Sensory and Biological Activity of Medlar (Mespilus germanica) and Quince ‘Nivalis’ (Chaenomeles speciosa): A Comperative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Extraction Procedure
2.3. Analysis of Antioxidant Activity and Total Phenol Content
2.4. Determination of Antidiabetic Activity
2.5. Determination of Fatty Acid Composition
2.6. Determination of the Sterol Profile
2.7. Sensory and Aroma Analysis
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Asgarirad, H. The antioxidant activity of wild medlar (Mespilus germanica L.) fruit, stem bark and leaf. Afr. J. Biotechnol. 2011, 10, 283–289. [Google Scholar]
- Sadeghinejad, Z.; Erfani-Moghadam, J.; Khadivi, A. Bioactive content and phenolic compounds of common medlar (Mespilus germanica L.) and Stern’s medlar (M. Canescens Phipps). Food Sci. Nutr. 2022, 10, 1988–1993. [Google Scholar] [CrossRef] [PubMed]
- Hacıseferogŭlları, H.; Özcan, M.; Sonmete, M.H.; Özbek, O. Some physical and chemical parameters of wild medlar (Mespilus germanica L.) fruit grown in Turkey. J. Food Eng. 2005, 69, 1–7. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Han, L.Y.; Zhang, H.; Xin, H.L. Chaenomeles speciosa: A review of chemistry and pharmacology. Biomed. Rep. 2014, 2, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Ahmady-Asbchin, S. Evaluation of antioxidant and antibacterial activities of methanolic extract of medlar (Mespilus germanica L.) leaves. Biotechnol. Biotechnol. Equip. 2019, 33, 372–378. [Google Scholar] [CrossRef]
- Żołnierczyk, A.K.; Ciałek, S.; Styczyńska, M.; Oziembłowski, M. Functional properties of fruits of common medlar (Mespilus germanica L.) extract. Appl. Sci. 2021, 11, 7528. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H.; Zhang, P.; Gao, L.; Yan, N.; Li, P.; Liu, X.; Du, Y.; Shen, G. Chemical composition, antioxidant activity and α-glucosidase inhibitory activity of Chaenomeles speciosa from four production areas in China. Molecules 2018, 23, 2518. [Google Scholar] [CrossRef] [PubMed]
- Xianfei, X.; Xiaoqiang, C.; Shunying, Z.; Guolin, Z. Chemical composition and antimicrobial activity of essential oils of Chaenomeles speciosa from China. Food Chem. 2007, 100, 1312–1315. [Google Scholar] [CrossRef]
- Miao, J.; Zhao, C.; Li, X.; Chen, X.; Mao, X.; Huang, H.; Wang, T.; Gao, W. Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. J. Food Sci. 2016, 81, H2049–H2058. [Google Scholar] [CrossRef]
- Teng, H.; Jo, I.H.; Choi, Y.H. Optimization of ultrasonic-assisted extraction of phenolic compounds from Chinese quince (Chaenomeles sinensis) by response surface methodology. J. Korean Soc. Appl. Biol. Chem. 2010, 53, 618–625. [Google Scholar] [CrossRef]
- Selcuk, N.; Erkan, M. The effects of 1-MCP treatment on fruit quality of medlar fruit (Mespilus germanica L. cv. Istanbul) during long term storage in the palliflex storage system. Postharvest Biol. Technol. 2015, 100, 81–90. [Google Scholar] [CrossRef]
- Zhang, L.; Cheng, Y.-X.; Liu, A.-L.; Wang, H.-D.; Wang, Y.-L.; Du, G.-H. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 2010, 15, 8507–8517. [Google Scholar] [CrossRef]
- Bradford, P.G.; Awad, A.B. Phytosterols as anticancer compounds. Mol. Nutr. Food Res. 2007, 51, 161–170. [Google Scholar] [CrossRef]
- Poudel, P.; Petropoulos, S.A.; Di Gioia, F. Plant Tocopherols and Phytosterols and Their Bioactive Properties. In Natural Secondary Metabolites: From Nature, Through Science, to Industry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 285–319. [Google Scholar]
- Yoon, B.K.; Jackman, J.A.; Valle-González, E.R.; Cho, N.-J. Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. Int. J. Mol. Sci. 2018, 19, 1114. [Google Scholar] [CrossRef]
- La Guardia, M.; Giammanco, S.; Di Majo, D.; Tabacchi, G.; Tripoli, E.; Giammanco, M. Omega 3 fatty acids: Biological activity and effects on human health. Panminerva Med. 2005, 47, 245–257. [Google Scholar] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.-E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Olsson, M.E.; Andersson, C.S.; Oredsson, S.; Berglund, R.H.; Gustavsson, K.-E. Antioxidant levels and inhibition of cancer cell proliferation in vitro by extracts from organically and conventionally cultivated strawberries. J. Agric. Food Chem. 2006, 54, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, M.G.; Joshi, B.B.; Mistry, K.N. In vitro anti-diabetic and anti-inflammatory activity of stem bark of Bauhinia purpurea. Bull. Pharm. Med. Sci. 2013, 1, 139–150. [Google Scholar]
- Akhtar, M.N.; Mahalingam, M. Anti-oxidant, anti-microbial and glucose diffusion inhibition activities of the aqueous and chloroform extract of Phyllanthus urinaria. Int. J. Pharm. Pharm. Sci. 2016, 8, 278–280. [Google Scholar]
- Kupczyński, R.; Szumny, A.; Bednarski, M.; Piasecki, T.; Śpitalniak-Bajerska, K.; Roman, A. Application of Pontentilla Anserine, Polygonum aviculare and Rumex Crispus mixture extracts in a rabbit model with experimentally induced E. coli infection. Animals 2019, 9, 774. [Google Scholar] [CrossRef] [PubMed]
- Chua, L.Y.W.; Chua, B.L.; Figiel, A.; Chong, C.H.; Wojdyło, A.; Szumny, A.; Łyczko, J. Drying of phyla nodiflora leaves: Antioxidant activity, volatile and phytosterol content, energy consumption, and quality studies. Processes 2019, 7, 210. [Google Scholar] [CrossRef]
- Gómez-Caravaca, A.M.; Verardo, V.; Toselli, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Caboni, M.F. Determination of the major phenolic compounds in pomegranate juices by HPLC–DAD–ESI-MS. J. Agric. Food Chem. 2013, 61, 5328–5337. [Google Scholar] [CrossRef] [PubMed]
- Ben Nasr, C.; Ayed, N.; Metche, M. Quantitative determination of the polyphenolic content of pomegranate peel. Z. Lebensm. -Unters. Forsch. 1996, 203, 374–378. [Google Scholar] [CrossRef]
- Dudonne, S.; Vitrac, X.; Coutiere, P.; Woillez, M.; Mérillon, J.-M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- Chaves, N.; Santiago, A.; Alías, J.C. Quantification of the antioxidant activity of plant extracts: Analysis of sensitivity and hierarchization based on the method used. Antioxidants 2020, 9, 76. [Google Scholar] [CrossRef]
- Sales, P.M.; Souza, P.M.; Simeoni, L.A.; Magalhães, P.O.; Silveira, D. α-Amylase inhibitors: A review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci. 2012, 15, 141–183. [Google Scholar] [CrossRef]
- Vinayagam, R.; Xu, B. Antidiabetic properties of dietary flavonoids: A cellular mechanism review. Nutr. Metab. 2015, 12, 60. [Google Scholar] [CrossRef]
- Ben Abdallah, M.; Chadni, M.; M’hiri, N.; Brunissen, F.; Rokbeni, N.; Allaf, K.; Besombes, C.; Ioannou, I.; Boudhrioua, N. Intensifying Effect of Instant Controlled Pressure Drop (DIC) Pre-Treatment on Hesperidin Recovery from Orange Byproducts: In Vitro Antioxidant and Antidiabetic Activities of the Extracts. Molecules 2023, 28, 1858. [Google Scholar] [CrossRef]
- Smorowska, A.J.; Żołnierczyk, A.K.; Nawirska-Olszańska, A.; Sowiński, J.; Szumny, A. Nutritional properties and in vitro antidiabetic activities of blue and yellow corn extracts: A comparative study. J. Food Qual. 2021, 2021, 8813613. [Google Scholar] [CrossRef]
- de Souza Mataruco, L.; da Silva, L.H.M.; Stevanato, N.; da Silva, C.; Fink, J.R.; Cardozo Filho, L.; Pimentel, T.C.; Barão, C.E. Pressurized n-propane extraction improves bioactive compounds content, fatty acid profile, and biological activity of Mandacaru (Cereus jamacaru DC.) seed oil. Ind. Crops Prod. 2023, 195, 116367. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Bleive, U.; Kaldmäe, H.; Aluvee, A.; Rätsep, R.; Karp, K.; Maciel, L.S.; Herodes, K.; Rinken, T. Phytochemical characterization of oil and protein fractions isolated from Japanese quince (Chaenomeles japonica) wine by-product. LWT 2023, 178, 114632. [Google Scholar] [CrossRef]
- Glew, R.H.; Ayaz, F.A.; Sanz, C.; VanderJagt, D.; Huang, H.; Chuang, L.; Strnad, M. Effect of postharvest period on sugars, organic acids and fatty acids composition in commercially sold medlar (Mespilus germanica ‘Dutch’) fruit. Eur. Food Res. Technol. 2003, 216, 390–394. [Google Scholar] [CrossRef]
- de Almeida, M.M.; Luquetti, S.C.P.D.; Sabarense, C.M.; Corrêa, J.O.d.A.; dos Reis, L.G.; Conceição, E.P.S.d.; Lisboa, P.C.; de Moura, E.G.; Gameiro, J.; da Gama, M.A.S. Butter naturally enriched in cis-9, trans-11 CLA prevents hyperinsulinemia and increases both serum HDL cholesterol and triacylglycerol levels in rats. Lipids Health Dis. 2014, 13, 200. [Google Scholar] [CrossRef] [PubMed]
- Nunes, E.; Bonatto, S.; De Oliveira, H.; Rivera, N.; Maiorka, A.; Krabbe, E.; Tanhoffer, R.; Fernandes, L. The effect of dietary supplementation with 9-cis: 12-trans and 10-trans: 12-cis conjugated linoleic acid (CLA) for nine months on serum cholesterol, lymphocyte proliferation and polymorphonuclear cells function in Beagle dogs. Res. Vet. Sci. 2008, 84, 62–67. [Google Scholar] [CrossRef]
- Belury, M.A. Inhibition of carcinogenesis by conjugated linoleic acid: Potential mechanisms of action. J. Nutr. 2002, 132, 2995–2998. [Google Scholar] [CrossRef]
- Kim, J.H.; Pan, J.H.; Park, H.G.; Yoon, H.G.; Kwon, O.-J.; Kim, T.W.; Shin, D.H.; Kim, Y.J. Functional comparison of esterified and free forms of conjugated linoleic acid in high-fat-diet-induced obese C57BL/6J mice. J. Agric. Food Chem. 2010, 58, 11441–11447. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fígares, I.; Lachica, M.; Martín, A.; Nieto, R.; González-Valero, L.; Rodríguez-López, J.; Aguilera, J. Impact of dietary betaine and conjugated linoleic acid on insulin sensitivity, protein and fat metabolism of obese pigs. Animal 2012, 6, 1058–1067. [Google Scholar] [CrossRef]
- Racine, N.M.; Watras, A.C.; Carrel, A.L.; Allen, D.B.; McVean, J.J.; Clark, R.R.; O’Brien, A.R.; O’Shea, M.; Scott, C.E.; Schoeller, D.A. Effect of conjugated linoleic acid on body fat accretion in overweight or obese children. Am. J. Clin. Nutr. 2010, 91, 1157–1164. [Google Scholar] [CrossRef]
- den Hartigh, L.J. Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: A review of pre-clinical and human trials with current perspectives. Nutrients 2019, 11, 370. [Google Scholar] [CrossRef]
- Fujita, Y.; Kano, K.; Kishino, S.; Nagao, T.; Shen, X.; Sato, C.; Hatakeyama, H.; Ota, Y.; Niibori, S.; Nomura, A. Dietary cis-9, trans-11-conjugated linoleic acid reduces amyloid β-protein accumulation and upregulates anti-inflammatory cytokines in an Alzheimer’s disease mouse model. Sci. Rep. 2021, 11, 9749. [Google Scholar] [CrossRef]
- Trinchese, G.; Cavaliere, G.; Cimmino, F.; Catapano, A.; Carta, G.; Pirozzi, C.; Murru, E.; Lama, A.; Meli, R.; Bergamo, P. Decreased metabolic flexibility in skeletal muscle of rat fed with a high-fat diet is recovered by individual CLA isomer supplementation via converging protective mechanisms. Cells 2020, 9, 823. [Google Scholar] [CrossRef]
- Noone, E.J.; Roche, H.M.; Nugent, A.P.; Gibney, M.J. The effect of dietary supplementation using isomeric blends of conjugated linoleic acid on lipid metabolism in healthy human subjects. Br. J. Nutr. 2002, 88, 243–251. [Google Scholar] [CrossRef]
- Larsen, T.M.; Astrup, A. Efficacy and safety of dietary supplements containing CLA for the treatment of obesity: Evidence from animal and human studies. J. Lipid Res. 2003, 44, 2234–2241. [Google Scholar] [CrossRef] [PubMed]
- Moreau, R.A.; Nyström, L.; Whitaker, B.D.; Winkler-Moser, J.K.; Baer, D.J.; Gebauer, S.K.; Hicks, K.B. Phytosterols and their derivatives: Structural diversity, distribution, metabolism, analysis, and health-promoting uses. Prog. Lipid Res. 2018, 70, 35–61. [Google Scholar] [CrossRef]
- Awad, A.B.; Chan, K.C.; Downie, A.C.; Fink, C.S. Peanuts as a source of β-sitosterol, a sterol with anticancer properties. Nutr. Cancer 2000, 36, 238–241. [Google Scholar] [CrossRef]
- Law, M. Plant sterol and stanol margarines and health. BMJ 2000, 320, 861–864. [Google Scholar] [CrossRef] [PubMed]
- Poli, A.; Marangoni, F.; Corsini, A.; Manzato, E.; Marrocco, W.; Martini, D.; Medea, G.; Visioli, F. Phytosterols, cholesterol control, and cardiovascular disease. Nutrients 2021, 13, 2810. [Google Scholar] [CrossRef]
- Kamal-Eldin, A.; Moazzami, A. Plant sterols and stanols as cholesterol-lowering ingredients in functional foods. Recent Pat. Food Nutr. Agric. 2009, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Yamanashi, Y.; Takada, T.; Kurauchi, R.; Tanaka, Y.; Komine, T.; Suzuki, H. Transporters for the intestinal absorption of cholesterol, vitamin E, and vitamin K. J. Atheroscler. Thromb. 2017, 24, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Abumweis, S.; Barake, R.; Jones, P. Plant sterols/stanols as cholesterol lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 52, 1811. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Aggett, P.J.; Bindels, J.; Bung, P.; Ferre, P.; Gil, A.; Lentze, M.J.; Roberfroid, M.; Strobel, S. Growth, development and differentiation: A functional food science approach. Br. J. Nutr. 1998, 80, S5–S45. [Google Scholar] [CrossRef] [PubMed]
- Tarko, T.; Duda-Chodak, A.; Satora, P.; Sroka, P.; Pogoń, P.; Machalica, J. Chaenomeles japonica, Cornus mas, Morus nigra fruits characteristics and their processing potential. J. Food Sci. Technol. 2014, 51, 3934–3941. [Google Scholar] [CrossRef]
- Fidelis, M.; de Moura, C.; Kabbas Junior, T.; Pap, N.; Mattila, P.; Mäkinen, S.; Putnik, P.; Bursać Kovačević, D.; Tian, Y.; Yang, B. Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy. Molecules 2019, 24, 3854. [Google Scholar] [CrossRef] [PubMed]
- Ojha, K.S.; Aznar, R.; O'Donnell, C.; Tiwari, B.K. Ultrasound technology for the extraction of biologically active molecules from plant, animal and marine sources. TrAC Trends Anal. Chem. 2020, 122, 115663. [Google Scholar] [CrossRef]
No | Sample | Sample Code |
---|---|---|
1 | Medlar fruit flesh | MF |
2 | Medlar fruit skin | MFS |
3 | Medlar fruit seeds | MS |
4 | Bletting medlar fruit flesh | MFB |
5 | Bletting medlar fruit skin | MFSB |
6 | Bletting medlar fruit seeds | MSB |
7 | Quince fruit flesh | QF |
8 | Quince fruit skin | QFS |
9 | Quince fruit seeds | QS |
Grade | Score |
---|---|
Like extremely | 9 |
Like very much | 8 |
Like moderately | 7 |
Like slightly | 6 |
Neither like or dislike | 5 |
Dislike slightly | 4 |
Dislike moderately | 3 |
Dislike very much | 2 |
Dislike extremely | 1 |
No. | Plant Material | DPPH | ABTS | FRAP |
---|---|---|---|---|
1 | MF | 453.3 ± 21.8 b,c | 832.0 ± 31.0 a,c | 829.7 ± 35.9 b |
2 | MFS | 510.7 ± 59.5 c | 943.0 ± 39.0 c | 887.0 ± 43.3 b |
3 | MFB | 309.0 ± 48.5 a | 719.0 ± 20.4 b | 452.0 ± 48.2 a |
4 | MFSB | 323.3 ± 61.3 a,b | 735.3 ± 52.8 a,b | 659.7 ± 36.8 c |
5 | QF | 298.3 ± 36.2 a,b | 819.7 ± 23.5 a | 402.7 ± 30.4 a |
6 | QFS | 412.3 ± 23.3 a,c | 1058.0 ± 29.2 d | 445.7 ± 45.3 a |
No. | Plant Material | Percentage of Inhibition | |||
---|---|---|---|---|---|
Concentration [mg/mL DMSO] | |||||
100 | 50 | 25 | 10 | ||
1 | MF | 100 ± 0.0 a | 100 ± 0.0 b | 38.3 ± 2.5 b | 0.0 ± 0.0 a |
2 | MFS | 100 ± 0.0 a | 46.3 ± 3.9 c | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
3 | MFB | 100 ± 0.0 a | 100 ± 0.0 b | 100 ± 0.0 e | 53.7 ± 1.2 b |
4 | MFSB | 100 ± 0.0 a | 63.9 ± 3.0 a | 43.0 ± 1.9 c | 0.0 ± 0.0 a |
5 | QF | 100 ± 0.0 a | 89.3 ± 3.5 d | 55.4 ± 1.2 d | 0.0 ± 0.0 a |
6 | QFS | 100 ± 0.0 a | 56.6 ± 2.3 a | 0.0 ± 0.0 a | 0.0 ± 0.0 a |
No. | Fatty Acid * | MFS | MS | MFSB | MSB | QFS | QS | |
---|---|---|---|---|---|---|---|---|
1 | C 12:0 | Lauric acid | n.d. | n.d. | n.d. | 23.7 ± 4.2 a | n.d. | n.d. |
2 | C 14:0 | Mirstic acid | n.d. | n.d. | n.d. | 55.0 ± 5.6 a | n.d. | n.d. |
3 | C 16:0 | Palmitic acid | 347.7 ± 24.4 a | 938.7 ± 25.1 c | 425.7 ± 32.1 a | 604.7 ± 9.1 b | 598.0 ± 53.9 b | 1341.3 ± 70.5 d |
4 | C 18:0 | Stearic acid | 443.7 ± 36.8 b | 753.7 ± 43.9 c | 152.7 ± 18.0 a | 99.3 ± 10.0 a | 74.0 ± 7.6 a | 105.47 ± 51.2 a |
5 | C 18:1 | Elaidic acid | n.d. | n.d. | 20.3 ± 4.5 a | 33.0 ± 4.6 a | 78.0 ± 10.1 a | n.d. |
6 | C 18:1 | Oleic acid | n.d. | n.d. | 622.7 ± 25.3 a | 900.3 ± 38.8 b | 1912.0 ± 80.1 c | 1754.7 ± 51.2 b |
7 | C 18:2 | Linoleic acid | 1855.7 ± 52.2 a | 1878.0 ± 42.5 a | 716.0 ± 65.6 b | 878.0 ± 40.0 c | 1869.0 ± 48.1 a | 1942.7 ± 22.0 a |
8 | C 18:3 | α-Linolenic acid | 142.7 ± 10.7 a | 816.3 ± 18.2 b | 71.3 ± 11.2 a | 363.7 ± 37.5 c | n.d. | 867.3 ± 59.7 b |
9 | C 20:0 | Arachidic acid | n.d. | n.d. | n.d. | n.d. | n.d. | 70.0 ± 8.6 a |
10 | Total | 2789.8 | 4386.7 | 2008.7 | 2957.7 | 4531.0 | 6081.2 |
No. | Sterols | MFS | MS | MFSB | MSB | QFS | QS |
---|---|---|---|---|---|---|---|
1 | Campesterol | n.d. | n.d. | n.d. | 53.0 ± 12.5 a | 219.7 ± 24.5 b | n.d. |
2 | unknown | n.d. | n.d. | n.d. | n.d. | 37.7 ± 9.1 a | 136.0 ± 8.2 b |
3 | Stigmasterol | n.d. | n.d. | n.d. | 36.3 ± 11.7 a | n.d. | 42.7 ± 11.1 a |
4 | β-Sitosterol | 500.7 ± 47.6 a | 927.0 ± 62.1 c | 319.0 ± 21.3 b | 406.0 ± 16.1 a,b | 461.7 ± ±39.1 a | 1095.7 ± 50.5 d |
5 | Cycloartenol | 70.3 ± 12.7 a | n.d. | 74.0 ± 16.1 a | n.d. | n.d. | 62.7 ± 12.0 a |
6 | Total | 571.0 | 927.0 | 393.0 | 495.3 | 719.1 | 1337.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żołnierczyk, A.K.; Pachura, N.; Bąbelewski, P.; Taghinezhad, E. Sensory and Biological Activity of Medlar (Mespilus germanica) and Quince ‘Nivalis’ (Chaenomeles speciosa): A Comperative Study. Agriculture 2023, 13, 922. https://doi.org/10.3390/agriculture13050922
Żołnierczyk AK, Pachura N, Bąbelewski P, Taghinezhad E. Sensory and Biological Activity of Medlar (Mespilus germanica) and Quince ‘Nivalis’ (Chaenomeles speciosa): A Comperative Study. Agriculture. 2023; 13(5):922. https://doi.org/10.3390/agriculture13050922
Chicago/Turabian StyleŻołnierczyk, Anna K., Natalia Pachura, Przemysław Bąbelewski, and Ebrahim Taghinezhad. 2023. "Sensory and Biological Activity of Medlar (Mespilus germanica) and Quince ‘Nivalis’ (Chaenomeles speciosa): A Comperative Study" Agriculture 13, no. 5: 922. https://doi.org/10.3390/agriculture13050922
APA StyleŻołnierczyk, A. K., Pachura, N., Bąbelewski, P., & Taghinezhad, E. (2023). Sensory and Biological Activity of Medlar (Mespilus germanica) and Quince ‘Nivalis’ (Chaenomeles speciosa): A Comperative Study. Agriculture, 13(5), 922. https://doi.org/10.3390/agriculture13050922