The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental
- Control head: is located at the source of the water supply. It consists of the centrifugal pump (30 HP), n ≈ 1450 rpm and discharge 50 m3/h and 55 m lift with efficiency 75:80%), sand filter 48″ diameter, backflow prevention device, pressure regulator, control valve, pressure gauges, flow meter, and chemical injection equipment.
- Mainline: it was (110/90 mm in diameter), made of (P.V.C).
- Sub-main line: it was (75 mm diameter, P.V.C) used to carry the water from the main line to the manifold through a control unit.
- Laterals: it was (16mm diameter, P.E.) and the emitters were built-in (GR) with an average discharge 3.8 L/h at 1.0 bar operating pressure and 0.3 m emitter spacing. Laterals spacing were 0.80 m. Nominal operating pressure and 0.3 m spacing in-between, manufacturer’s R2 = 0.9867 and discharge equation as follows:
- Sprinkler: it was a 63 mm diameter line connected to the sub-main lines to feed the group of risers. The sprinkler rise was 1-inch diameter and 1 m height derived from the manifold lines and ended of the sprinkler. The average discharge of sprinkler head was about 3.5 m3/h.
2.2. Metrological Data of Experimental Farm Area
- Note: ETo reference evapotranspiration (mm day−1),
- Rn net radiation at the crop surface (MJ m−2 day−1),
- G soil heat flux density (MJ m−2 day−1),
- T mean daily air temperature at 2 m height (°C),
- u2 wind speed at 2 m height (m s−1),
- es saturation vapor pressure (kPa),
- ea actual vapor pressure (kPa),
- es − ea saturation vapor pressure deficit (kPa),
- ∆ slope vapor pressure curve (kPa °C−1),
- γ psychrometric constant (kPa °C−1).
2.3. Fruit Quality
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ishfaq, M. Water New Technology; Global Water Institute: Lahore, Pakistan, 2002; Volume 6. [Google Scholar]
- Molden, D.J. A Comprehensive Assessment of Water Management in Agriculture; International Water Management Institute: Colombo, Sri Lanka, 2007; Available online: http://www.earthscan.co.uk (accessed on 3 March 2008).
- Ramazan, T.; Acar, B.; Uyanoz, R.; Ceyhan, E. Economical analysis of different drip irrigated Date palmproduction. Int. J. Agric. Econ. Dev. 2014, 2, 16–27. [Google Scholar]
- Mansour, H.A.; Pibars, S.K.; Gaballah, M.S.; Mohammed, K.A. Effect of Different Nitrogen Fertilizer Levels, and Wheat Cultivars on Yield and its Components under Sprinkler Irrigation System Management in Sandy Soil. Int. J. ChemTech Res. 2016, 9, 1–9. [Google Scholar]
- Zhang, X.; Pei, D.; Li, Z.; Li, J.; Wang, Y. Management of supplemental irrigation of winter wheat for maximum profit. In Deficit Irrigation Practice; Water Report No. 22; FAO: Rome, Italy, 2002. [Google Scholar]
- FAOSTAT. Crop Water Information Paper. 2016. Available online: http://www.fao.org/faostat/ar/#data/Qc (accessed on 17 September 2018).
- Zhu, J.K. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tarkalson, D.D.; Bradley, A.K.; Bjorneberg, D.L. Yield production functions of irrigated Date palmin an arid climate. Agric. Water Manag. 2018, 200, 1–9. [Google Scholar] [CrossRef]
- Abayomi, Y.A.; Wright, D. Date palmleaf growth and Yield response to soil water deficit. Afr. Crop Sci. J. 2002, 10, 51–66. [Google Scholar] [CrossRef]
- Shaw, B.; Thomas, T.H.; Cooke, D.T. Responses of Date palm (Beta vulgaris L.) to drought and nutrient deficiency stress. Plant Growth Regul. 2002, 37, 77–83. [Google Scholar] [CrossRef]
- Eldardiry, E.E.; Hellal, F.; Mansour, H.A.A. Performance of Sprinkler Irrigated Wheat—Part II. In Closed Circuit Trickle Irrigation Design: Theory and Applications; Apple Academic Press: Waretown, NJ, USA; Taylor and Frances: Abingdon, UK, 2015; p. 41. [Google Scholar]
- Abd-Elmabod, S.K.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De la Rosa, D.; Jones, L. Assessment of Soil Suitability for Improvement of Soil Factors and Agricultural Management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- Goyal, M.R.; Mansour, H.A.A. Closed Circuit Trickle Irrigation Design: Theory and Applications; Apple Academic Press: Waretown, NJ, USA; Taylor and Frances: Abingdon, UK, 2015. [Google Scholar]
- El-Hagarey, M.E.; Mehanna, H.M.; Mansour, H.A. Soil moisture and salinity distributions under modified sprinkler irrigation. In Closed Circuit Trickle Irrigation Design: Theory and Applications; Apple Academic Press: Waretown, NJ, USA; Taylor and Frances: Abingdon, UK, 2015; pp. 3–21. [Google Scholar]
- Mansour, H.A.; Abdel-Hady, M.; Eldardiry, E.I.; Bralts, V.F. Performance of automatic control different localized irrigation systems and lateral lengths for emitters clogging and maize (Zea mays L.) growth and yield. Int. J. GEOMATE 2015, 9, 1545–1552. [Google Scholar] [CrossRef]
- Mansour, H.A.; Abdallah, E.F.; Gaballah, M.S.; Gyuricza, C. Impact of Bubbler Discharge and Irrigation Water Quantity on 1-Hydraulic Performance Evaluation and Maize Biomass Yield. Int. J. GEOMATE 2015, 9, 1538–1544. [Google Scholar] [CrossRef]
- Mansour, H.A.; Abd-Elmabod, S.K.; Engel, B.A. Adaptation of modeling to the irrigation system and water management for corn growth and yield. Plant Arch. 2019, 19 (Suppl. S1), 644–651. [Google Scholar]
- Mansour, H.A.; Hu, J.; Ren, H.; Kheiry, A.N.; Abd-Elmabod, S.K. Influence of using automatic irrigation system and organic fertilizer treatments on faba bean water productivity. Int. J. GEOMATE 2019, 17, 256–265. [Google Scholar] [CrossRef]
- Mansour, H.A.; El-Hady, M.A.; Bralts, V.F.; Engel, B.A. Performance Automation Controller of Drip Irrigation System and Saline Water for Wheat Yield and Water Productivity in Egypt. J. Irrig. Drain. Eng. 2016, 142, 05016005. [Google Scholar] [CrossRef]
- Attia, S.S.; El-Gindy, A.-G.M.; Mansour, H.A.; Kalil, S.E.; Arafa, Y.E. Performance analysis of pressurized irrigation systems using simulation model technique. Plant Arch. 2019, 19 (Suppl. S1), 721–731. [Google Scholar]
- Ibrahim, A.; Csúr-Varga, A.; Jolánkai, M.; Mansour, H.; Hamed, A. Monitoring some quality attributes of different wheat varieties by infrared technology. Agric. Eng. Int. CIGR J. 2018, 20, 201–210. [Google Scholar]
- Walter, H.; Gardener, H. Water content. In Methods of Soil Analysis. Part 1 Agron, 2nd ed.; ASA; SSSA: Madison, WI, USA, 1986; pp. 493–544. [Google Scholar]
- Amirjani, M.R. Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. Am. J. Plant Physiol. 2010, 5, 350–360. [Google Scholar] [CrossRef]
- Arrigoni, O.; De Tullio, M.C. The role of ascorbic acid in cell metabolism: Between gene-directed functions and unpredictable chemical reactions. J. Plant Physiol. 2000, 157, 481–488. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Athar, H.R.; Khan, A.; Ashraf, M. Inducing salt tolerance in date palm by exogenously applied ascorbic Acid through Different Modes. J. Plant Nutr. 2009, 32, 1799–1817. [Google Scholar] [CrossRef]
- Cicek, N.; Cakirlar, H. The effect of salinity on some physiological parameters in two maize cultivars. Bulg. J. Plant Physiol. 2002, 28, 66–74. [Google Scholar]
- Dandan, L.; Shi, Y. Effects of Magnetized Saline on Growth and Development of date palm Seedlings. Adv. J. Food Sci. Technol. 2013, 5, 1569–1599. [Google Scholar]
- El-Nabrawy, M.C. Studies on native hormones activity in water stressed sorghum. J. Agric. Sci. Mansoura Unic. 1994, 19, 1669–1682. [Google Scholar]
- Essa, T.A. Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. J. Agron. Crop Sci. 2002, 188, 86–93. [Google Scholar] [CrossRef]
- FAOSTAT. Database Results of Food and Agricultural Organization of United Nations. 2002. Available online: http://fao.org (accessed on 15 March 2003).
- Go’mez-Campo, C.; Prakash, S. Origin and domestication. In Biology of Brassica Coenospecies; Gmez-Campo, C., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; pp. 33–58. [Google Scholar]
- Hakimi, A.M.A. Alleviation of the adverse effects of NaCl on gas exchange and growth of date palm plants by ascorbic acid, thiamin and sodium salicylate. Pak. J. Biol. Sci. 2001, 4, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Hema-Vaidyanathan, P.; Pattathil-Sivakumar, S.; Romit-Chakrabarty, C.; Thomas, G.; Vaidyanathan, H.; Sivakumar, P.; Tester, M.; Deveport, R. Na tolerance and Na transport in higher plants. Ann. Bot 2003, 91, 305–327. [Google Scholar]
- Soil Survey Staff, Soil Survey. ManPl. USDA Handbook No: 18; USDA: Washington, DC, USA, 1993. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle size analyses. In Methods of Soil Analysis. Part 1 Agron, 2nd ed.; ASA; SSSA: Madison, WI, USA, 1986; pp. 383–412. [Google Scholar]
- Klute, A. Methods of Soil Analysis (Part 1), 2nd ed.; American Society of Agronomy, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1986. [Google Scholar]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity. Laboratory methods. In Methods of Soil Analysis. Part 1. Agronomy, 2nd ed.; ASA; SSSA: Madison, WI, USA, 1986; pp. 687–734. [Google Scholar]
- Hirt, H.; Shinozaki, K. Plant responses to abiotic stress. Plant Physiol. 2004, 93, 1070–1076. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1967. [Google Scholar]
- Kao, W.Y.; Sai, T.T.; Tsai, H.C.; Shih, C.N. Response of three Glycine species to salt stress. Environ. Exp. Bot 2006, 56, 120–125. [Google Scholar] [CrossRef]
- Katerji, N.J.W.; Van Hoom, A.H.; Mastrorilli, M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manag. 2000, 43, 99–109. [Google Scholar] [CrossRef]
- Khadr, I.; Nyireda, F.; Shananhan, F.; Nielsen, C.; Anderia, R. Ethephon alters corn growth under drought stress. Agron. J. 1994, 86, 283–288. [Google Scholar]
- Mahmoud, H.; Amira, M.S.A.Q. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.). Agric. Biol. J. North Am. 2010, 14, 671–676. [Google Scholar]
- Ramoliya, P.J.; Patel, H.M.; Pandey, A.N. Effect of salinization of soil on growth and macro- and micro-nutrient accumulation in seedlings of Salvadora persica (Salvadoraceae). For. Ecol. Manag. 2002, 202, 181–193. [Google Scholar] [CrossRef]
- Rebecca, B. Soil Survey Laboratory Methods Manual. (Soil Survey Laboratory Investigations Report No. 42); Soil Survey Laboratory: Lincoln, NE, USA, 2004. [Google Scholar]
- Saied, A.S.; Keutgen, A.J.; Noga, G. The influence of NACI salinity on growth, yield and fruit quality of strawberry cvs, Elsanta and Korena. Sci. Hortic. 2005, 103, 289–303. [Google Scholar] [CrossRef]
- Sakr, M.T.; El-metwally, M.A. Alleviation of the harmful effects of soil salt stress on growth, wield and endogenous antioxidant content of date palm plant by application of antioxidants. Pak. J. Biol. Sci. 2009, 12, 624–630. [Google Scholar] [CrossRef]
- Sobhanian, H.; Razavizadeh, R.; Nanjo, Y.; Ensanpour, A.A.; Jazii, F.R.; Motamed, F.R.; Komatsu, N.S. Proteome analysis of soybean leaves, hypocotuls and roots under salt stress. Proteome Sci. 2010, 8, 19–33. [Google Scholar] [CrossRef] [Green Version]
- Zang, J. Grain filling of cerials under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar]
- Zhang, S.; Weng, J.; Pan, J.; Tu, T.; Yao, S.; Xu, C. Study on the photogeneration of superoxide radicals in photosystem II with EPR spin trapping techniques. Photosynth. Res. 2003, 75, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Al-Khayri, J.M.; Mahdy, E.M.B.; Taha, H.S.A.; Ghazzawy, H.S.; Jain, S.M.; Hassanin, A.A. Genetic and Morphological Diversity Assessment of Five Kalanchoe Genotypes by SCoT, ISSR and RAPD-PCR Markers. Plants 2022, 11, 1722. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.A.; Lo’ay, A.A.; Gouda, M.; Ghazzawy, H.S.; Abdein, M.A.; Hikal, D.M. Impacts of Gum Arabic and Polyvinylpyrrolidone (PVP) with Salicylic Acid on Peach Fruit (Prunus persica) Shelf Life. Molecules 2022, 27, 2595. [Google Scholar] [CrossRef]
- Munir, M.; Al-Hajhoj, M.R.; Ghazzawy, H.S.; Al-Bahigan, A.M.; Al-Muiweed, M.A. A comparative study of pollination methods effect on the changes in fruit yield and quality of date palm cultivar Khalas. Asian J. Agric. Biol. 2020, 8, 147–157. [Google Scholar] [CrossRef]
- Munir, M.; Alhajhoj, M.R.; Mohammed, M.E.; Ghazzawy, H.S.; Zeineldin, F.I.; Al-Bahigan, A.M. Effects of Date Palm Biochar on Growth, Yield and Photosynthetic Capacity of Cucumber (Cucumis sativus L.) Under Glasshouse Conditions. Pak. J. Life Soc. Sci. 2020, 18, 7–16. [Google Scholar]
- Munir, M.; Alhajhoj, M.R.; Sallam, A.A.M.; Ghazzawy, H.S.; Al-Bahigan, A.M. Effects of indigenous and foreign pollinizers on the yield and fruit characteristics of date palm cultiva khalas. Iraqi J. Agric. Sci. 2020, 51, 356–365. [Google Scholar]
- Ghazzawy, H.S.; Alhajhoj, M.R.; Sallam, A.A.M.; Munir, M. Impact of chemical thinning to improve fruit characteristics of date palm cultivar khalas. Iraqi J. Agric. Sci. 2019, 50, 1361–1368. [Google Scholar]
- El-Sharabasy, S.F.; Ghazzawy, H.S.; Munir, M. In vitro application of silver nanoparticles as explant disinfectant for date palm cultivar Barhee. J. Appl. Hortic. 2017, 19, 106–112. [Google Scholar] [CrossRef]
- Ghazzawy, H.S.; Alhajhoj, M.R.; Munir, M. In vitro somatic embryogenesis response of date palm cv. Sukkary to sucrose and activated charcoal concentrations. J. Appl. Hortic. 2017, 19, 91–95. [Google Scholar] [CrossRef]
- Aldaej, M.I.; Alturki, S.M.; Shehata, W.F.; Ghazzawy, H.S. Effect of potassium nitrate on antioxidants production of date palm (Phoenix dactylifera L.) in vitro. Pak. J. Biol. Sci. 2014, 17, 1209–1218. [Google Scholar] [CrossRef] [Green Version]
- Shehata, W.F.; Aldaej, M.I.; Alturki, S.M.; Ghazzawy, H.S. Effect of ammonium nitrate on antioxidants production of date palm (Phoenix dactylifera L.) in vitro. Biotechnology 2014, 13, 116–125. [Google Scholar] [CrossRef]
pH | EC dS/m | Soluble Cations, meq/L | Soluble Anions, meq/l | SAR | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | CO32− | HCO3− | SO42− | Cl− | |||
7.8 | 0.34 | 0.71 | 0.23 | 2.45 | 0.9 | 0 | 0.94 | 0.31 | 3.04 | 3.57 |
Depth, Cm | Particle Size Distribution, % | Texture Class | θS % on a Weight Basis | HC (cm/h) | BD (g/cm³) | P (cm³ Voids/ cm³ Soil) | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
C. Sand | F. Sand | Silt | Clay | F.C. | P.W.P. | A.W | |||||
0–15 | 8.4 | 75.6 | 8.3 | 5.3 | Sandy | 12.0 | 4.0 | 8 | 6.55 | 1.65 | 0.34 |
15–30 | 8.4 | 75.7 | 8.5 | 5.2 | Sandy | 12.0 | 4.0 | 8 | 6.75 | 1.65 | 0.34 |
30–45 | 8.5 | 75.7 | 8.6 | 5.1 | Sandy | 12.0 | 4.0 | 8 | 6.81 | 1.65 | 0.35 |
45–60 | 8.6 | 76.7 | 8.6 | 5.6 | Sandy | 12.0 | 4.0 | 8 | 6.57 | 1.65 | 0.36 |
Depth | pH | EC | Soluble Cations, meq/L | Soluble Anions, meq/L | ||||||
---|---|---|---|---|---|---|---|---|---|---|
cm | 01:02.5 | dS/m | Ca2+ | Mg2+ | Na+ | K+ | CO32− | HCO3− | SO42− | Cl − |
0–15 | 7.9 | 0.4 | 0.55 | 0.37 | 1.04 | 0.25 | 0 | 0.14 | 0.81 | 1.26 |
15–30 | 7.9 | 0.41 | 0.5 | 0.44 | 1.04 | 0.24 | 0 | 0.15 | 0.84 | 1.23 |
30–45 | 8.1 | 0.41 | 0.54 | 0.41 | 1.05 | 0.22 | 0 | 0.15 | 0.84 | 1.23 |
45–60 | 8.3 | 0.49 | 0.58 | 0.59 | 1.04 | 0.22 | 0.18 | 0.14 | 0.86 | 1.25 |
Water Treatment (ETc) | Irrigation System | Bunch Weight (kg/Tree) | Total Yield (kg/Tree) | Fruit Weight (g/Tree) | Fresh Weight (g/Tree) | Yield Kg/ha | Water Amount (M3) | WP (M3/kg) |
---|---|---|---|---|---|---|---|---|
100 | Drip | 23.85 * | 214.58 * | 20.68 * | 18.75 * | 54.36 * | 559 * | 9.92 * |
Sprinkler | 23.69 * | 213.20 * | 19.24 * | 17.62 ** | 47.39 * | 617 * | 7.68 * | |
80 | Drip | 20.87 * | 173.68 * | 22.76 * | 20.64 ** | 48.00 * | 436 * | 11.02 * |
Sprinkler | 19.17 * | 172.55 * | 21.49 * | 19.92 ** | 34.01 * | 493 * | 6.89 * | |
60 | Drip | 22.68 * | 197.68 * | 23.52 ** | 22.69 ** | 33.57 * | 326 * | 10.28 * |
Sprinkler | 21.86 * | 196.78 * | 23.07 ** | 21.38 ** | 27.54 * | 372 * | 7.44 * | |
LSD 0.01 | 0.11 | 0.18 | 0.46 | 0.14 | 0.02 | 2.05 | 0.35 |
Water Treatment (ETc) | Irrigation System | Seed Weight (g) | Fruit Size (cm3) | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Thickness (cm) |
---|---|---|---|---|---|---|
100 | Drip | 1.78 * | 22.36 * | 5.97 * | 3.52 * | 0.98 * |
Sprinkler | 1.67 * | 21.42 * | 5.29 ** | 3.30 * | 0.94 * | |
80 | Drip | 1.71 * | 20.68 * | 5.68 * | 3.04 * | 0.97 ** |
Sprinkler | 1.62 * | 19.94 * | 5.27 ** | 2.94 * | 0.93 ** | |
60 | Drip | 1.52 * | 18.56 * | 5.48 * | 3.11 * | 0.96 ** |
Sprinkler | 1.46 * | 18.09 * | 5.07 * | 2.84 * | 0.91 * | |
LSD 0.01 | 0.03 | 0.24 | 0.08 | 0.05 | 0.01 |
Water Treatment (ETc) | 100 | 80 | 60 | LSD 0.01 | |||
---|---|---|---|---|---|---|---|
Irrigation Systems | Sprinkler | Drip | Sprinkler | Drip | Sprinkler | Drip | |
%Acidity | 0.30 * | 0.32 * | 0.29 ** | 0.31 * | 0.28 * | 0.29 ** | 0.01 |
%TSS | 39.82 * | 42.05 * | 40.86 * | 41.23 * | 42.61 ** | 42.54 ** | 0.11 |
%Sugar | 25.36 * | 27.43 * | 27.41 * | 28.77 * | 27.72 * | 28.57 * | 0.08 |
% Reducing sugar | 25.86 * | 28.83 ** | 27.21 * | 28.51 * | 27.61 * | 28.97 ** | 0.17 |
% Non reducing sugar | 10.48 * | 10.98 * | 10.12 ** | 10.06 ** | 9.63 * | 10.32 * | 0.07 |
%Total sugar | 36.36 * | 38.12 * | 37.25 * | 37.67 * | 37.12 * | 38.14 * | 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazzawy, H.S.; Sobaih, A.E.E.; Mansour, H.A. The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment. Agriculture 2022, 12, 2018. https://doi.org/10.3390/agriculture12122018
Ghazzawy HS, Sobaih AEE, Mansour HA. The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment. Agriculture. 2022; 12(12):2018. https://doi.org/10.3390/agriculture12122018
Chicago/Turabian StyleGhazzawy, Hesham S., Abu Elnasr E. Sobaih, and Hani A. Mansour. 2022. "The Role of Micro-Irrigation Systems in Date Palm Production and Quality: Implications for Sustainable Investment" Agriculture 12, no. 12: 2018. https://doi.org/10.3390/agriculture12122018