Effect of Protein Gel Treatments on Biometric and Biochemical Attributes of Tomato Seedlings in Greenhouse Condition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Obtaining Gels (Protein Hydrolysates)
2.3. Determination of Free Amino Acids in Protein Gels
2.4. Biometric Measurements of the Tomato Seedlings
2.5. Biochemical Analysis of the Tomato Seedlings
2.6. Statistical Analyses
3. Results and Discussions
3.1. Protein Gels Characterization
3.2. Determination of Free Amino Acids Content in Used Gels (Protein Hydrolysates)
3.3. Influence of the Treatment on the Biometric Parameters of the Tomato Seedlings
3.4. Influence of the Treatment on the Photosynthetic Pigments Content
3.5. Influence of the Treatment on the Biochemical Compounds Accumulation in the Leaves
3.6. Influence of the Treatment on the Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schaafsma, G. Safety of protein hydrolysates, fractions thereof and bioactive peptides in human nutrition. Eur. J. Clin. Nutr. 2009, 63, 1161–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Madende, M.; Hayes, M. Fish By-Product Use as Biostimulants: An Overview of the Current State of the Art, Including Relevant Legislation and Regulations within the EU and USA. Molecules 2020, 25, 1122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ertani, A.; Cavani, L.; Pizzeghello, D.; Brandellero, E.; Altissimo, A.; Ciavatta, C.; Nardi, S. Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. J. Plant Nutr. Soil Sci. 2009, 172, 237–244. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. The use of biostimulants for enhancing nutrient uptake. Adv. Agron. 2015, 130, 141–174. [Google Scholar] [CrossRef]
- Francesca, S.; Najai, S.; Zhou, R.; Decros, G.; Cassan, C.; Delmas, F.; Ottosen, C.; Barone, A.; Rigano, M.M. Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiol. Biochem. 2022, 179, 32–43. [Google Scholar] [CrossRef]
- Souri, M.K.; Bakhtiarizade, M. Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Sci. Hortic. 2019, 243, 472–476. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef]
- Hassan, H.S.; Mohamed, A.A.; Feleafel, M.N.; Salem, M.Z.M.; Ali, H.M.; Akrami, M.; Abd-Elkader, D.Y. Natural plant extracts and microbial antagonists to control fungal pathogens and improve the productivity of zucchini (Cucurbita pepo L.) in vitro and in greenhouse. Horticulturae 2021, 7, 470. [Google Scholar] [CrossRef]
- Abd-Elkader, D.Y.; Mohamed, A.A.; Feleafel, M.N.; Al-Huqail, A.A.; Salem, M.Z.M.; Ali, H.M.; Hassan, H.S. Photosynthetic Pigments and Biochemical Response of Zucchini (Cucurbita pepo L.) to Plant-Derived Extracts. Microbial, and Potassium Silicate as Biostimulants Under Greenhouse Conditions. Front. Plant Sci. 2022, 13, 879545. [Google Scholar] [CrossRef] [PubMed]
- Asadi, M.; Rasouli, F.; Amini, T.; Hassanpouraghdam, M.B.; Souri, S.; Skrovankova, S.; Mlcek, J.; Ercisli, S. Improvement of Photosynthetic Pigment Characteristics, Mineral Content, and Antioxidant Activity of Lettuce (Lactuca sativa L.) by Arbuscular Mycorrhizal Fungus and Seaweed Extract Foliar Application. Agronomy 2022, 12, 1943. [Google Scholar] [CrossRef]
- Dias, J.S. Nutritional Quality and Health Benefits of Vegetables: A Review. Food Nutr. Sci. 2012, 3, 1354–1374. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, Â.; Chaski, C.; Pereira, C.; Kostic, M.; Rouphael, Y.; Sokovic, M.; Barros, L.; Petropoulos, S.A. Water Stress Alleviation Effects of Biostimulants on Greenhouse-Grown Tomato Fruit. Horticulturae 2022, 8, 645. [Google Scholar] [CrossRef]
- Koleška, I.; Hasanagic, D.; Todorovic, V.; Murtic, S.; Klokic, I.; Paradikovic, N.; Kukavica, B. Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. J. Plant Interact. 2017, 12, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Kalozoumis, P.; Vourdas, C.; Ntatsi, G.; Savvas, D. Can Biostimulants Increase Resilience of Hydroponically-Grown Tomato to Combined Water and Nutrient Stress? Horticulturae 2021, 7, 297. [Google Scholar] [CrossRef]
- Niculescu, M.; Epure, D.; Lasoń-Rydel, M.; Gaidau, C.; Gidea, M.; Enascuta, C. Biocomposites based on collagen and keratin with properties for agriculture and industrie applications. EuroBiotech J. 2019, 3, 160–166. [Google Scholar] [CrossRef]
- Gaidau, C.; Epure, D.G.; Enascuta, C.E.; Carsote, C.; Sendrea, C.; Proietti, N.; Chen, W.; Gu, H. Wool keratin total solubilisation for recovery and reintegration—An ecological approach. J. Clean. Prod. 2019, 236, 117586. [Google Scholar] [CrossRef]
- SR EN ISO 4684:2006; Leather—Chemical Tests—Determination of Volatile Matter. ASRO (Romanian Standardization Association): Bucharest, Romania, 2006.
- SR EN ISO 4047:2002; Leather—Determination of Sulphated Total Ash and Sulphated Water-Insoluble Ash. ASRO (Romanian Standardization Association): Bucharest, Romania, 2002.
- SR EN ISO 5397:1996; Determination of Nitrogen Content and Dermal Substance. ASRO (Romanian Standardization Association): Bucharest, Romania, 1996.
- STAS 8619/3:1990; Determination of pH in Aqueous Solutions. ASRO (Romanian Standardization Association): Bucharest, Romania, 1990.
- European Pharmacopoeia. Gel strength. In Standard Testing Methods for Edible Gelatin; Official Procedure of the Gelatin Manufacturers Institute of America Inc.: Sergeant Bluff, IA, USA, 2019; pp. 9–12. [Google Scholar]
- European Pharmacopoeia. Viscosity. In Standard Testing Methods for Edible Gelatin; Official Procedure of the Gelatin Manufacturers Institute of America Inc.: Sergeant Bluff, IA, USA, 2019; pp. 13–17. [Google Scholar]
- Rosen, H. A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 1957, 67, 10–15. [Google Scholar] [CrossRef]
- Panasiuk, R.; Amarowicz, R.; Kostyra, H.; Sijtsma, L. Determination of α-amino nitrogen in pea protein hydrolysates: A comparison of three analytical methods. Food Chem. 1998, 62, 363–367. [Google Scholar] [CrossRef]
- Schopfer, P. Experimentelle Pflanzenphysiologie; Springer-Verlag: Berlin/Heidelberg, Germany, 1989; pp. 33–35. [Google Scholar]
- Iordachescu, D.; Dumitru, I.F. Biochimie Practica, 2nd ed.; Universitatea Bucuresti: Bucharest, Romania, 1988; pp. 205–206. [Google Scholar]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Paleckiene, R.; Sviklas, A.; Šlinkšiene, R. Physicochemical properties of a microelement fertilizer with amino acids. Russ. J. Appl. Chem. 2007, 80, 352–357. [Google Scholar] [CrossRef]
- Rentsch, D.; Schmidt, S.; Tegeder, M. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 2007, 581, 2281–2289. [Google Scholar] [CrossRef] [Green Version]
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef] [Green Version]
- Koukounararas, A.; Tsouvaltzis, P.; Siomos, A.S. Effect of root and foliar application of amino dcids on the growth and yield of greenhouse tomato in different fertilization levels. J. Food Agric. Environ. 2013, 11, 644–648. [Google Scholar]
- Mironenko, G.A.; Zagorskii, I.A.; Bystrova, N.A.; Kochetkov, K.A. The Effect of a Biostimulant Based on a Protein Hydrolysate of Rainbow Trout (Oncorhynchus mykiss) on the Growth and Yield of Wheat (Triticum aestivum L.). Molecules 2022, 27, 6663. [Google Scholar] [CrossRef]
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Asp. Med. 2003, 24, 345–351. [Google Scholar] [CrossRef]
- Gramza-Michałowska, A.; Stachowiak, B. The antioxidant potential of carotenoid extract from Phaffia Rhodozyma. Acta Sci. Pol. Technol. Aliment. 2010, 9, 171–188. [Google Scholar]
- Chedea, V.S.; Jisaka, M. Lipoxygenase and carotenoids: A co-oxidation story. Afr. J. Biotechnol. 2013, 12, 2786–2791. [Google Scholar] [CrossRef]
- Karimuna, S.R.; Aziz, S.A.; Melati, M. Correlations between Leaf Nutrient Content and the Production of Metabolites in Orange Jessamine (Murraya paniculata L. Jack) Fertilized with Chicken Manure. J. Trop. Crop Sci. 2015, 2, 16–25. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; El-Nakhel, C.; Bonini, P.; D’Amelia, L.; Dell’Aversana, E.; Pannico, A.; Giordano, M.; Sifola, M.I.; Kyriacou, M.C.; et al. Biostimulant application with a tropical plant extract enhances Corchorus olitorius adaptation to suboptimal nutrient regimens by improving physiological parameters. Agronomy 2019, 9, 249. [Google Scholar] [CrossRef] [Green Version]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Popko, M.; Wilk, R.; Górecki, H. New amino acid biostimulators based on protein hydrolysate of keratin. Przem. Chem. 2014, 93, 1012–1015. [Google Scholar]
- Ávila-Pozo, P.; Parrado, J.; Caballero, P.; Tejada, M. Use of a Biostimulant Obtained from Slaughterhouse Sludge in a Greenhouse Tomato Crop. Horticulturae 2022, 8, 622. [Google Scholar] [CrossRef]
- Vician, M.; Kováčik, P. The effect of folic application of MG-Titanit fertilizer on phytomass, chlorophyll production and the harvest of winter wheat. In Proceedings of the MendelNet, Brno, Slovak, 20–21 November 2013; pp. 162–168. [Google Scholar]
- Vâşcă-Zamfir, D.; Bălan, D.; Luţă, G.; Gherghina, E.; Drăghici, E. Influence of the rizogene substances on rooting and on biochemical composition of Pelargonium peltatum plants. Lucr. Stiintifice Ser. Hortic. 2012, 55, 297–302. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Drench Application of Fish-derived Protein Hydrolysates Affects Lettuce Growth, Chlorophyll Content, and Gas Exchange. HortTechnology 2017, 27, 539–543. [Google Scholar] [CrossRef]
- Kaur, S.; Gupta, A.K.; Kaur, N. Effect of GA3, kinetin and indole acetic acid on carbohydrate metabolism in chickpea seedlings germinating under water stress. Plant Growth Regul. 2000, 30, 61–70. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar applications of protein hydrolysate, plant and seaweed extracts increase yield but differentially modulate fruit quality of greenhouse tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Ertani, A.; Pizzeghello, D.; Francioso, O.; Sambo, P.; Sanchez-Cortes, S.; Nardi, S. Capsicum chinensis L. growth and nutraceutical properties are enhanced by biostimulants in a long-term period: Chemical and metabolomic approaches. Front. Plant Sci. 2014, 5, 375. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.; De Pascale, S. Foliar applications of a legume-derived protein hydrolysate elicit dose-dependent increases of growth, leaf mineral composition, yield and fruit quality in two greenhouse tomato cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Fan, D.; Hodges, D.M.; Zhang, J.; Kirby, C.W.; Ji, X.; Locke, S.J.; Critchley, A.T.; Prithiviraj, B. Commercial extract of the brown seaweed Ascophyllum nodosum enhances phenolic antioxidant content of spinach (Spinacia oleracea L.) which protects Caenorhabditis elegans against oxidative and thermal stress. Food Chem. 2011, 124, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Kałuzewicz, A.; Gasecka, M.; Spizewski, T. Influence of biostimulants on phenolic content in broccoli heads directly after harvest and after storage. Folia Hortic. 2017, 29, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Vasantharaja, R.; Abraham, L.S.; Inbakandan, D.; Thirugnanasambandam, R.; Senthilvelan, T.; Jabeen, S.A.; Prakash, P. Influence of seaweed extracts on growth, phytochemical contents and antioxidant capacity of cowpea (Vigna unguiculata L. Walp). Biocatal. Agric. Biotechnol. 2019, 17, 589–594. [Google Scholar] [CrossRef]
- Ashour, M.; Hassan, S.M.; Elshobary, M.E.; Ammar, G.A.G.; Gaber, A.; Alsanie, W.F.; Mansour, A.T.; El-Shenody, R. Impact of Commercial Seaweed Liquid Extract (TAM®) Biostimulant and Its Bioactive Molecules on Growth and Antioxidant Activities of Hot Pepper (Capsicum annuum). Plants 2021, 10, 1045. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M. Extreme Temperature Responses, Oxidative Stress and Antioxidant Defense in Plants. In Abiotic Stress-Plant Responses and Applications in Agriculture; Vahdati, K., Leslie, C., Eds.; InTech: Rijeka, Croatia, 2013; pp. 169–205. [Google Scholar] [CrossRef] [Green Version]
- Gavelienė, V.; Pakalniškytė, L.; Novickienė, L. Effect of growth regulators and their mixtures on winter wheat growth, cold resistance and productivity. In Proceedings of the VII International Scientific Agriculture Symposium, “Agrosym 2016”, Jahorina, Bosnia and Herzegovina, 6–9 October 2016; pp. 1208–1214. [Google Scholar]
- Bǎlan, D.; Dobrin, E.; Luţă, G.; Gherghina, E. Protective effects induced by growth regulators treatment on eggplant (Solanum melongena L.) seedlings. Rom. Biotech. Lett. 2018, 23, 13447–13456. [Google Scholar] [CrossRef]
- Luţă, G.; Bǎlan, D.; Gherghina, E.; Dobrin, E. Effect of Foliar Bioactive Treatments on the Oxidative Stress Tolerance in Tomato Seedlings. Sci. Pap. Ser. B Hortic. 2018, 62, 423–429. [Google Scholar]
- Rouphael, Y.; Cardarelli, M.; Bonini, P.; Colla, G. Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 2017, 8, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francesca, S.; Cirillo, V.; Raimondi, G.; Maggio, A.; Barone, A.; Rigano, M.M. A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants 2021, 10, 783. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Bovine Gelatin | Bovine Gelatin and Keratin (1:1) |
---|---|---|
Dry substance (%) | 2.26 | 1.71 |
Total ash (%) | 0.44 | 0.34 |
Total nitrogen (%) | 0.24 | 0.21 |
Protein content (%) | 1.35 | 1.18 |
pH | 7.08 | 7.21 |
Bloom test (g) | 130 | <50 |
Viscosity (mPa·s) | 1.25 | 1 |
Variant | Total Free Amino Acids (mg/g) |
---|---|
Bovine gelatin | 0.35 ± 0.02 a |
Bovine gelatin + keratin (1:1) | 1.49 ± 0.05 b |
Variant | Number of Leaves | Plant Height (cm) | Leaves Frequency (Number of Leaves/Plant Height) |
---|---|---|---|
V1 (Control) | 5.22 ± 0.44 a | 16.53 ± 1.13 a | 0.32 ± 0.03 a |
V2 | 5.11 ± 0.33 a | 17.32 ± 0.74 a | 0.30 ± 0.03 a,b |
V3 | 5.00 ± 0.00 a | 18.09 ± 0.56 b | 0.28 ± 0.01 b |
Variant | Number of Leaves | Plant Height (cm) | Leaves Frequency (Number of Leaves/Plant Height) |
---|---|---|---|
V1 (Control) | 6.44 ± 0.53 a | 26.67 ± 2.08 a | 0.24 ± 0.03 a |
V2 | 6.11 ± 0.33 a | 27.88 ± 1.48 a | 0.22 ± 0.02 a |
V3 | 6.44 ± 0.53 a | 29.88 ± 1.34 b | 0.22 ± 0.02 a |
Variant | Dry Weight (g%) | Total Soluble Sugars (mg/100g FW) | Total Polyphenols (mg GAE/100 g FW) |
---|---|---|---|
V1 (Control) | 19.91 ± 0.05 a | 19.23 ± 0.61 a | 214.54 ± 11.83 a |
V2 | 20.43 ± 0.27 b | 49.03 ± 3.02 b | 225.56 ± 8.11 a |
V3 | 21.49 ± 0.60 c | 81.22 ± 10.84 c | 255.29 ± 12.98 b |
Variant | EC50 (mg/mL) |
---|---|
V1 (Control) | 48.19 ± 3.96 a |
V2 | 43.09 ± 0.17 b |
V3 | 33.03 ± 2.16 c |
Biochemical Compounds | R (Coefficient of Correlation) | R2 (Determining Coefficient) |
---|---|---|
Chlorophyll A | −0.6804 | 0.4629 |
Chlorophyll B | −0.5236 | 0.2742 |
Total chlorophylls | −0.7412 | 0.5494 |
Total carotenoids | −0.4424 | 0.1957 |
Total polyphenols | −0.8659 | 0.7498 |
Total biochemical compounds | −0.9112 | 0.8302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balan, D.; Luţă, G.; Stanca, M.; Jerca, O.; Niculescu, M.; Gaidau, C.; Jurcoane, S.; Mihalcea, A. Effect of Protein Gel Treatments on Biometric and Biochemical Attributes of Tomato Seedlings in Greenhouse Condition. Agriculture 2023, 13, 54. https://doi.org/10.3390/agriculture13010054
Balan D, Luţă G, Stanca M, Jerca O, Niculescu M, Gaidau C, Jurcoane S, Mihalcea A. Effect of Protein Gel Treatments on Biometric and Biochemical Attributes of Tomato Seedlings in Greenhouse Condition. Agriculture. 2023; 13(1):54. https://doi.org/10.3390/agriculture13010054
Chicago/Turabian StyleBalan, Daniela, Gabriela Luţă, Maria Stanca, Ovidiu Jerca, Mihaela Niculescu, Carmen Gaidau, Stefana Jurcoane, and Antoaneta Mihalcea. 2023. "Effect of Protein Gel Treatments on Biometric and Biochemical Attributes of Tomato Seedlings in Greenhouse Condition" Agriculture 13, no. 1: 54. https://doi.org/10.3390/agriculture13010054