Post-Fire Soil Nutrient Dynamics in Seriphium plumosum L. Encroached Semi-Arid Grassland of Gauteng Province, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Design
2.3. Soil Sampling
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dixon, A.P.; Faber-Langendoen, D.; Josse, C.; Morrison, J.C.; Loucks, C.J.; Jenkins, C.N.; Murray, S. Distribution mapping of world grassland types. J. Biogeogr. 2014, 41, 2003–2019. [Google Scholar] [CrossRef]
- Bond, W.; Zaloumis, N.P. The deforestation story: Testing for anthropogenic origins of Africa’s flammable grassy biomes. Philos. Trans. R. Soc. B 2016, 371, 20150170. [Google Scholar] [CrossRef]
- Archibald, S.; Nickless, A.; Gevender, N.M.; Scholes, R.J.; Lehsten, V. Climate and the inter-annual variability of fire in southern Africa: A meta-analysis using long-term field data and satellite-derived burnt area data. Glob. Ecol. Biogeogr. 2010, 19, 794–809. [Google Scholar] [CrossRef]
- Archibald, S.; Hempson, G.P. Competing consumers: Contrasting the patterns and impacts of fire and mammalian herbivory in Africa. Philos. Trans. R. Soc. B 2016, 371, 20150309. [Google Scholar] [CrossRef]
- Butler, A.; Davis, C.A.; Fuhlendorf, S.D.; Wilder, S.M. Effects of Fire on ground-dwelling arthropods in a shrub-dominated grassland. Ecol. Evol. 2021, 11, 427–442. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a global “herbivore”: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef]
- Case, F.M.; Staver, A.C. Fire prevents woody encroachment only at higher-than historical frequencies in a South African savanna. J. Appl. Ecol. 2017, 54, 955–962. [Google Scholar] [CrossRef]
- Ratnam, J.; Sheth, C.; Sankaran, M. African and Asian savannas: Comparisons of vegetation composition and drivers of vegetation structure and function. In Savanna Woody Plants and Large Herbivores; Scogings, P.F., Sankaran, M., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 25–49. [Google Scholar] [CrossRef]
- Snyman, H.A. Fire and the dynamics of semi-arid grassland: Influence on plant survival, productivity and water-use efficiency. Afr. J. Range Forage Sci. 2003, 20, 29–39. [Google Scholar] [CrossRef]
- Snyman, H.A. Short-term response of rangeland following an unplanned fire in terms of soil characteristics in a semi-arid climate of South Africa. J. Arid Environ. 2003, 55, 160–180. [Google Scholar] [CrossRef]
- Clark, M.D.; Wonkka, C.L.; Kreuter, U.P.; Rogers, W.E. Interactive effect of prescribed fire and livestock grazing on Seriphium plumosum in South African sour bushveld. Afr. J. Range Forage Sci. 2020, 37, 278–285. [Google Scholar] [CrossRef]
- O’Connor, R.C.; Taylor, J.H.; Nippert, J.B. Browsing and fire decreases dominance of a resprouting shrub in woody encroached grassland. Ecology 2020, 101, e02935. [Google Scholar] [CrossRef] [PubMed]
- Snyman, A.H. Short-term responses of Southern African semi-arid rangelands to fire: A review of impact on soils. Arid Land Res. Manag. 2015, 29, 222–236. [Google Scholar] [CrossRef]
- Bowd, J.E.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 2019, 12, 113–118. [Google Scholar] [CrossRef]
- See, C.R.; Yanai, R.D.; Fisk, M.C.; Vandencoeur, M.A.; Quintero, B.A.; Fahey, T.J. Soil nitrogen affects phosphorus recycling foliar resorption and plant–soil feedbacks in a northern hardwood forest. Ecology 2015, 96, 2488–2498. [Google Scholar] [CrossRef] [PubMed]
- Doerr, S.H.; Cerda, A. Fire effects on soil system functioning: New insights and future challenges. Int. J. Wildland Fire 2005, 14, 339–342. [Google Scholar] [CrossRef]
- Govender, N.; Trollope, W.S.W.; van Wilgen, B.W. The effect of fire season, fire frequency, rainfall and management of fire intensity in savanna vegetation in South Africa. J. Appl. Ecol. 2006, 43, 748–758. [Google Scholar] [CrossRef]
- Snyman, A.H. Short-term responses of Southern African semi-arid rangelands to fire: A review of impact on plants. Arid Land Res. Manag. 2015, 29, 237–254. [Google Scholar] [CrossRef]
- Pereira, P.; Francos, M.; Brevik, E.C.; Ubeda, X.; Bogunovic, I. Post-fire soil management. Curr. Opin. Environ. Sci. Health 2018, 5, 26–32. [Google Scholar] [CrossRef]
- Liu, J.; Qiu, L.; Wang, X.; Wei, X.; Gao, H.; Zhang, Y.; Cheng, J. Effects of wildfire and topography on soil nutrients in a semiarid restored grassland. Plant Soil 2018, 428, 123–136. [Google Scholar] [CrossRef]
- Snyman, H.A. Short-term response of the encroacher shrub Seriphium plumosum to fire. Afr. J. Range Forage Sci. 2011, 28, 65–77. [Google Scholar] [CrossRef]
- Nkosi, S.E.; Brown, L.R.; Barrett, S.A. A baseline study for controlling the indigenous encroacher Stoebe vulgaris in natural grasslands of Southern Africa. Agric. Ecosyst. Environ. 2018, 265, 209–216. [Google Scholar] [CrossRef]
- Snyman, H.A. Habitat preferences of the encroacher shrub, Seriphium plumosum. S. Afr. J. Bot. 2012, 81, 34–39. [Google Scholar] [CrossRef]
- Snyman, H.A. Control measures for the encroacher shrub Seriphium plumosum. S. Afr. J. Plant Soil 2012, 29, 157–163. [Google Scholar] [CrossRef]
- Marquart, A.; Slooten, E.; Jordaan, F.P.; Vermeulen, M.; Kellner, K. The control of the encroaching shrub Seriphium plumosum L. Thunb. (Asteraceae) and the response of the grassy layer in a South African semi-arid rangeland. Afr. J. Range Forage Sci. 2022, 40, 316–321. [Google Scholar] [CrossRef]
- Graham, S.C.; Barrett, S.A.; Brown, L.R. Impact of Seriphium plumosum densification on Mesic Highveld Grassland biodiversity in South Africa. R. Soc. Open Sci. 2020, 7, 192025. [Google Scholar] [CrossRef]
- Snyman, H.A. Short-term response in productivity following an unplanned fire in the semi-arid rangeland of South Africa. J. Arid Environ. 2004, 56, 465–485. [Google Scholar] [CrossRef]
- Mills, M.F.L.; Olmos, F.; Melo, M.; Dean, W.R.J. Mount Moco: Its importance to the conservation of Swierstrai and Afromontana avifauna of Angola. Birds Conserv. Int. 2011, 21, 119–133. [Google Scholar] [CrossRef]
- Fultz, L.M.; Moore-Kucera, J.; Dathe, J.; Davinic, M.; Perry, G.; Wester, D.; Schwilk, D.W.; Rideout-Hanzak, S. Forest wildfire and grassland prescribed fire effects on soil biogeochemical processes and microbial communities: Two case studies in the semi-arid Southwest. Appl. Soil Ecol. 2016, 99, 118–128. [Google Scholar] [CrossRef]
- Caon, L.; Vallejo, V.R.; Ritsema, C.J.; Geissen, V. Effects of wildfire on soil nutrients in Mediterranean ecosystems. Earth Sci. Rev. 2014, 139, 47–58. [Google Scholar] [CrossRef]
- Mucina, L.; Rutherford, M.C. The Vegetation of Southern Africa, Lesotho and Swaziland; Strelitzia 19; South African National Botanical Institute: Pretoria, South Africa, 2006; pp. 376–388. [Google Scholar]
- Pule, H.T.; Tjelele, T.J.; Tedder, M.J. The effect of abiotic factors in South African the semi-arid grassland communities on Seriphium plumosum L density and canopy sizes. PLoS ONE 2018, 13, e0202809. [Google Scholar] [CrossRef]
- Mallarino, A.P.; Blackmer, A.M. Comparison of methods for determining critical concentrations of soil test phosphorus for corn. J. Agron. 1992, 84, 850–856. [Google Scholar] [CrossRef]
- Schollenberger, C.J.; Driebelbis, E.R. Analytical methods in base-exchangeable investigations on soils. Soil Sci. 1930, 30, 161–174. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, P.R. Pale fire and Sherlock Holmes. In Studies in American Fictions; Johns Hopkins University Press: Baltimore, MD, USA, 1982; Volume 10, pp. 101–105. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Viera, A.; Úbeda, X.; Martin, D. Fire and Soils: Key concepts and recent advances. Geoderma 2012, 191, 3–13. [Google Scholar] [CrossRef]
- Giovannini, G.; Lucchesi, S. Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci. 1997, 162, 479–486. [Google Scholar] [CrossRef]
- Agbeshie, A.A.; Abugre, S.; Atta-Darkwa, T.; Awuah, R. A review of the effects of forest fire on soil properties. J. For. Res. 2022, 33, 1419–1441. [Google Scholar] [CrossRef]
- Snyman, H.A. Fire and the dynamics of a semi-arid grassland: Influence on soil characteristics. Afr. J. Range Forage Sci. 2002, 19, 137–145. [Google Scholar] [CrossRef]
- Rau, B.M.; Johnson, D.W.; Blank, R.R.; Chambers, J.C. Soil carbon and nitrogen in a Great Basin pinyon–juniper woodland: Influence of vegetation, burning, and time. J. Arid Environ. 2009, 73, 472–479. [Google Scholar] [CrossRef]
- Nghalipo, E.; Joubert, D.; Throop, H.; Groengroeft, A. The effect of fire history on soil nutrients and soil organic carbon in a semi-arid savanna woodland, central Namibia. Afr. J. Range Forage Sci. 2019, 36, 9–16. [Google Scholar] [CrossRef]
- Raison, R.J.; Khanna, P.K.; Woods, P.V. Mechanisms of element transfer to the atmosphere during vegetation fires. Can. J. For. Res. 1985, 15, 132–140. [Google Scholar] [CrossRef]
- DeBano, L.F. The effect of forest fire on soil properties. In Proceedings of the Management and Productivity of Western Montane Forest Soil, Boise, ID, USA, 10–12 April 1990; pp. 151–156. [Google Scholar]
- Gowlett, J.A.J.; Brink, J.S.; Caris, A.; Hoare, S.; Rucina, S.M. Evidence of burning from bushfires in southern, East Africa, and its relevance to hominin evolution. Curr. Anthropol. 2017, 58, S206–S216. [Google Scholar] [CrossRef]
- Adams, M.; Attiwill, P. Burning Issues: Sustainability and Management of Australia’s Southern Forests; Bushfire Co-operative Research Centre, CSIRO Publishing: Clayton, Australia, 2011. [Google Scholar]
- Duguy, D.; Rovira, P.; Valleja, R. Land-use history and fire effects on soil fertility in eastern Spain. Eur. J. Soil Sci. 2007, 58, 83–91. [Google Scholar] [CrossRef]
- Ando, K.; Shinjo, H.; Noro, Y.; Takenake, S.; Miura, R.; Sokotela, S.B. Short-term effects of fire intensity on soil organic matter and nutrient release after slash-and-burn in Eastern Province, Zambia. Soil Sci. Plant Nutr. 2014, 60, 173–182. [Google Scholar] [CrossRef]
- Sankaran, M.; Ratnam, J.; Hanan, N. Woody cover in African savannas: The role of resources, fire and herbivory. Glob. Ecol. Biogeogr. 2008, 17, 236–245. [Google Scholar] [CrossRef]
- Tiawoun, M.A.P.; Malan, P.; Comole, A.A. Effects of soil properties on the distribution of woody plants in communally managed rangelands in Ngaka Modiri Molema District, North-West Province, South Africa. Ecologies 2023, 3, 361–375. [Google Scholar] [CrossRef]
- Certini, G. Effects of fire on properties of forest soils: A review. Oecologia 2005, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Adepoju, K.; Adelabu, S.; Mokubung, C. Mapping Seriphium plumosum encroachment and interaction with wildfire and environmental factors in a protected mountainous grassland. Environ. Monit. Assess. 2020, 192, 328. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Franco, A.C. Comparative growth analysis of tropical forest and savanna woody plants using phylogenetically independent contrasts. J. Ecol. 2003, 91, 475–484. [Google Scholar] [CrossRef]
- Gignoux, J.; Lahoreau, G.; Julliard, R.; Barot, S. Establishment and early persistence of tree seedling in an annually burned savanna. J. Ecol. 2009, 97, 484–495. [Google Scholar] [CrossRef]
K (mg/kg) | Na (mg/kg) | Ca (mg/kg) | Mg (mg/kg) | SOC (%) | P (mg/kg) | pH | Total N (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DF | F | P | F | P | F | P | F | P | F | P | F | P | F | P | F | P | |
Burning | 1 | 6.92 | 0.01 | 12.80 | 0.01 | 0.51 | 0.48 | 3.57 | 0.06 | 1.20 | 0.28 | 15.30 | 0.01 | 2.46 | 0.12 | 0.24 | 0.63 |
Soil depth | 1 | 55.49 | 0.01 | 1.01 | 0.32 | 30.36 | 0.01 | 18.39 | 0.01 | 44.10 | 0.01 | 121.35 | 0.01 | 36.22 | 0.01 | 88.84 | 0.01 |
Time × Soil depth | 1 | 4.44 | 0.04 | 0.04 | 0.85 | 10.10 | 0.01 | 14.67 | 0.01 | 3.83 | 0.05 | 6.63 | 0.01 | 3.69 | 0.59 | 4.23 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pule, H.T.; Tjelele, J.T.; Tedder, M.J. Post-Fire Soil Nutrient Dynamics in Seriphium plumosum L. Encroached Semi-Arid Grassland of Gauteng Province, South Africa. Agriculture 2023, 13, 1971. https://doi.org/10.3390/agriculture13101971
Pule HT, Tjelele JT, Tedder MJ. Post-Fire Soil Nutrient Dynamics in Seriphium plumosum L. Encroached Semi-Arid Grassland of Gauteng Province, South Africa. Agriculture. 2023; 13(10):1971. https://doi.org/10.3390/agriculture13101971
Chicago/Turabian StylePule, Hosia T., Julius T. Tjelele, and Michelle J. Tedder. 2023. "Post-Fire Soil Nutrient Dynamics in Seriphium plumosum L. Encroached Semi-Arid Grassland of Gauteng Province, South Africa" Agriculture 13, no. 10: 1971. https://doi.org/10.3390/agriculture13101971
APA StylePule, H. T., Tjelele, J. T., & Tedder, M. J. (2023). Post-Fire Soil Nutrient Dynamics in Seriphium plumosum L. Encroached Semi-Arid Grassland of Gauteng Province, South Africa. Agriculture, 13(10), 1971. https://doi.org/10.3390/agriculture13101971