 115.75 ± 8.76 a | 120.01 ± 13.39 a | 117.10 ± 7.88 a | 107.47 ± 4.38 a | 113.57 ± 12.33 a | 107.91 ± 8.91 a | 113.72 ± 9.66 a | 108.76 ± 8.39 a | NS | NS | NS |
Citric | 1.88 ± 0.68 a | 1.53 ± 0.25 a | 1.92 ± 0.52 a | 1.48 ± 0.34 a | 1.77 ± 0.36 a | 1.81 ± 0.88 a | 2.10 ± 0.39 a | 1.34 ± 0.26 a | NS | ** | NS |
Malic | 7.34 ± 1.23 ab | 7.57 ± 0.36 ab | 8.07 ± 1.11 b | 6.98 ± 0.40 ab | 6.79 ± 1.14 a | 7.14 ± 0.68 ab | 6.94 ± 0.26 ab | 6.92 ± 0.26 ab | NS | NS | * |
Shikimic | 0.03 ± 0.01 a | 0.02 ± 0.00 a | 0.03 ± 0.00 a | 0.02 ± 0.00 a | 0.03 ± 0.01 a | 0.03 ± 0.01 a | 0.03 ± 0.00 a | 0.02 ± 0.00 a | NS | ** | NS |
Total organic acids | 9.26 ± 1.87 a | 9.12 ± 0.43 a | 10.02 ± 1.58 a | 8.48 ± 0.60 a | 8.58 ± 1.47 a | 8.97 ± 1.43 a | 9.07 ± 0.49 a | 8.28 ± 0.35 a | NS | NS | NS |
Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
Total phenolic acids | 16.37 ± 3.59 a | 16.58 ± 2.27 a | 17.75 ± 1.55 a | 16.96 ± 3.59 a | 17.78 ± 1.7 a | 18.19 ± 5.69 a | 20.43 ± 2.8 a | 15.25 ± 4.51 a | NS | NS | NS |
Total flavanols | 113.00 ± 21.05 ab | 120.15 ± 20.72 ab | 115.57 ± 12.07 ab | 126.04 ± 26.71 ab | 123.56 ± 12.17 ab | 139.72 ± 30.71 b | 135.03 ± 12.50 ab | 106.00 ± 21.34 a | NS | NS | * |
Total dihydrochalcones | 11.62 ± 2.73 ab | 9.57 ± 1.46 a | 11.72 ± 1.58 ab | 9.52 ± 1.87 a | 11.36 ± 1.62 ab | 8.98 ± 1.46 a | 12.72 ± 1.76 b | 9.47 ± 2.50 a | NS | *** | NS |
Total flavonols | 50.71 ± 8.46 a | 46.67 ± 5.63 a | 52.60 ± 8.43 a | 52.49 ± 16.74 a | 56.66 ± 3.55 a | 52.97 ± 13.34 a | 62.59 ± 10.22 a | 53.97 ± 8.91 a | NS | NS | NS |
Total anthocyanins | 3.27 ± 1.25 a | 6.26 ± 1.35 b | 3.97 ± 0.59 a | 4.99 ± 1.92 ab | 3.80 ± 1.03 a | 4.49 ± 1.57 ab | 3.76 ± 0.86 a | 4.22 ± 0.91 a | NS | *** | * |
Total APC | 194.97 ± 31.81 a | 199.24 ± 22.93 a | 201.62 ± 18.37 a | 210.01 ± 45.56 a | 213.17 ± 14.06 a | 224.35 ± 44.58 a | 234.53 ± 26.42 a | 188.91 ± 30.06 a | NS | NS | * |
Specification | Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
Total phenolic acids | 9.39 ± 1.99 bd | 8.35 ± 2.00 abc | 11.20 ± 2.19 d | 7.84 ± 0.72 ab | 10.67 ± 1.18 cd | 7.87 ± 1.58 ab | 11.80 ± 1.15 d | 6.39 ± 1.87 a | NS | *** | ** |
Total flavanols | 15.29 ± 2.84 cd | 12.77 ± 2.07 bc | 13.87 ± 1.94 bd | 12.00 ± 1.48 ab | 15.01 ± 1.21 bd | 11.86 ± 2.68 ab | 16.86 ± 1.90 d | 9.20 ± 1.39 a | NS | *** | *** |
Total dihydrochalcones | 0.81 ± 0.16 bd | 0.56 ± 0.11 a | 0.83 ± 0.13 cd | 0.58 ± 0.10 ab | 0.82 ± 0.16 bd | 0.62 ± 0.22 abc | 0.97 ± 0.19 d | 0.50 ± 0.10 a | NS | *** | NS |
Total flavonols | 0.04 ± 0.01 b | 0.02 ± 0.01 ab | 0.03 ± 0.01 b | 0.02 ± 0.01 ab | 0.03 ± 0.01 b | 0.02 ± 0.01 ab | 0.03 ± 0.01 b | 0.02 ± 0.00 a | NS | *** | NS |
Total APC | 25.53 ± 4.46 bd | 21.70 ± 3.11 bc | 25.94 ± 3.55 cd | 20.45 ± 2.07 ab | 26.53 ± 2.14 cd | 20.37 ± 4.34 ab | 29.67 ± 2.90 d | 16.11 ± 3.04 a | NS | *** | *** |
Dose of Nitrogen (kg·ha−1) and Floor Management | D | FM | D × FM | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
50 | 80 | 110 | 140 | ||||||||
H | LM | H | LM | H | LM | H | LM | ||||
Total esters | 1221.97 ± 256.46 a | 1157.77 ± 442.65 a | 866.04 ± 183.93 a | 1451.64 ± 353.41 a | 931.75 ± 153.41 a | 1117.93 ± 259.05 a | 1130.46 ± 398.82 a | 1120.19 ± 107.44 a | NS | NS | NS |
Total aldehydes | 1238.82 ± 150.20 a | 908.50 ± 141.67 a | 1398.7 ± 163.37 a | 966.42 ± 514.37 a | 1307.29 ± 106.38 a | 1178.08 ± 292.65 a | 1235.61 ± 194.21 a | 1182.22 ± 390.21 a | NS | * | NS |
Total alcohols | 118.76 ± 25.75 a | 97.38 ± 18.39 a | 121.52 ± 34.49 a | 112.4 ± 13.78 a | 124.98 ± 17.83 a | 108.9 ± 16.35 a | 134.91 ± 14.90 a | 116.85 ± 11.67 a | NS | * | NS |
Total organic acids | 8.43 ± 3.49 b | 11.36 ± 2.09 b | 10.50 ± 2.83 b | 0.00 ± 0.00 a | 8.03 ± 3.43 ab | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 9.31 ± 7.35 b | * | NS | *** |
Total alkanes | 0.00 ± 0.00 a | 0.00 ± 0.00 a | 17.91 ± 5.07 b | 0.00 ± 0.00 a | 13.67 ± 4.12 b | 18.77 ± 7.51 b | 12.60 ± 0.28 b | 29.54 ± 4.59 c | *** | NS | *** |
Total VOC | 2587.99 ± 255.14 a | 2169.33 ± 505.58 a | 2404.94 ± 321.75 a | 2530.45 ± 355.45 a | 2374.87 ± 190.22 a | 2418.99 ± 262.59 a | 2507.29 ± 369.42 a | 2453.45 ± 471.21 a | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baluszynska, U.B.; Licznar-Malanczuk, M.; Medic, A.; Veberic, R.; Grohar, M.C. Influence of Living Mulch and Nitrogen Dose on Yield and Fruit Quality Parameters of Malus domestica Borkh. cv. ‘Sampion’. Agriculture 2023, 13, 921. https://doi.org/10.3390/agriculture13050921
Baluszynska UB, Licznar-Malanczuk M, Medic A, Veberic R, Grohar MC. Influence of Living Mulch and Nitrogen Dose on Yield and Fruit Quality Parameters of Malus domestica Borkh. cv. ‘Sampion’. Agriculture. 2023; 13(5):921. https://doi.org/10.3390/agriculture13050921
Chicago/Turabian StyleBaluszynska, Urszula Barbara, Maria Licznar-Malanczuk, Aljaz Medic, Robert Veberic, and Mariana Cecilia Grohar. 2023. "Influence of Living Mulch and Nitrogen Dose on Yield and Fruit Quality Parameters of Malus domestica Borkh. cv. ‘Sampion’" Agriculture 13, no. 5: 921. https://doi.org/10.3390/agriculture13050921
APA StyleBaluszynska, U. B., Licznar-Malanczuk, M., Medic, A., Veberic, R., & Grohar, M. C. (2023). Influence of Living Mulch and Nitrogen Dose on Yield and Fruit Quality Parameters of Malus domestica Borkh. cv. ‘Sampion’. Agriculture, 13(5), 921. https://doi.org/10.3390/agriculture13050921