Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Field
2.2. Irrigation System and Water Scheduling
2.3. Water Quality
2.4. Soil Analysis
2.5. Forage Production
2.6. Statistical Analysis
3. Results
3.1. Water Quality
3.2. Soil
3.2.1. Soil Salinity and Nitrate
3.2.2. Soil C, N, and Nutrients
3.3. Forage Production
4. Discussion
4.1. Water
4.2. Soils
4.2.1. Soil C, N, and Nutrients
4.2.2. Soil Salinity and Nitrate
4.3. Forage Production
4.3.1. Yield Affected by Water Quality and Management
4.3.2. Irrigation Water Use Efficiency
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palacios-Diaz, M.D.P.; Mendoza-Grimón, V.; Garcia, A.D.V. Influence of Policy Making in the Profitability of Forage Production Irrigated with Reclaimed Water. Water 2015, 7, 4274–4282. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.C.; Romeiras, M.M. Cape Verde Islands. In Encyclopedia of Islands; University of California Press: Berkeley, CA, USA, 2009; Available online: https://www.researchgate.net/publication/231168292_Cape_Verde_Islands (accessed on 25 July 2020).
- Food and Agriculture Organization (FAO). 2022. Available online: https://www.fao.org/countryprofiles/index/en/?iso3=CPV&paia=2 (accessed on 25 July 2020).
- Monteiro, F.; Fortes, A.; Ferreira, V.; Pereira Essoh, A.; Gomes, I.; Correia, A.M.; Romeiras, M.M. Current Status and Trends in Cabo Verde Agriculture. Agronomy 2020, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Palacios-Díaz, M.D.P. Sustainable Irrigation Using Non-Conventional Resources: What has Happened after 30 Years Regarding Boron Phytotoxicity? Water 2019, 11, 1952. [Google Scholar] [CrossRef] [Green Version]
- Decreto Regulamentar n° 4/2020. Série—No 24 «B.O.» da República de Cabo Verde. Critérios e os Parâmetros Para Controlo da Qualidade da Água Para Rega, Águas de Origem Superficial ou Subterrânea, Dessalinizada, Águas Pluviais Recuperadas ou Águas Residuais Tratadas, Com o Objetivo de Satisfazer ou Complementar as Necessidades Hídricas de Culturas Agrícolas, Florestais, Ornamentais, Viveiros, Relvados e Outros Espaços Verdes, Previamente à Adição de Fertilizante. Available online: https://kiosk.incv.cv/1.1.24.3139 (accessed on 10 October 2022).
- Palacios, M.P.; Mendoza-Grimón, V.; Fernández, F.; Fernández-Vera, J.R.; Hernández-Moreno, J.M. Sustainable Reclaimed Water Management by Subsurface Drip Irrigation System: A study case for forage production. Water Pract. Technol. 2008, 3, wpt2008049. [Google Scholar] [CrossRef]
- ISRA. Fiches Techniques. In Institut Sénégalais de Recherches AgricolesFiches Variétales Niébé & Sorgho; ISRA: Dakar, Senegal, 2015; Volume 8, ISSN 0850-9980. [Google Scholar]
- Mendoza-Grimón, V.; Fernández-Vera, J.R.; Silva, G.D.; Semedo-Varela, A.; Palacios-Díaz, M.D.P. Cape Verde (West Africa) Successful Water Reuse Pilot Project: A Sustainable Way for Increasing Food Production in a Climate Change Scenario. Water 2021, 13, 160. [Google Scholar] [CrossRef]
- Mendoza-Grimón, V.; Hernández-Moreno, J.M.; Palacios-Díaz, M.D.P. Improving Water Use in Fodder Production. Water 2015, 7, 2612–2621. [Google Scholar] [CrossRef] [Green Version]
- Farneselli, M.; Benincasa, P.; Tosti, G.; Simonne, E.; Guiducci, M.; Tei, F. High fertigation frequency improves nitrogen uptake and crop performance in processing tomato grown with high nitrogen and water supply. Agric. Water Manag. 2015, 154, 52–58. [Google Scholar] [CrossRef]
- Ramos, T.B.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C.; Prazeres, A.; Pereira, L.S. Two-dimensional modeling of water and nitrogen fate from sweet sorghum irrigated with fresh and blended saline waters. Agric. Water Manag. 2012, 111, 87–104. [Google Scholar] [CrossRef]
- Marinov, I.; Marinov, A.M. A coupled mathematical model to predict the influence of nitrogen fertilization on crop, soil and groundwater quality. Water Resour. Manag. 2014, 28, 5231–5246. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Ladha, J.K. Nitrate pollution in groundwater and strategies to reduce pollution. Water Sci. Technol. 2002, 45, 29–35. [Google Scholar] [CrossRef]
- Azad, N.; Behmanesh, J.; Rezaverdinejad, V.; Abbasi, F.; Navabian, M. Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agric. Water Manag. 2018, 208, 344–356. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). AQUASTAT Climate Information Tool. Available online: https://aquastat.fao.org/climate-information-tool/climate-data?lat=15.145455259654996&lon=-23.540149773372228 (accessed on 26 September 2022).
- Mendoza-Grimón, V.; Amorós, R.; Fernández-Vera, J.R.; Hernádez-Moreno, J.M.; Palacios-Díaz, M.D.P. Effect of Different Water Quality on the Nutritive Value and Chemical Composition of Sorghum bicolor Payenne in Cape Verde. Agronomy 2021, 11, 1091. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; FAO Irrigation and Drainage Paper 46; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992; ISBN 29251031061. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/es/ (accessed on 10 March 2021).
- ANAS. Estação de Tratamento de Águas Residuais “ETAR” Cabo Verde. In Estudo e Caracterização; Departamento de Gestão de Recursos Hídricos e Saneamento “DGRHS”. Agência Nacional de Água e Saneamento “ANAS”; 2016. Available online: www.http://anas.gov.cv (accessed on 10 March 2021).
- Soil Survey Staff. Keys to Soil Taxonomy, 8th ed; USDA, NRCS, Lincoln: Lincoln, NE, USA, 1998. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Yangbo, H.; Thomas, D.; David, H.; Xinhua, J.; Wysocki Douglas, A. Predicting ECe of the saturated paste extract from value of EC1:5. Can. J. Soil Sci. 2013, 93, 585–594. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part2. Chemical and Microbiological Properties, Agronomy Monograph 9.2; Miller, R.H., Keeney, E.R., Eds.; America Society Agronomy, Inc.: Madison, WI, USA; Soil Science of America, Inc.: Madison, WI, USA, 1982; pp. 1035–1049. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage, Paper 29; Food and Agriculture Organization: Rome, Italy, 1985.
- Nable, R.O.; Banuelos, G.S.; Paull, J.G. Boron toxicity. Plant Soil 1997, 193, 181–198. [Google Scholar] [CrossRef]
- Allison, L.E.; Bernstein, L.; Bower, C.A.; Brown, J.W.; Fireman, M.; Hatcher, J.T.; Hayward, H.E.; Pearson, G.A.; Reeve, R.C.; Richards, L.A.; et al. Chapter 2. Determination of the Properties of Saline and Alkali Soils. In Diagnosis and Improvement of Saline and Alcali Soils US Agriculture Handbook No. 60; Richards, L.A., Ed.; Soil and Water Conservation Research Branch, Agricultural Research Service: Washington, DC, USA, 1954; pp. 7–33. Available online: https://www.ars.usda.gov/ARSUserFiles/20360500/hb60_pdf/hb60complete.pdf (accessed on 26 September 2022).
- Palacios-Díaz, M.P.; Mendoza-Grimón, V.; Fernández-Vera, J.R.; Rodríguez-Rodríguez, F.; Tejedor-Junco, M.T.; Hernández-Moreno, J.M. Subsurface drip irrigation and reclaimed water quality effects on phosphorus and salinity distribution and forage production. Agric. Water Manag. 2009, 96, 1659–1666. [Google Scholar] [CrossRef]
- Freddie, R.; Lamm, F.R.; Carl, R.; Camp, C.R. Subsurface Drip Irrigation; Lamm, F.R., Ayars, J.E., Nakayama, F.S., Eds.; Developments in Agricultural Engineering; Elsevier: Amsterdam, The Netherlands, 2007; Volume 13, pp. 473–551. [Google Scholar] [CrossRef]
- Maas, E.V.; Grattan, S.R. Crop Yields as Affected by Salinity. In Agricultural Drainage; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy: Madison, WI, USA, 1999; pp. 55–109. [Google Scholar]
- Rhoades, J.; Loveday, J. Salinity in Irrigated Agriculture. In American Society of Civil Engineers; Stewart, B.A., Nielsen, D.R., Eds.; Irrigation of Agricultural Crops; Monograph, American Society of Agronomists: Madison, WI, USA, 1990; Volume 30, pp. 1089–1142. [Google Scholar]
- Shalhevet, J. Using water of marginal quality for crop production: Major issues. Agric. Water Manag. 1994, 25, 233–269. [Google Scholar] [CrossRef]
- Bolt, G.H.; Bruggenwert, M.G.M. Soil Chemistry. A Basic Elements; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1978. [Google Scholar]
- Murley, C.B.; Sharma, S.; Warren, J.G.; Arnall, B.B.; Raun, W.R. Yield response of corn and grain sorghum to row offsets on subsurface drip laterals. Agric. Water Manag. 2018, 208, 357–362. [Google Scholar] [CrossRef]
- Scordia, D.; Cosentino, S.L.; Mantineo, M.; Testa, G.; Patanè, C. Nitrogen Balance in a Sweet Sorghum Crop in a Mediterranean Environment. Agronomy 2021, 11, 1292. [Google Scholar] [CrossRef]
- Mygdakos, E.; Papanikolaou, C.; Sakellariou-Makrantonaki, M. Sorghum economics under different irrigation methods and water doses. New Medit J. Econ. Agric. Environ. 2009, 8, 47–54. [Google Scholar]
- Camp, R.C. Subsurface drip irrigation: A review. Trans. ASAE 1998, 41, 1353–1367. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop Salt Tolerance-Current Assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar] [CrossRef]
- Dourado, P.R.M.; de Souza, E.R.; Santos, M.A.D.; Lins, C.M.T.; Monteiro, D.R.; Paulino, M.K.S.S.; Schaffer, B. Stomatal Regulation and Osmotic Adjustment in Sorghum in Response to Salinity. Agriculture 2022, 12, 658. [Google Scholar] [CrossRef]
- Kijne, J.W.; Prathapar, S.A.; Wopereis, M.C.S.; Sahrawat, K.L. How to Manage Salinity in Irrigated Lands: A Selective Review with Particular Reference to Irrigation in Developing Countries; SWIM Paper 2; International Irrigation Management Institute: Colombo, Sri Lanka, 1998. [Google Scholar]
- Rakgotho, T.; Ndou, N.; Mulaudzi, T.; Iwuoha, E.C.; Mayedwa, N.; Ajayi, R.F. Green synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture 2022, 12, 597. [Google Scholar] [CrossRef]
- Karandish, F.; Šimůnek, J. Two-dimensional modeling of nitrogen and water dynamics for various N-managed water-saving irrigation strategies using HYDRUS. Agric. Water Manag. 2017, 193, 174–190. [Google Scholar] [CrossRef] [Green Version]
- Shahrivar, A.A.; Rahman, M.M.; Hagare, D.; Maheshwari, B. Variation in kikuyu grass yield in response to irrigation with secondary and advanced treated wastewaters. Agric. Water Manag. 2019, 222, 375–385. [Google Scholar] [CrossRef]
- Palacios, M.P.; Haman, D.; Del-Nero, E.; Pardo, A.; Pavón, N. Banana production irrigated with treated effluent in Canary Islands. Trans. ASAE 2000, 43, 309–314. [Google Scholar] [CrossRef]
- Palacios-Díaz, M.P.; Mendoza-Grimón, V.; Fernández-Vera, J.R.; Hernández-Moreno, J.M. Effects of defoliation and nitrogen uptake on forage nutritive values of Pennisetum sp. J. Anim. Plant Sci. 2013, 23, 566–574. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Bhattarai, B.; Singh, S.; West, C.P.; Ritchie, G.L.; Trostle, C.L. Water Depletion Pattern and Water Use Efficiency of Forage Sorghum, Pearl millet, and Corn Under Water Limiting Condition. Agric. Water Manag. 2020, 238, 1062062. [Google Scholar] [CrossRef]
- Bazaluk, O.; Havrysh, V.; Fedorchuk, M.; Nitsenko, V. Energy assessment of sorghum cultivation in southern Ukraine. Agriculture 2021, 11, 695. [Google Scholar] [CrossRef]
Harvest No. | Harvest Date | Days to Harvest | ETo Period mm | Irr Water m3·ha−1∙harvest−1 |
---|---|---|---|---|
1 | 8 July 2019 | 90 | 392 | 3204 |
2 | 29 August 2019 | 53 | 225 | 2167 |
3 | 17 December 2019 | 110 | 421 | 4201 |
4 | 3 February 2020 | 48 | 159 | 1472 |
5 | 25 March 2020 | 51 | 201 | 1503 |
6 | 20 May 2020 | 56 | 249 | 2240 |
7 | 9 July 2020 | 50 | 225 | 2341 |
8 | 2 September 2020 | 55 | 234 | 2096 |
9 | 6 November 2020 | 64 | 254 | 2034 |
pH | EC | COD | BOD5 | NO3− | Cl− | Na | Ca | Mg | B | TSS | SAR | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS·m−1 | mg·L−1 | (meq·L−1)1/2 | |||||||||||
RW | mean | 7.4 | 3.09 | 32 | 6.3 | 410 | 427 | 355 | 93.2 | 75.2 | 0.28 | 2.14 | 6.51 |
SD | 0.2 | 0.16 | 1.4 | 0.4 | 127.3 | 17.7 | 49.5 | 2.6 | 5.37 | - | 0.2 | 0.4 |
Well | pH | EC | SAR | Na | K | Ca | Mg | Cl− | NO3− | SO42− | B | Cu | Fe | Zn | Mn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS·m−1 | (meq·L−1)1/2 | mg·L−1 | ||||||||||||||
PT33 | mean | 8.1 | 1.15 | 2.21 | 99 | 9.15 | 55 | 62 | 140 | 45.5 | 39.5 | 0.135 | <0.015 | <0.015 | 0.016 | <0.005 |
SD | 0 | 0.05 | 0.03 | 1 | 0.05 | 1 | 2 | 0 | 1.5 | 2.5 | 0.005 | - | - | - | - | |
FT59 | mean | 7.95 | 1.25 | 12.85 | 65.5 | 7.3 | 96 | 60.5 | 190 | 45 | 46 | 0.07 | <0.015 | <0.015 | <0.010 | <0.005 |
SD | 0.04 | 0.106 | 0.01 | 2.47 | 0.28 | 9.9 | 5.30 | 42.4 | 0.71 | 1.41 | 0 | - | - | - | - |
Date | Treat | pH | EC1:5 | OM | Ntot | C/N | NO3 | P | K | Ca | Mg | Na | B | Cu | Fe | Mn | Zn | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dS·m−1 | % | mg·kg−1 | meq·100 g−1 | mg·kg−1 | ||||||||||||||
Jun 17 | mean | 8.3 12 | 0.76 1 | 1.3 1 | 0.09 1 | 8.2 12 | 737 1 | 56.0 1* | 3.3 1 | 29.1 | 15.6 23 | 6.7 1 | 1.1 1 | 1.2 | 5.4 12 | 2.3 1 | 1.1 1 | |
SD | 0.19 | 0.19 | 0.17 | 0.01 | 0.55 | 169 | 3.46 | 0.35 | 10.04 | 2.56 | 2.95 | 0.34 | 0.15 | 2.00 | 0.31 | 0.24 | ||
Nov 18 | mean | 8.2 1 | 0.9 12 | 1.8 12 | 0.12 12 | 8.5 12 | 648 1 | 65.0 12 * | 3.6 1 | 26.5 | 14.1 123 | 5.7 1 | 1.4 12 | 1.2 | 5.4 12 | 4.4 12 | 1.1 1 | |
SD | 0.12 | 0.39 | 0.50 | 0.03 | 0.68 | 300 | 9.85 | 0.85 | 9.92 | 2.29 | 1.39 | 0.17 | 0.18 | 1.07 | 0.53 | 0.24 | ||
Apr 19 | 1 | mean | 8.0 | 1.6 | 2.5 | 0.2 | 9.2 | 984 | 87.0 | 5.9 | 19.6 | 15.1 2 | 6.9 | 1.6 | 1.5 | 4.7 | 11.1 | 1.8 |
SD | 0.14 | 0.92 | 0.55 | 0.03 | 0.78 | 474 | 3.46 | 1.37 | 1.75 | 1.32 | 2.07 | 0.15 | 0.74 | 0.10 | 0.65 | 0.41 | ||
2 | mean | 8.0 | 2.2 | 2.5 | 0.2 | 8.7 | 1124 | 82.7 | 6.0 1 | 18.3 | 13.7 2 | 8.1 | 1.4 | 1.4 | 4.4 | 11.9 | 1.9 | |
SD | 0.12 | 0.70 | 0.53 | 0.01 | 1.61 | 437 | 16.77 | 0.26 | 0.72 | 1.99 | 0.95 | 0.15 | 0.00 | 0.21 | 1.72 | 0.13 | ||
3 | mean | 8.01 | 1.6 | 3.2 | 0.21 | 10.02 | 843 | 108.0 | 6.91 | 25.2 | 12.92 | 6.11 | 1.71 | 1.4 | 4.41 | 15.73 | 2.0 | |
SD | 0.12 | 0.07 | 0.82 | 0.03 | 1.00 | 11.8 | 40.73 | 1.42 | 12.24 | 2.40 | 1.39 | 0.25 | 0.15 | 0.06 | 4.58 | 0.37 | ||
tot | mean | 8.0 1 | 1.8 2 | 2.7 23 | 0.2 2 | 9.3 2 | 984 12 | 92.6 12 * | 6.32 | 21.0 | 13.9 12 | 7.0 1 | 1.5 2 | 1.4 | 4.5 1 | 12.9 3 | 1.9 12 | |
SD | 0.11 | 0.66 | 0.66 | 0.02 | 1.18 | 345 | 25.02 | 1.09 | 6.95 | 1.96 | 1.59 | 0.18 | 0.10 | 0.29 | 3.25 | 0.29 | ||
Jul 19 | 1 | mean | 8.01 | 7.13 b | 3.52 | 0.32 | 6.31 | 5175 | 80.5 | 8.82 | 21.3 | 16.03 | 12.92 | 2.12 | 1.7 | 5.02 | 7.52 | 2.7 |
SD | 0.05 | 0.23 | 0.35 | 0.03 | 0.07 | 219 | 7.78 | 0.57 | 1.48 | 0.07 | 2.76 | 0.14 | 0.28 | 0.85 | 2.40 | 0.11 | ||
2 | mean | 8.01 | 3.93 a | 4.22 | 0.32 | 8.01 | 2750 | 98.0 | 8.52 | 29.8 | 17.43 | 12.32 | 1.92 | 1.7 | 5.82 | 9.72 | 2.4 | |
SD | 0.08 | 0.44 | 1.27 | 0.06 | 1.06 | 339 | 52.33 | 3.39 | 16.05 | 1.98 | 0.64 | 0.14 | 0.21 | 0.85 | 3.89 | 0.61 | ||
3 | mean | 8.0 | 3.73 a | 3.22 | 0.22 | 7.71 | 2215 | 90.5 | 8.82 | 20.6 | 18.3 | 10.32 | 1.82 | 1.6 | 5.32 | 9.22 | 1.9 | |
SD | 0.23 | 0.59 | 0.21 | 0.03 | 0.35 | 1266 | 26.16 | 0.49 | 2.33 | 1.41 | 0.92 | 0.00 | 0.07 | 0.57 | 2.05 | 0.30 | ||
tot | mean | 8.0 1 | 4.9 3 | 3.6 3 | 0.3 3 | 7.3 1 | 3380 2 | 89.7 12 * | 8.72 | 23.9 | 17.2 3 | 11.82 | 1.9 3 | 1.6 | 5.4 12 | 8.8 2 | 2.3 2 | |
SD | 0.13 | 1.75 | 0.74 | 0.05 | 0.97 | 1531 | 27.54 | 1.56 | 8.59 | 1.47 | 1.83 | 0.16 | 0.18 | 0.69 | 2.46 | 0.47 | ||
Dec 20 | 1 | mean | 8.62 | 1.3 | 2.91 | 0.21 | 8.72 | 1158 | 151.7 | 7.31 | 20.0 | 11.41 | 8.21 | 2.12 b | 1.2 | 5.52 | 3.31 | 2.0 |
SD | 0.47 | 0.45 | 0.87 | 0.05 | 0.95 | 608 | 33.55 | 0.87 | 2.66 | 2.28 | 0.74 | 0.23 | 0.12 | 0.96 | 0.71 | 0.46 | ||
2 | mean | 8.62 | 1.11 | 3.01 | 0.21 | 9.32 | 896 | 137.7 | 6.21 | 20.4 | 11.91 | 6.91 | 1.92 b | 1.7 | 6.12 | 3.61 | 2.4 | |
SD | 0.25 | 0.57 | 0.73 | 0.03 | 0.67 | 561 | 76.06 | 1.60 | 0.36 | 0.81 | 2.03 | 0.06 | 0.81 | 0.51 | 0.8 | 0.65 | ||
3 | mean | 8.92 | 0.51 | 2.11 | 0.11 | 10.02 | 152 | 72.7 | 5.71 | 20.3 | 11.81 | 7.71 | 1.42 a | 1.1 | 5.72 | 3.21 | 1.6 | |
SD | 0.12 | 0.04 | 0.20 | 0.01 | 0.49 | 130 | 19.35 | 0.56 | 2.15 | 0.67 | 1.10 | 0.21 | 0.10 | 0.98 | 0.36 | 0.35 | ||
tot | mean | 8.7 2 | 1.0 1 | 2.7 23 | 0.2 2 | 9.3 2 | 736 1 | 120.7 2* | 6.4 2 | 20.2 | 11.7 1 | 7.6 1 | 1.8 23 | 1.3 | 5.8 2 | 3.4 1 | 2.0 2 | |
SD | 0.33 | 0.52 | 0.73 | 0.04 | 0.84 | 615 | 56.16 | 1.18 | 1.73 | 1.27 | 1.34 | 0.33 | 0.50 | 0.79 | 0.59 | 0.55 |
Jun 17 | Nov 18 | Apr 2019 | Jul 19 | Dec 2020 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Treat | - | - | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
SAR | 1.42 | 1.27 | 1.66 | 2.03 | 1.40 | 2.99 | 2.53 | 2.34 | 2.07 | 1.72 | 1.92 |
Yield, Fresh Matter (kg·ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|
RW SDI | RW DI | CW SDI | Mean | |||||
Date | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
07.08.2019 | 43,567 b | 4715 | 17,431 a | 3514 | 28,749 ab | 3514 | 29,916 1 | 3914 |
08.29.2019 | 41,667 | 7455 | 22,523 | 3334 | 37,778 | 3514 | 33,989 1 | 4768 |
12.17.2019 | 19,556 a | 6087 | 29,630 ab | 3514 | 34,111 b | 3728 | 27,766 1 | 4443 |
02.03.2020 | 27,556 | 6087 | 17,976 | 3728 | 22,762 | 4304 | 22,765 1 | 4706 |
03.25.2020 | 33,482 b | 3514 | 21,593 a | 3514 | 22,815 ab | 3514 | 25,963 1 | 3514 |
05.20.2020 | 32,843 | 6087 | 19,259 | 6087 | 30,889 | 6087 | 27,664 1 | 6087 |
07.09.2020 | 31,408 ab | 6087 | 22,222 a | 6087 | 32,593 ab | 6087 | 28,741 1 | 6087 |
09.03.2020 | 47,333 | 3728 | 37,630 | 3514 | 48,296 | 3514 | 44,420 2 | 3585 |
11.06.2020 | 52,593 | 3514 | 47,481 | 3514 | 59,630 | 3514 | 53,235 2 | 3514 |
Mean | 36,667 b | 1807 | 26,194 a | 1409 | 35,291 b | 1441 | 32,717 | 1552 |
Yield, Dry Matter (kg/ha) | ||||||||
---|---|---|---|---|---|---|---|---|
RW SDI | RW DI | CW SDI | Mean | |||||
Date | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
07.08.2019 | 20,796 b | 2283 | 9302 a | 1701 | 12,742 ab | 1701 | 14,280 3,4 | 1895 |
08.29.2019 | 17,320 | 3609 | 9505 | 1614 | 10,837 | 1701 | 12,554 2,3,4 | 2308 |
12.17.2019 | 10,691 a | 2947 | 18,088 b | 1701 | 22,462 b | 1805 | 17,080 5,6 | 2151 |
02.03.2020 | 8275 | 2947 | 5288 | 1805 | 6347 | 2084 | 6637 1 | 2279 |
03.25.2020 | 18,799 | 1701 | 13,342 | 1701 | 13,730 | 1701 | 15,290 1,2 | 1701 |
05.20.2020 | 20,937 | 2947 | 11,825 | 2947 | 15,092 | 2947 | 15,951 1,2,3 | 2947 |
07.09.2020 | 14,992 b | 2947 | 10,608 a | 2947 | 15,558 b | 2947 | 13,719 1,2,3 | 2947 |
09.03.2020 | 19,438 b | 1805 | 13,012 a | 1701 | 18,275 b | 1701 | 16,908 4,5 | 1736 |
11.06.2020 | 24,419 | 1701 | 21,466 | 1701 | 22,832 | 1701 | 22,906 6 | 1701 |
Mean | 17,296 b | 875 | 12,493 a | 682 | 15,320 b | 698 | 15,036 | 752 |
SDI RW | DI RW | SDI CW | Mean | |||||
---|---|---|---|---|---|---|---|---|
L·kg−1 DM | ||||||||
Date | Mean | SD | Mean | SD | Mean | SD | Mean | SD |
07.08.2019 | 232 | 51 | 429 | 38 | 315 | 38 | 325 3 | 25 |
08.29.2019 | 132 | 80 | 245 | 36 | 215 | 38 | 197 2,3 | 32 |
12.17.2019 | 366 | 66 | 238 | 38 | 201 | 40 | 268 2,3 | 29 |
02.03.2020 | 178 | 66 | 304 | 40 | 262 | 46 | 248 3 | 30 |
03.25.2020 | 171 | 38 | 247 | 38 | 318 | 38 | 245 2,3 | 22 |
05.20.2020 | 175 | 66 | 423 | 66 | 224 | 66 | 274 3 | 38 |
07.09.2020 | 185 | 66 | 306 | 66 | 193 | 66 | 228 2,3 | 38 |
09.03.2020 | 111 | 40 | 164 | 38 | 120 | 38 | 132 1,2 | 22 |
11.06.2020 | 85 | 38 | 116 | 38 | 92 | 38 | 97 1 | 22 |
Mean | 182 a | 19 | 275 b | 15 | 215 b | 16 | 224 | 17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palacios-Diaz, M.d.P.; Fernández-Vera, J.R.; Hernández-Moreno, J.M.; Amorós, R.; Mendoza-Grimón, V. Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde. Agriculture 2023, 13, 192. https://doi.org/10.3390/agriculture13010192
Palacios-Diaz MdP, Fernández-Vera JR, Hernández-Moreno JM, Amorós R, Mendoza-Grimón V. Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde. Agriculture. 2023; 13(1):192. https://doi.org/10.3390/agriculture13010192
Chicago/Turabian StylePalacios-Diaz, María del Pino, Juan Ramón Fernández-Vera, Jose Manuel Hernández-Moreno, Regla Amorós, and Vanessa Mendoza-Grimón. 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde" Agriculture 13, no. 1: 192. https://doi.org/10.3390/agriculture13010192
APA StylePalacios-Diaz, M. d. P., Fernández-Vera, J. R., Hernández-Moreno, J. M., Amorós, R., & Mendoza-Grimón, V. (2023). Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde. Agriculture, 13(1), 192. https://doi.org/10.3390/agriculture13010192