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Abstract: Seriphium plumosum L. is an indigenous unpalatable shrub that occurs in fire-prone semi-
arid South African grassland areas, yet research proposes the use of fire to control its encroachment of
rangelands. This study investigated the interaction effects of burning and soil depth on components
of soil fertility. Soil samples were collected from the surface (<10 cm) and subsurface (>10 ≤ 20 cm)
soil, before and after burning in randomly selected paired subplots (25 m × 25 m), with six replicates.
Data was analysed as a randomised complete block design, with repeated measures (before and after
burning) in a 2 × 2 factorial analysis of variance (ANOVA) using generalised linear model (GLM)
procedures. Components of soil fertility measured (K, Ca, Mg, Org C, P, pH and TN) showed a significant
decrease with increasing soil depth both before and after burning, except for K and P, which were
significantly higher in surface soils after burning. The results showed that the response of soil nutrients
to fire depends on the temperature tolerance threshold of individual soil nutrient elements. Increasing
surface soil available K and P concentrations after burning may improve the conditions for S. plumosum
encroachment, with implications for similar environments and species worldwide.
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1. Introduction

Global drylands have evolved with fires [1], which occur from both natural and
anthropogenic ignition [2]. Africa is referred to as the “fire continent” [3], with fires
occurring from January to April in West Africa and from July to October in eastern and
southern Africa [4]. These fires affect the soil, flora and fauna [5], thus shaping the global
biome’s distribution and maintaining its structure and function [6]. Although fire is a cost-
effective management tool to control woody plant encroachment [7], and increase forage
production [8], its effectiveness in semi-arid grasslands is questioned [9–11], especially
without browsers [12]. Hence, understanding the role of fire in shaping both vegetation and
soil structure and functioning is key to managing woody plant encroachment, especially in
fire-prone semi-arid grasslands.

Research on post-fire soil nutrient concentrations in semi-arid rangelands is lacking [13],
yet it is important in biogeochemical cycles and the ecology of microbial, plant, and animal
communities [14], among others. Soil nutrients also play an important role in maintaining the
structure and function of grassland ecosystems [15], but the interaction effect of fire and soil
fertility in driving rangelands’ ecosystem structure and function remains underresearched.
Consequently, this limits our understanding of the role of fire in soil nutrient cycling and on
woody plant encroachment control, especially of species such as S. plumosum, which thrive in
fire-prone areas.
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The effects of fire on soils may be brief, extended, or permanent, depending on the
soil property concerned, the frequency and severity of the fire [16], the type of burned
vegetation, and the regional climatic conditions [17]. These effects on soil nutrients are
usually restricted to the first few centimeters of the topsoil [18,19] and are driven by fire
temperature. Consequently, understanding how soil nutrients respond to fire may provide
essential knowledge about biogeochemical cycles, ecosystem succession, and general
grassland management [20].

Seriphium plumosum L., also known as slangbos or bankrupt bush, is a multi-stemmed
encroacher shrub in the Asteraceae family, indigenous to South Africa [21,22]. Its encroach-
ment reduces grass production [23–25] and biodiversity [26]. While chemical and mechanical
control measures for S. plumosum encroachment are expensive and labour intensive [24], the
use of fire in controlling S. plumosum encroachment remains a subject of much debate [27].
In addition, research on post-fire soil nutrient dynamics of S. plumosum encroached areas is
lacking [28], yet it is critical to aid land managers in predicting ecosystem recovery responses
post fire [29], and to quantify land degradation processes and post-fire restoration plans [30].

This study explored the short-term interaction effect of burning (before and after
fire) and soil depth (<10 cm and 10–20 cm) on components of soil fertility (potassium (K),
phosphorus (P), magnesium (Mg), total nitrogen (TN), sodium (Na), calcium (Ca), soil
organic carbon (SOC) and pH) in S. plumosum encroached semi-arid grassland communities
in Gauteng Province. It is hypothesized that (1) intense fires on surface soils will lead to
the combustion of SOC and TN loss caused by volatilization, and (2) accumulating ash
post-fire will increase the general surface soil nutrients (K, P, Mg, Na, Ca and pH) content.

2. Materials and Methods
2.1. Study Area

The experiment was conducted on Carletonville Dolomite Grassland (CDG) [31],
situated in Gauteng Province, South Africa. The experimental sites are located on a gentle
(approx. 10◦) north-facing slope [32], at an elevation of approximately 1614 m above sea
level. Rain falls almost exclusively in the summer (October–April), with a mean of 593 mm
per annum [31]. The average minimum and maximum summer and winter temperatures
for the CDG are 15.4–30 ◦C and 6–21 ◦C [31], respectively.

Seriphium plumosum L. density and canopy size at the experimental site were 1 plant/2.17 m2

(±2.39 (SEM)) and 1.39 m2 (±0.11), respectively. The soils are predominantly from Dolomite
and Chert of the Malmani subgroup, which support mostly shallow Mispah and Glenrosa soil
forms typical of the Fa land type [31]. These soils had a mean silt and clay content of 8.66%
(±0.96) and 28% (±0.29), respectively [32]. The land use is mainly cattle grazing and the area
burns approximately once every three years.

2.2. Sampling Design

The study used a factorial design consisting of burning (before and after fire) and
soil depth (<10 cm and 10–20 cm), with six replicates [32]. Soil samples were randomly
collected from burned subplots of 25 m × 25 m each before and after burning. The sampling
was carried out on the same subplots before and after burning to allow for comparison.
There was a minimum distance of 10 m between the randomly selected subplots. These
experimental plots were in an enclosed camp, free from human disturbance and cattle
grazing. Furthermore, soil sampling before and after fire was performed before rainfall to
avoid the effect of rainfall on components of soil fertility.

2.3. Soil Sampling

Since southern African fires occur mostly between July and October [6], soil samples
(n = 20) were randomly collected an hour before burning (August) and a month after burning
(September), with each fire lasting for the duration of approximately 30–45 min. These soil
samples were collected from the surface (<10 cm) (n = 10) and subsurface (10–20 cm) soil
layers (n = 10), and pooled together per soil depth. The total number of soil samples before
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and after burning, was 36 and 36, respectively. The soils were analysed for K, P, Mg, TN,
Na, Ca, SOC and pH. Soil P was determined using a P Bray No. 1, following Mallarino and
Blackmer [33]. Soil K, Ca, Mg and Na content were determined using the soil ammonium
acetate extraction method [34]. Soil organic carbon was determined following the Walkley
Black [35] procedure, while TN was determined using a Total Nitrogen digester. Soil pH was
determined using water, with a 2:5 soil:water ratio [36].

2.4. Statistical Analysis

The effects of burning (before and after fire), soil depth (<10 cm and 10–20 cm), and
their interactions on components of soil fertility were analysed as a randomised complete
block design, with repeated measures (before and after fire) in a 2 × 2 factorial analysis
of variance (ANOVA) using generalized linear model (GLM) procedures. Burning and
soil depth were analysed as independent variables and components of soil fertility were
analysed as dependent variables. Soil Mg, TN, Ca and pH values were log-transformed to
meet the normality and homogeneity assumptions of ANOVA, but this transformation was
not necessary for K, P, Na and SOC. The data was analysed using SPSS, version 15 of 2016.
When the ANOVA produced significant results, the means were compared using Tukey’s
HSD test, and the differences were declared significant at p < 0.05.

3. Results

Burning significantly affected soil K, Na, and P (p < 0.05). Similarly, soil depth had
a significant effect on soil K, Ca, Mg, Org C, P, pH and TN (p < 0.05), and the interaction
between burning and soil depth significantly affected soil K, Ca, Mg, Org C, P and TN
(p < 0.05; Table 1).

Table 1. ANOVA results for the main factor of burning, soil depth, and their interaction on compo-
nents of soil fertility.

K (mg/kg) Na (mg/kg) Ca (mg/kg) Mg (mg/kg) SOC (%) P (mg/kg) pH Total N (%)

DF F P F P F P F P F P F P F P F P

Burning 1 6.92 0.01 12.80 0.01 0.51 0.48 3.57 0.06 1.20 0.28 15.30 0.01 2.46 0.12 0.24 0.63
Soil depth 1 55.49 0.01 1.01 0.32 30.36 0.01 18.39 0.01 44.10 0.01 121.35 0.01 36.22 0.01 88.84 0.01

Time × Soil depth 1 4.44 0.04 0.04 0.85 10.10 0.01 14.67 0.01 3.83 0.05 6.63 0.01 3.69 0.59 4.23 0.04

Significant values are shown in bold: K; P; Mg; TN Na; Ca; SOC.

Burning significantly increased soil K (before: 94.74 ± 3.36 (SEM), after: 116.20 mg/kg
± 6.74), Na (before: 4.33 mg/kg ± 0.21, after: 6.27 mg/kg ± 0.41) and P (before: 3.23 mg/kg
± 0.15, after: 4.34 mg/kg ± 0.27). Soil K (surface: 127.64 mg/kg ± 4.77, subsurface:
76.15 mg/kg ± 2.65), Ca (surface: 154.88 mg/kg ± 7.02, subsurface: 90.37 mg/kg ± 4.28),
Mg (surface: 60. 70 mg/kg ± 3.08, subsurface: 39.72 mg/kg ± 1.78) and Org C (surface:
1.54 mg/kg ± 0.02, subsurface: 1.28 mg/kg ± 0.01) were significantly higher in the surface
compared to subsurface soils. Similarly, soil P (surface: 4.99 mg/kg ± 0.01, subsurface:
2.29 mg/kg ± 0.13), pH (surface: 4.91 ± 0.022, subsurface: 4.71 ± 0.01) and TN (surface:
0.06% ± 0.0009, subsurface: 0.05% ± 0.067) content was significantly higher in surface soils
compared to subsurface soils. There was a significant interaction effect of burning × soil
depth on soil K, Ca, Mg, Org C, P and TN (p < 0.05). However, these effects were pronounced
on soil available K and P concentrations, which were significantly higher after fire than
before fire on the surface soil (p < 0.05; Figure 1).
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4. Discussion

The fire increased soil available K, Na, and P, but not Ca, Mg, SOC and TN concen-
trations and pH levels. Soil fertility (K, P, Mg, TN, Ca, SOC and pH) decreased with soil
depth, while fire × soil depth increased soil K and P concentrations post fire, especially in
the surface soils.

Fire has the potential to mobilize nutrients, so depending on its intensity and fre-
quency, it may increase or decrease nutrient availability in the ecosystem [37]. Nitrogen
and SOC have a temperature tolerance threshold as low as 200 ◦C [38], with half of nitrogen
volatilization occurring at a temperature of 500 ◦C. This suggests that the prescribed fire
used in this study was relatively hot (>200 ◦C) to cause combustion of organic matter and
nitrogen loss by volatilization [39]. The fire increased soil available P, K and Mg concen-
trations [40–42]. Soil available K and P have moderate fire sensitivity and a fire tolerance
threshold of 774 ◦C [43], hence their increase with fire in this study. The higher heat tol-
erance thresholds of soil available Mg, Ca, and Mn of 1107 ◦C, 1484 ◦C, and 1962 ◦C [44],
respectively, in part explaining their stability post-fire in this study. Gowlett et al. [45]
also found temperatures for the grass-brush communities in South African semi-arid areas
to peak at 500 ◦C, which may suggest that the prescribed fire used in this experiment
was probably above 200 ◦C but lower than 774 ◦C. Hence, the observed changes occurred
exclusively on components of soil fertility with a threshold of 774 ◦C in this study.

Generally, the responses of individual components of soil fertility to fire are inconsis-
tent and non-universal [46], in part because each has an inherent temperature tolerance
threshold [44], among other factors. Soil available K and P increase with fire [47], especially
in the surface soils, as shown in this study. Ando et al. [48] reported increasing levels of
available nutrients such as P and exchangeable K following fire. Although soil-available
P responds differently to fire, substantial amounts of readily available P are found in the
ash and on the soil surface immediately following a fire [44]. Soil available P [49] and
K [50] are the most important soil parameters influencing woody plant cover after mean
annual precipitation and fire. Consequently, their increase after fire in surface soils may
contribute to facilitating S. plumosum encroachment in the semi-arid grassland communities
of Gauteng Province, South Africa.
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A combination of combustion and heat transfer that produces a sharp temperature
gradient in the surface soil profile [51] might contribute to explaining the association be-
tween S. plumosum and high-temperature and/or fire-prone areas [52]. Fire may contribute
to controlling woody plant encroachment [53,54] while improving soil nutrient status, espe-
cially soil K and P concentrations, which favour the conditions for S. plumosum germination
from a soil seedbank [21], which explains its encroachment on rangelands. The reduction
in SOC and TN concentrations post-burning [39] and the lack of their change with fire in
this study favours the condition for S. plumosum encroachment [24]. These results suggest
that fire is an important factor driving S. plumosum distribution and occurrence, hence its
association with fire-prone areas. There is, however, a need for more long-term research on
the effects of fire intensity and frequency on components of soil fertility and S. plumosum
population dynamics in South African semi-arid grasslands.

5. Conclusions

This study has shown that fire did not affect SOC and TN, but improved soil available K
and P concentrations, especially in the surface soil. These conditions may favour S. plumosum
germination from soil seed banks, seedling recruitment and, consequently, its potential
encroachment on rangeland communities. Furthermore, the ability of S. plumosum to coppice
or resprout after fire might improve with improved conditions for growth. An understanding
of the role of fire intensity and severity on soil fertility, soil seed banks, and the control of
S. plumosum encroachment is also lacking. Hence, there is a need for more long-term research
on how multiple interacting factors in space and time contribute directly or indirectly to
causing S. plumosum encroachment in South African grassland communities.
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