Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Experimental Layout
2.2. Soil Analysis
2.3. Preparation of Moringa Organ Extract (MOE) and Its Application
2.4. Plant Measurements
2.5. Statistical Analysis
3. Results
3.1. Performance of Growth Traits under the Application of MOE
3.2. Contributing Yield Traits’ Performance in the Presence of Moringa Organ Extract
3.3. Relationship among Various Accessions and Traits under Untreated and Treated Conditions
3.4. Percentages of Increasing (Positive Value) and Decreasing (Negative Value) Index of Various Traits among the Barley Accessions Utilized in This Study
3.5. Percentage of Positive and Negative Effects of MOE Application on the Studied Traits, Based on the Responses of 59 Barley Accessions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.T.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The future of farming: Who will produce our food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- Grando, S.; Macpherson, H.G. Food barley: Importance, uses and local knowledge. In Proceedings of the International Workshop on Food Barley Improvement, Hammamet, Tunisia, 14–17 January 2002. [Google Scholar]
- Zheng, B.; Zhong, S.; Tang, Y.; Chen, L. Understanding the nutritional functions of thermally-processed whole grain highland barley in vitro and in vivo. Food Chem. 2020, 310, 125979. [Google Scholar] [CrossRef] [PubMed]
- Cossani, C.M.; Slafer, G.A.; Savin, R. Do barley and wheat (bread and durum) differ in grain weight stability through seasons and water–nitrogen treatments in a Mediterranean location? Field Crops Res. 2011, 121, 240–247. [Google Scholar] [CrossRef]
- Wang, J.; Vanga, S.; Saxena, R.; Orsat, V.; Raghavan, V. Effect of climate change on the yield of cereal crops: A review. Climate 2018, 6, 41. [Google Scholar] [CrossRef]
- Kebede, A.; Kang, M.S.; Bekele, E. Chapter Five—Advances in mechanisms of drought tolerance in crops, with emphasis on barley. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 265–314. ISBN 0065-2113. [Google Scholar]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop production under drought and heat stress: Plant responses and management options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed]
- Alemu, G.; Desalegn, T.; Debele, T.; Adela, A.; Taye, G.; Yirga, C. Effect of lime and phosphorus fertilizer on acid soil properties and barley grain yield at Bedi in Western Ethiopia. AJAR 2017, 12, 3005–3012. [Google Scholar]
- Nardi, S.; Pizzeghello, D.; Schiavon, M.; Ertani, A. Plant biostimulants: Physiological responses induced by protein hydrolyzed-based products and humic substances in plant metabolism. Sci. Agric. 2016, 73, 18–23. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarevi, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef]
- Li, Y.; Fang, F.; Wei, J.; Wu, X.; Cui, R.; Li, G.; Zheng, F.; Tan, D. Humic Acid Fertilizer Improved Soil Properties and Soil Microbial Diversity of Continuous Cropping Peanut: A Three-Year Experiment. Sci. Rep. 2019, 9, 12014. [Google Scholar] [CrossRef]
- Ur Rahman, M. The Multifunctional Role of Chitosan in Horticultural Crops; A Review. Molecules 2018, 23, 872. [Google Scholar]
- Nabti, E.; Jha, B.; Hartmann, A. Impact of seaweeds on agricultural crop production as biofertilizer. Int. J. Environ. Sci. Technol. 2017, 14, 1119–1134. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef]
- Tahir, N.A.; Qader, K.O.; Azeez, H.A.; Rashid, J.S. Inhibitory allelopathic effects of Moringa oleifera Lamk plant extracts on wheat and Sinapis arvensis L. Allelopath. J. 2018, 44, 35–48. [Google Scholar] [CrossRef]
- Tahir, N.A.; Majeed, H.O.; Azeez, H.A.; Omer, D.A.; Faraj, J.M.; Palani, W.R.M. Allelopathic plants: 27. Moringa species. Allelopath. J. 2020, 50, 35–48. [Google Scholar] [CrossRef]
- Nouman, W.; Siddiqui, M.; Basra, S. Moringa oleifera leaf extract: An innovative priming tool for rangeland grasses. Turk. J. Agric. For. 2012, 36, 65–75. [Google Scholar] [CrossRef]
- Yasmeen, A.; Basra, S.M.A.; Farooq, M.; Rehman, H.U.; Hussain, N.; Athar, H.U.R. Exogenous application of moringa leaf extract modulates the antioxidant enzyme system to improve wheat performance under saline conditions. Plant Growth Regul. 2013, 69, 225–233. [Google Scholar] [CrossRef]
- Anwar, F.; Latif, S.; Ashraf, M.; Gilani, A.H. Moringa oleifera: A food plant with multiple medicinal uses. Phytother. Res. 2007, 21, 17–25. [Google Scholar] [CrossRef]
- Brockman, H.G.; Brennan, R.F. The effect of foliar application of Moringa leaf extract on biomass, grain yield of wheat and applied nutrient efficiency. J. Plant Nutr. 2017, 40, 2728–2736. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Nawaz, M.; Hussain, I.; Foidl, N. Combined application of moringa leaf extract and chemical growth-promoters enhances the plant growth and productivity of wheat crop (Triticum aestivum L.). S. Afr. J. Bot. 2020, 129, 74–81. [Google Scholar] [CrossRef]
- Khan, S.; Basra, S.M.A.; Afzal, I.; Nawaz, M.; Rehman, H.U. Growth promoting potential of fresh and stored Moringa oleifera leaf extracts in improving seedling vigor, growth and productivity of wheat crop. Environ. Sci. Pollut. Res. 2017, 24, 27601–27612. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.M. Effect OF Moringa oleifera leaf extract on growth, metabolites and antioxidant system of barley plants. J. Environ. Stud. Res. 2016, 6, 260–271. [Google Scholar] [CrossRef] [Green Version]
- Lateef, D.; Mustafa, K.; Tahir, N. Screening of Iraqi barley accessions under PEG-induced drought conditions. All Life 2021, 14, 308–332. [Google Scholar] [CrossRef]
- Arif, M.; Kareem, S.H.S.; Ahmad, N.S.; Hussain, N.; Yasmeen, A.; Anwar, A.; Naz, S.; Iqbal, J.; Shah, G.A.; Ansar, M. Exogenously applied bio-stimulant and synthetic fertilizers to improve the growth, yield and fiber quality of cotton. Sustainability 2019, 11, 2171. [Google Scholar] [CrossRef]
- Sesták, Z.; Catský, J.; Jarvis, P.G. Plant Photosynthetic Production. Manual of Methods; Dr. W. Junk NV: The Hague, The Netherlands, 1971. [Google Scholar]
- Abd El-Mageed, T.A.; Semida, W.M.; Rady, M.M. Moringa leaf extract as biostimulant improves water use efficiency, physio-biochemical attributes of squash plants under deficit irrigation. Agric. Water Manag. 2017, 193, 46–54. [Google Scholar] [CrossRef]
- Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. 2015, 193, 105–113. [Google Scholar] [CrossRef]
- Ali, E.F.; Hassan, F.A.S.; Elgimabi, M. Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S. Afr. J. Bot. 2018, 119, 383–389. [Google Scholar] [CrossRef]
- Gao, S.; Chu, C. Gibberellin metabolism and signaling: Targets for improving agronomic performance of crops. Plant Cell Physiol. 2020, 61, 1902–1911. [Google Scholar] [CrossRef]
- Rehman, H.U.; Basra, S.M.A.; Rady, M.M.; Ghoneim, A.M.; Wang, Q. Moringa leaf extract improves wheat growth and productivity by affecting senescence and source-sink relationship. Int. J. Agric. Biol. 2017, 19, 479–484. [Google Scholar] [CrossRef]
- Allel, D.; Ben-Amar, A.; Abdelly, C. Leaf photosynthesis, chlorophyll fluorescence and ion content of barley (Hordeum vulgare) in response to salinity. J. Plant Nutr. 2018, 41, 497–508. [Google Scholar] [CrossRef]
- Huang, B.; Wu, W.; Hong, Z. Genetic interactions of awnness genes in barley. Genes 2021, 12, 606. [Google Scholar] [CrossRef]
- Bahrami, F.; Arzani, A.; Rahimmalek, M. Photosynthetic and yield performance of wild barley (Hordeum vulgare ssp. spontaneum) under terminal heat stress. Photosynthetica 2019, 57, 9–17. [Google Scholar] [CrossRef]
- Xue, D.-w.; Chen, M.-c.; Zhou, M.-x.; Chen, S.; Mao, Y.; Zhang, G.-p. QTL analysis of flag leaf in barley (Hordeum vulgare L.) for morphological traits and chlorophyll content. J. Zhejiang Univ. Sci. B 2008, 9, 938–943. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 5th ed.; Sinauer Associates: Sunderland, MA, USA, 2010. [Google Scholar]
- Chattha, U.M.; Khan, I.; Hassan, M.U.; Chattha, M.B.; Nawaz, M.; Iqbal, A.; Khan, N.H.; Akhtar, N.; Usman, M.; Kharal, M.; et al. Efficacy of extraction methods of Moringa oleifera leaf extract for enhanced growth and yield of wheat. J. Basic Appl. Sci. 2018, 14, 131–135. [Google Scholar] [CrossRef]
- Ali, M.A.; Hussain, M.; Khan, M.I.; Ali, Z.; Zulkiffal, M.; Anwar, J.; Sabir, W.; Zeeshan, M. Source-sink relationship between photosynthetic organs and grain yield attributes during grain filling stage in spring wheat (Triticum aestivum). Int. J. Agric. Biol. 2010, 12, 509–515. [Google Scholar]
- Sid’ko, A.F.; Botvich, I.Y.; Pis’man, T.I.; Shevyrnogov, A.P. Estimation of the chlorophyll content and yield of grain crops via their chlorophyll potential. Biophysics 2017, 62, 456–459. [Google Scholar] [CrossRef]
- Klem, K.; Ač, A.; Holub, P.; Kováč, D.; Špunda, V.; Robson, T.M.; Urban, O. Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environ. Exp. Bot. 2012, 75, 52–64. [Google Scholar] [CrossRef]
- Lausch, A.; Pause, M.; Schmidt, A.; Salbach, C.; Gwillym-Margianto, S.; Merbach, I. Temporal hyperspectral monitoring of chlorophyll, LAI, and water content of barley during a growing season. Can. J. Remote Sens. 2013, 39, 191–207. [Google Scholar] [CrossRef]
- Begović, L.; Pospihalj, T.; Lončarić, P.; Štolfa Čamagajevac, I.; Cesar, V.; Leljak-Levanić, D. Distinct accumulation and remobilization of fructans in barley cultivars contrasting for photosynthetic performance and yield. Theor. Exp. Plant Physiol. 2020, 32, 109–120. [Google Scholar] [CrossRef]
- Donnelly, A.; Yu, R.; Rehberg, C.; Meyer, G.; Young, E.B. Leaf chlorophyll estimates of temperate deciduous shrubs during autumn senescence using a SPAD-502 meter and calibration with extracted chlorophyll. Ann. For. Sci. 2020, 77, 30. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Mamaev, A.V.; Sherudilo, E.G. Evaluation of a SPAD-502 Plus Chlorophyll Meter to estimate chlorophyll content in leaves with interveinal chlorosis. Russ. J. Plant Physiol. 2020, 67, 690–696. [Google Scholar] [CrossRef]
- Askarnejad, M.R.; Soleymani, A.; Javanmard, H.R. Barley (Hordeum vulgare L.) physiology including nutrient uptake affected by plant growth regulators under field drought conditions. J. Plant Nutr. 2021, 44, 2201–2217. [Google Scholar] [CrossRef]
- Hönig, M.; Plíhalová, L.; Husičková, A.; Nisler, J.; Doležal, K. Role of cytokinins in senescence, antioxidant defence and photosynthesis. Int. J. Mol. Sci. 2018, 19, 4045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreenivasulu, N.; Schnurbusch, T. A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 2012, 17, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Afzal, I.; Akram, M.W.; Rehman, H.U.; Rashid, S.; Basra, S.M.A. Moringa leaf and sorghum water extracts and salicylic acid to alleviate impacts of heat stress in wheat. S. Afr. J. Bot. 2020, 129, 169–174. [Google Scholar] [CrossRef]
- Koprna, R.; Humplík, J.F.; Špíšek, Z.; Bryksová, M.; Zatloukal, M.; Mik, V.; Novák, O.; Nisler, J.; Doležal, K. Improvement of tillering and grain yield by application of cytokinin derivatives in wheat and barley. Agronomy 2021, 11, 67. [Google Scholar] [CrossRef]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Zaheer, M.S.; Raza, M.A.S.; Saleem, M.F.; Erinle, K.O.; Iqbal, R.; Ahmad, S. Effect of rhizobacteria and cytokinins application on wheat growth and yield under normal vs drought conditions. Commun. Soil Sci. Plant Anal. 2019, 50, 2521–2533. [Google Scholar] [CrossRef]
- Abebe, T.; Wise, R.P.; Skadsen, R.W. Comparative transcriptional profiling established the awn as the major photosynthetic organ of the barley spike while the Lemma and the Palea primarily protect the seed. Plant Genome 2009, 2. [Google Scholar] [CrossRef]
- Ziegler-Jöns, A. Gas exchange of ears of cereals in response to carbon dioxide and light. Planta 1989, 178, 84–91. [Google Scholar] [CrossRef]
- Jiang, Q.Z.; Roche, D.; Durham, S.; Hole, D. Awn contribution to gas exchanges of barley ears. Photosynthetica 2006, 44, 536–541. [Google Scholar] [CrossRef]
- Van de Velde, K.; Ruelens, P.; Geuten, K.; Rohde, A.; van der Straeten, D. Exploiting DELLA Signaling in Cereals. Trends Plant Sci. 2017, 22, 880–893. [Google Scholar] [CrossRef]
- Zhang, W.; Peng, K.; Cui, F.; Wang, D.; Zhao, J.; Zhang, Y.; Yu, N.; Wang, Y.; Zeng, D.; Wang, Y.; et al. Cytokinin oxidase/dehydrogenase OsCKX11 coordinates source and sink relationship in rice by simultaneous regulation of leaf senescence and grain number. Plant Biotechnol. J. 2021, 19, 335–350. [Google Scholar] [CrossRef]
- Protich, R.; Todorovich, G.; Protich, N. Grain weight per spike of wheat using different ways of seed protection. Bulg. J. Agric. Sci. 2012, 18, 185–190. [Google Scholar]
- Merwad, A.-R.M.A. Using Moringa oleifera extract as biostimulant enhancing the growth, yield and nutrients accumulation of pea plants. J. Plant Nutr. 2018, 41, 425–431. [Google Scholar] [CrossRef]
- Maswada, H.F.; Abd El-Razek, U.A.; El-Sheshtawy, A.-N.A.; Elzaawely, A.A. Morpho-physiological and yield responses to exogenous moringa leaf extract and salicylic acid in maize (Zea mays L.) under water stress. Arch. Agron. Soil Sci. 2018, 64, 994–1010. [Google Scholar] [CrossRef]
- Elzaawely, A.A.; Ahmed, M.E.; Maswada, H.F.; Xuan, T.D. Enhancing growth, yield, biochemical, and hormonal contents of snap bean (Phaseolus vulgaris L.) sprayed with moringa leaf extract. Arch. Agron. Soil Sci. 2017, 63, 687–699. [Google Scholar] [CrossRef]
- Sadeghzadeh-Ahari; Hass, M.; Kashi, A.; Amri, A.; Alizadeh, K. Genetic variability of some agronomic traits in the Iranian Fenugreek landraces under drought stress and non-stress conditions. Afr. J. Plant Sci. 2010, 4, 12–20. [Google Scholar]
- Iqbal, M.A. Role of moringa, brassica and sorghum watereExtracts in Increasing crops growth and yield: A review. Am.-Eurasian J. Agric. Environ. Sci. 2014, 14, 1150–1158. [Google Scholar]
- Richards, R.A.; Dennett, C.W.; Qualset, C.O.; Epstein, E.; Norlyn, J.D.; Winslow, M.D. Variation in yield of grain and biomass in wheat, barley, and triticale in a salt-affected field. Field Crops Res. 1987, 15, 277–287. [Google Scholar] [CrossRef]
- Wnuk, A.; Górny, A.G.; Bocianowski, J.; Kozak, M. Visualizing harvest index in crops. Commun. Biometry Crop. Sci. 2013, 8, 148–159. [Google Scholar]
Accession Code | Origin | Accession Name | Accession Code | Origin | Accession Name |
---|---|---|---|---|---|
AC1 | South of Iraq | Shoaa | AC31 | Middle of Iraq | Scio/3 |
AC2 | South of Iraq | Boraak | AC32 | Middle of Iraq | Victoria |
AC3 | South of Iraq | Radical | AC33 | Middle of Iraq | Black-Bhoos-B |
AC4 | South of Iraq | Arivat | AC34 | Middle of Iraq | Irani |
AC5 | South of Iraq | 16 HB | AC35 | Middle of Iraq | A1 |
AC6 | South of Iraq | Furat 9 | AC36 | Middle of Iraq | MORA |
AC7 | South of Iraq | Al-warka | AC37 | Middle of Iraq | ABN |
AC8 | South of Iraq | Numar | AC38 | Middle of Iraq | Arabi aswad |
AC9 | South of Iraq | Al-amal | AC39 | Middle of Iraq | Clipper |
AC10 | South of Iraq | Rafidain-1 | AC40 | Middle of Iraq | Bhoos-H1 |
AC11 | South of Iraq | Al-khayr | AC41 | Middle of Iraq | BN2R |
AC12 | South of Iraq | BN6 | AC42 | Middle of Iraq | BA4 |
AC13 | South of Iraq | IBAA-99 | AC43 | North of Iraq | Qala-1 |
AC14 | North of Iraq | Saydsadiq | AC44 | North of Iraq | Black-kalar |
AC15 | Middle of Iraq | Bhoos-244 | AC45 | North of Iraq | White-kalar |
AC16 | Middle of Iraq | IBAA-265 | AC46 | North of Iraq | Black-Akre |
AC17 | North of Iraq | White-Akre | AC47 | North of Iraq | Black-Garmiyan |
AC18 | North of Iraq | Black-Bhoos Akre | AC48 | North of Iraq | Black-Chiman |
AC19 | North of Iraq | Black-Zaxo | AC49 | North of Iraq | Ukranian-Zarayan |
AC20 | North of Iraq | White-Zaxo | AC50 | North of Iraq | White-Zarayan |
AC21 | South of Iraq | Bhoos-912 | AC51 | North of Iraq | Abrash |
AC22 | North of Iraq | White-Halabja | AC52 | North of Iraq | Bujayl 1-Shaqlawa |
AC23 | South of Iraq | Samr | AC53 | North of Iraq | Bujayl 2-Shaqlawa |
AC24 | South of Iraq | GOB | AC54 | North of Iraq | Bujayl 3-Shaqlawa |
AC25 | South of Iraq | Abiad | AC55 | South of Iraq | Rehaan |
AC26 | South of Iraq | CANELA | AC56 | South of Iraq | Sameer |
AC27 | South of Iraq | MSEL | AC57 | South of Iraq | Warka-B12 |
AC28 | South of Iraq | Acsad strain | AC58 | South of Iraq | Al-Hazzar |
AC29 | South of Iraq | Acsad-14 | AC59 | South of Iraq | IBAA-995 |
AC30 | South of Iraq | Gk-Omega |
Accessions | Foliar MOE Application | Replications | Accessions * Foliar MOE Application | |||||
---|---|---|---|---|---|---|---|---|
Traits | F | Pr > F | F | Pr > F | F | Pr > F | F | Pr > F |
PH (cm) | 275.81 ** | <0.0001 | 734.81 ** | <0.0001 | 6.14 ** | 0.00 | 49.32 ** | <0.0001 |
LA (cm2) | 31.17 ** | <0.0001 | 298.34 ** | <0.0001 | 1.14 ns | 0.32 | 7.16 ** | <0.0001 |
TCC (SPAD) | 10.45 ** | <0.0001 | 18.73 ** | <0.0001 | 0.69 ns | 0.50 | 4.02 ** | <0.0001 |
TNP | 14.38 ** | <0.0001 | 28.57 ** | <0.0001 | 3.76 ns | 0.02 | 2.96 ** | <0.0001 |
SNP | 12.08 ** | <0.0001 | 19.73 ** | <0.0001 | 2.89 ns | 0.06 | 2.75 ** | <0.0001 |
SL (cm) | 24.03 ** | <0.0001 | 2.25 ns | 0.13 | 3.45 * | 0.03 | 3.59 ** | <0.0001 |
AL (cm) | 28.35 ** | <0.0001 | 47.22 ** | <0.0001 | 0.19 ns | 0.83 | 9.28 ** | <0.0001 |
SW (g) | 143.52 ** | <0.0001 | 70.28 ** | <0.0001 | 30.78 ** | <0.0001 | 12.39 ** | <0.0001 |
SNS | 3177.67 ** | <0.0001 | 3933.46 ** | <0.0001 | 39.11 ** | <0.0001 | 183.40 ** | <0.0001 |
SWS (g) | 775.22 ** | <0.0001 | 501.80 ** | <0.0001 | 28.52 ** | <0.0001 | 61.80 ** | <0.0001 |
1000-KW (g) | 57.82 ** | <0.0001 | 71.49 ** | <0.0001 | 57.73 ** | <0.0001 | 10.59 ** | <0.0001 |
TY (g) | 20.62 ** | <0.0001 | 49.56 ** | <0.0001 | 0.04 * | 0.96 | 1.78 ** | 0.00 |
STW (g) | 869.77 ** | <0.0001 | 2162.29 ** | <0.0001 | 0.04 * | 0.96 | 79.23 ** | <0.0001 |
Characteristics | Foliar Application | Mean ± Standard Error |
---|---|---|
PH (cm) | WOM | 86.30 b ± 0.89 |
WM | 90.95 a ± 0.89 | |
LA (cm2) | WOM | 10.62 b ± 0.18 |
WM | 12.31 a ± 0.18 | |
TCC (SPAD) | WOM | 11.12 b ± 0.31 |
WM | 12.21 a ± 0.31 | |
TNP | WOM | 15.71 b ± 0.55 |
WM | 17.94 a ± 0.56 | |
SNP | WOM | 12.29 b ± 0.41 |
WM | 13.78 a ± 0.42 | |
SL (cm) | WOM | 5.88 b ± 0.08 |
WM | 5.97 a ± 0.11 | |
AL (cm) | WOM | 11.15 b ± 0.14 |
WM | 11.62 a ± 0.11 | |
SW (g) | WOM | 1.89 b ± 0.05 |
WM | 2.01 a ± 0.05 | |
SNS | WOM | 33.50 b ± 0.99 |
WM | 37.06 a ± 0.89 | |
SWS (g) | WOM | 1.57 b ± 0.05 |
WM | 1.68 a ± 0.04 | |
1000-KW (g) | WOM | 47.52 a ± 0.47 |
WM | 45.82 b ± 0.52 | |
TY (g) | WOM | 111.61 b ± 6.16 |
WM | 138.83 a ± 5.21 | |
STW (g) | WOM | 352.99 b ± 11.78 |
WM | 412.92 a ± 11.05 |
Accessions | PH (cm) | LA (cm2) | TCC (SPAD) | Accessions | PH (cm) | LA (cm2) | TCC (SPAD) |
---|---|---|---|---|---|---|---|
AC1 | 52.17 ae ± 0.46 | 14.42 cde ± 0.62 | 15.17 c–h ± 1.29 | AC31 | 89.13 p–s ± 1.21 | 11.55 l–r ± 1.15 | 14.67 d–i ± 0.87 |
AC2 | 78.60 y ± 4.07 | 10.78 p–u ± 0.62 | 15.47 c–e ± 1.36 | AC32 | 94.13 i–l ± 0.47 | 10.53 q–v ± 0.75 | 12.12 g–p ± 1.26 |
AC3 | 74.90 z ± 2.61 | 11.15 m–t ± 0.31 | 10.58 l–t ± 1.14 | AC33 | 94.13 jkl ± 0.40 | 9.93 t–w ± 0.44 | 8.62 q–v ± 0.82 |
AC4 | 81.30 wx ± 3.36 | 12.15 i–o ± 0.78 | 10.40 l–t ± 0.65 | AC34 | 96.23 ghi ± 2.07 | 10.02 s–w ± 0.55 | 8.88 p–v ± 0.79 |
AC5 | 65.90 ac ± 2.41 | 12.18 i–n ± 0.47 | 10.75 k–t ± 1.91 | AC35 | 90.70 n–q ± 1.86 | 10.41 r–v ± 1.27 | 17.80 abc ± 0.90 |
AC6 | 62.93 ad ± 4.68 | 12.30 i–m ± 0.51 | 13.48 d–l ± 1.41 | AC36 | 87.57 stu ± 0.60 | 6.91 z ± 0.93 | 9.25 o–v ± 0.69 |
AC7 | 93.67 jkl ± 3.95 | 15.07 cd ± 0.50 | 13.10 d–m ± 1.09 | AC37 | 89.50 p–s ± 0.50 | 8.38 xy ± 0.27 | 8.63 q–v ± 1.32 |
AC8 | 67.83 ab ± 0.28 | 12.89 f–k ± 0.70 | 12.45 f–o ± 0.96 | AC38 | 93.03 klm ± 1.65 | 11.04 m–t ± 0.61 | 7.40 tuv ± 0.67 |
AC9 | 88.40 rst ± 1.62 | 10.90 n–t ± 0.70 | 12.02 g–p ± 1.09 | AC39 | 79.97 xy ± 2.91 | 12.30 i–m ± 0.48 | 16.23 bcd ± 4.45 |
AC10 | 80.27 xy ± 3.97 | 11.77 k–q ± 0.58 | 11.22 j–r ± 0.62 | AC40 | 89.23 p–s ± 0.66 | 9.58 uvw ± 0.36 | 12.05 g–p ± 1.26 |
AC11 | 89.13 p–s ± 6.12 | 16.18 ab ± 0.69 | 11.90 h–q ± 1.11 | AC41 | 72.73 aa ± 1.74 | 13.61 e–h ± 0.26 | 12.03 g–p ± 0.79 |
AC12 | 89.60 p–s ± 1.44 | 10.14 s–w ± 0.28 | 11.33 i–q ± 0.73 | AC42 | 74.40 zaa ± 2.10 | 12.84 g–k ± 0.49 | 8.97 p–v ± 0.48 |
AC13 | 92.63 lmn ± 0.31 | 10.86 o–t ± 0.41 | 11.13 k–r ± 0.89 | AC43 | 89.57 p–s ± 1.96 | 9.57 uvw ± 0.36 | 19.80 a ± 2.75 |
AC14 | 92.90 klm ± 0.65 | 11.26 m–s ± 0.65 | 12.93 e–m ± 0.97 | AC44 | 91.13 m–p ± 1.89 | 8.34 xy ± 0.23 | 10.67 i–t ± 1.16 |
AC15 | 98.43 ef ± 1.69 | 15.36 bc ± 0.97 | 11.15 k–r ± 0.73 | AC45 | 94.93 ijk ± 1.73 | 9.29 vwx ± 0.26 | 9.37 n–v ± 1.26 |
AC16 | 100.10 de ± 2.41 | 14.91 cd ± 1.12 | 12.87 e–m ± 1.66 | AC46 | 82.83 w ± 2.02 | 11.16 m–t ± 0.78 | 10.90 k–s ± 0.94 |
AC17 | 95.77 g–j ± 0.57 | 11.28 m–s ± 0.95 | 15.37 c–g ± 1.51 | AC47 | 88.50 rst ± 2.17 | 10.25 s–w ± 0.89 | 7.85 r–v ± 0.63 |
AC18 | 85.27 v ± 3.63 | 10.93 n–t ± 0.26 | 7.47 tuv ± 0.80 | AC48 | 92.50 l–o ± 2.90 | 12.13 i–o ± 0.70 | 8.62 q–v ± 0.67 |
AC19 | 74.40 zaa ± 0.40 | 14.09 def ± 0.54 | 10.27 l–u ± 0.55 | AC49 | 92.17 o ± 2.28 | 11.14 m–t ± 0.27 | 8.63 q–v ± 1.25 |
AC20 | 75.00 z ± 0.64 | 10.50 q–v ± 0.55 | 7.62 s–v ± 1.20 | AC50 | 99.43 e ± 1.59 | 9.07 wx ± 0.82 | 12.13 g–p ± 0.81 |
AC21 | 102.60 bc ± 3.23 | 12.64 h–l ± 0.66 | 13.12 d–m ± 0.46 | AC51 | 97.20 fgh ± 3.46 | 16.61 a ± 0.93 | 14.12 d–k ± 1.20 |
AC22 | 86.60 tuv ± 0.70 | 11.86 j–p ± 0.53 | 12.68 f–n ± 1.06 | AC52 | 92.23 l–o ± 0.73 | 11.17 m–t ± 0.45 | 12.07 g–p ± 0.86 |
AC23 | 82.37 w ± 3.57 | 8.22 xy ± 0.25 | 7.60 s–v ± 0.64 | AC53 | 86.03 uv ± 0.61 | 10.54 q–v ± 0.59 | 8.85 p–v ± 1.16 |
AC24 | 95.43 g–j ± 0.32 | 7.80 yz ± 0.35 | 7.02 uv ± 1.13 | AC54 | 88.90 qrs ± 0.52 | 7.59 yz ± 0.21 | 8.60 q–v ± 0.21 |
AC25 | 100.00 de ± 0.81 | 11.90 j–p ± 0.91 | 11.43 i–q ± 1.62 | AC55 | 104.03 b ± 0.35 | 9.39 vwx ± 0.41 | 16.10 b–e ± 0.56 |
AC26 | 86.57 tuv ± 1.36 | 9.92 t–w ± 1.33 | 9.77 m–v ± 1.23 | AC56 | 109.30 a ± 0.53 | 13.33 e–i ± 0.31 | 14.53 d–j ± 1.69 |
AC27 | 89.20 p–s ± 2.81 | 10.78 p–u ± 0.59 | 6.67 v ± 0.43 | AC57 | 110.03 a ± 4.36 | 13.96 d–g ± 0.37 | 12.42 f–o ± 1.26 |
AC28 | 97.30 fg ± 2.67 | 12.01 j–p ± 1.59 | 20.27 a ± 1.84 | AC58 | 90.47 o–r ± 1.98 | 13.53 e–h ± 0.38 | 9.78 m–v ± 0.68 |
AC29 | 101.60 cd ± 5.34 | 11.73 k–q ± 0.45 | 10.53 l–t ± 1.01 | AC59 | 92.87 klm ± 1.47 | 13.09 f–j ± 0.12 | 12.57 f–o ± 0.44 |
AC30 | 95.17 hij ± 0.62 | 13.31 e–I ± 0.98 | 18.78 ab ± 1.34 |
Accessions | TNP | SNP | SL (cm) | AL (cm) | SW (g) |
---|---|---|---|---|---|
AC1 | 7.67 x–ab ± 0.33 | 5.67 r–u ± 0.49 | 4.42 v–y ± 0.20 | 10.86 n–u ± 0.19 | 1.94 jk ± 0.09 |
AC2 | 6.83 z–ab ± 0.31 | 6.00 r–u ± 0.58 | 6.85 d–i ± 0.27 | 12.62 d–g ± 0.50 | 2.30 e ± 0.37 |
AC3 | 6.17 aaab ± 0.75 | 4.00 u ± 0.52 | 3.79 y ± 0.07 | 12.43 d–h ± 0.45 | 1.84 l ± 0.12 |
AC4 | 9.50 w–ab ± 1.06 | 6.67 q–u ± 1.20 | 6.22 h–n ± 0.31 | 12.19 e–j ± 0.71 | 2.30 e ± 0.07 |
AC5 | 7.00 z–ab ± 0.68 | 5.17 stu ± 0.79 | 4.69 t–x ± 0.36 | 13.14bcd ± 0.45 | 1.61 rs ± 0.09 |
AC6 | 7.50 y–ab ± 0.67 | 5.33 stu ± 0.76 | 4.89 s–w ± 0.20 | 13.13bcd ± 0.65 | 1.64 qr ± 0.07 |
AC7 | 5.67 ab ± 0.71 | 4.33 tu ± 0.49 | 5.69 m–r ± 0.52 | 10.19 r–x ± 0.40 | 1.53 t ± 0.11 |
AC8 | 11.33 r–aa ± 2.04 | 9.17 n–s ± 2.18 | 4.78 t–x ± 0.18 | 12.37 d–i ± 0.53 | 1.67 pq ± 0.08 |
AC9 | 10.00 u–ab ± 1.29 | 7.83 p–u ± 1.40 | 4.26 wxy ± 0.12 | 12.10 e–k ± 0.26 | 2.07 i ± 0.07 |
AC10 | 10.67 t–ab ± 0.80 | 7.83 p–u ± 0.60 | 5.85 l–r ± 0.46 | 11.02 m–r ± 0.07 | 2.15 g ± 0.23 |
AC11 | 9.83 v–ab ± 1.54 | 7.33 p–u ± 1.48 | 4.90 s–w ± 0.17 | 12.67 d–g ± 0.41 | 1.83 lm ± 0.07 |
AC12 | 11.00 s–ab ± 1.00 | 8.33 o–t ± 0.71 | 5.13 q–v ± 0.23 | 11.11 l–q ± 0.25 | 1.78 mn ± 0.06 |
AC13 | 12.17 o–z ± 2.24 | 10.50 l–q ± 1.82 | 4.72 t–x ± 0.09 | 12.28 d–j ± 0.39 | 2.63 c ± 0.08 |
AC14 | 11.33 r–aa ± 1.09 | 8.33 o–t ± 1.26 | 4.91 s–w ± 0.11 | 12.43 d–h ± 0.18 | 2.21 f ± 0.06 |
AC15 | 14.33 l–w ± 1.28 | 11.67 h–p ± 1.05 | 5.29 p–u ± 0.51 | 14.10 a ± 0.88 | 1.96 jk ± 0.17 |
AC16 | 12.67 n–y ± 1.28 | 11.33 i–p ± 1.17 | 5.70 m–r ± 0.24 | 13.87 ab ± 0.36 | 2.11 hi ± 0.06 |
AC17 | 17.67 h–o ± 1.78 | 15.33 c–i ± 1.82 | 4.65 t–x ± 0.24 | 11.70 h–n ± 0.19 | 2.04 j ± 0.07 |
AC18 | 16.33 i–s ± 1.67 | 10.50 i–q ± 0.56 | 4.18 wxy ± 0.17 | 9.54 x–ab ± 0.20 | 1.85 l ± 0.17 |
AC19 | 13.00 m–x ± 2.21 | 9.83 m–r ± 1.62 | 4.58 u–x ± 0.17 | 10.99 m–s ± 0.16 | 1.98 jk ± 0.06 |
AC20 | 16.67 h–r ± 2.40 | 12.50 g–o ± 1.84 | 6.63 f–l ± 0.22 | 11.81 g–m ± 0.28 | 1.07 yz ± 0.06 |
AC21 | 11.67 q–z ± 1.71 | 10.83 j–q ± 1.72 | 7.51 bcd ± 0.24 | 14.49 a ± 0.27 | 2.71 b ± 0.08 |
AC22 | 11.67 q–z ± 0.71 | 8.83 o–s ± 0.87 | 4.09 xy ± 0.08 | 12.20 e–j ± 0.16 | 1.94 jk ± 0.09 |
AC23 | 18.17 g–n ± 1.14 | 13.17 f–n ± 1.25 | 7.28 c–f ± 0.28 | 9.33 y–ab ± 0.11 | 1.03 z ± 0.06 |
AC24 | 16.17 i–s ± 1.74 | 12.67 g–o ± 0.99 | 6.66 f–k ± 0.22 | 9.92 w–aa ± 0.27 | 1.17 x ± 0.06 |
AC25 | 20.83 d–j ± 2.07 | 16.00 b–h ± 1.84 | 7.35 b–f ± 0.31 | 13.94 a ± 0.86 | 1.44 u ± 0.08 |
AC26 | 19.83 d–l ± 1.17 | 13.83 d–m ± 1.45 | 6.44 g–m ± 0.19 | 10.93 n–t ± 0.58 | 1.04 yz ± 0.06 |
AC27 | 24.83 bcd ± 2.87 | 17.67 b–f ± 2.46 | 6.34 g–n ± 0.20 | 11.66 h–n ± 0.36 | 1.21 wx ± 0.06 |
AC28 | 21.67 c–i ± 3.56 | 19.17 abc ± 3.38 | 6.22 h–h ± 0.16 | 12.11 e–k ± 1.00 | 1.43 u ± 0.07 |
AC29 | 20.17 d–k ± 1.66 | 15.17 c–j ± 1.45 | 7.36 b–f ± 0.36 | 12.79 def ± 0.78 | 1.56 st ± 0.17 |
AC30 | 17.17 h–q ± 2.30 | 15.17 c–j ± 1.85 | 8.50 a ± 0.06 | 13.72 abc ± 0.55 | 1.63 qr ± 0.07 |
AC31 | 16.00 j–t ± 1.39 | 13.83 d–m ± 1.35 | 5.87 k–q ± 0.13 | 11.41 j–o ± 0.62 | 1.32 v ± 0.06 |
AC32 | 17.00 h–q ± 1.39 | 15.00 c–k ± 0.93 | 8.03 ab ± 0.21 | 10.45 p–w ± 0.43 | 1.25 w ± 0.08 |
AC33 | 19.50 d–l ± 1.26 | 15.17 c–j ± 1.08 | 6.28 g–n ± 0.14 | 9.96 v–aa ± 0.27 | 0.89 ab ± 0.06 |
AC34 | 26.33 abc ± 3.66 | 15.67 c–i ± 2.40 | 7.96 abc ± 0.16 | 10.07 t–z ± 0.48 | 1.09 y ± 0.06 |
AC35 | 17.50 h–p ± 2.40 | 14.33 d–l ± 1.23 | 6.03 j–p ± 0.35 | 10.46 p–w ± 0.92 | 2.14 g ± 0.10 |
AC36 | 19.67 d–l ± 3.76 | 17.50 b–f ± 2.97 | 5.79 m–r ± 0.15 | 10.40 q–x ± 0.35 | 1.44 u ± 0.07 |
AC37 | 24.00 b–f ± 3.01 | 20.17 ab ± 2.18 | 6.35 g–n ± 0.25 | 10.71 o–w ± 0.17 | 1.22 wx ± 0.12 |
AC38 | 26.17 abc ± 2.20 | 22.33 a ± 1.41 | 6.39 g–n ± 0.31 | 10.01 u–aa ± 0.21 | 1.10 y ± 0.10 |
AC39 | 20.00 d–l ± 1.15 | 18.00 b–e ± 0.89 | 6.13 i–o ± 0.03 | 11.95 f–l ± 0.42 | 1.22 wx ± 0.06 |
AC40 | 15.17 k–v ± 1.96 | 13.67 e–m ± 1.56 | 6.41 g–n ± 0.08 | 12.43 d–h ± 0.36 | 1.33 v ± 0.06 |
AC41 | 19.83 d–l ± 2.50 | 16.33 b–g ± 1.82 | 7.42 b–e ± 0.40 | 11.31 k–p ± 0.48 | 1.05 yz ± 0.09 |
AC42 | 19.33 e–l ± 1.74 | 15.83 b–h ± 1.49 | 7.03 d–g ± 0.26 | 10.85 n–v ± 0.23 | 1.32 v ± 0.07 |
AC43 | 17.00 h–q ± 1.73 | 15.67 c–i ± 1.17 | 4.20 wxy ± 0.13 | 10.17 r–y ± 0.21 | 2.18 fg ± 0.06 |
AC44 | 28.00 ab ± 2.89 | 18.33 a–d ± 1.80 | 6.14 h–o ± 0.16 | 9.19 aaab ± 0.10 | 0.85 ab–ac ± 0.06 |
AC45 | 18.33 g–m ± 1.36 | 13.83 d–m ± 1.17 | 7.04 d–g ± 0.21 | 9.29 z–ab ± 0.23 | 1.19 wx ± 0.08 |
AC46 | 28.17 ab ± 1.70 | 19.17 abc ± 1.47 | 6.91 d–h ± 0.23 | 10.73 o–w ± 0.49 | 0.96 aa ± 0.10 |
AC47 | 28.50 ab ± 4.70 | 20.17 ab ± 2.87 | 5.09 r–v ± 0.14 | 9.29 z–ab ± 0.29 | 0.66 a–d ± 0.06 |
AC48 | 30.83 a ± 1.89 | 18.33 a–d ± 0.92 | 5.62 n–s ± 0.12 | 10.75 o–w ± 0.74 | 0.70 a–d ± 0.06 |
AC49 | 15.00 k–v ± 1.63 | 10.67 k–q ± 0.92 | 4.19 wxy ± 0.06 | 10.73 o–w ± 0.25 | 2.12 gh ± 0.06 |
AC50 | 19.17 e–l ± 1.80 | 15.00 c–k ± 1.91 | 5.19 q–u ± 0.12 | 10.46 p–w ± 0.54 | 1.70 op ± 0.06 |
AC51 | 12.00 p–z ± 1.15 | 8.50 o–t ± 0.62 | 6.04 j–p ± 0.27 | 12.59 d ± 0.25 | 1.91 k ± 0.11 |
AC52 | 24.33 b–d ± 2.70 | 16.50 b–g ± 1.06 | 6.73 e–j ± 0.33 | 9.46 y–ab ± 0.24 | 0.91 aaab ± 0.07 |
AC53 | 23.33 b–g ± 2.30 | 16.67 b–g ± 1.15 | 5.77 m–r ± 0.20 | 9.92 w–aa ± 0.28 | 0.82 ac ± 0.10 |
AC54 | 18.83 f–l ± 1.82 | 14.83 c–l ± 1.14 | 7.86 abc ± 0.54 | 10.12 s–z ± 0.12 | 1.31 v ± 0.10 |
AC55 | 17.00 h–q ± 1.06 | 14.33 d–l ± 0.88 | 6.08 i–o ± 1.09 | 11.50 i–o ± 0.32 | 2.45 d ± 0.20 |
AC56 | 22.00 c–h ± 1.63 | 17.00 b–g ± 1.93 | 5.63 n–s ± 0.38 | 10.99 m–s ± 0.15 | 1.76 no ± 0.12 |
AC57 | 15.33 j–u ± 0.88 | 12.50 g–o ± 0.76 | 6.38 g–n ± 0.12 | 8.95 ab ± 0.17 | 1.97 jk ± 0.14 |
AC58 | 16.67 h–r ± 1.84 | 14.50 d–l ± 1.65 | 5.77 m–r ± 0.09 | 12.87 de ± 0.24 | 2.31 e ± 0.06 |
AC59 | 18.17 g–n ± 2.61 | 15.17 c–j ± 1.96 | 5.36 o–t ± 0.15 | 12.98 cde ± 0.16 | 3.22 a ± 0.14 |
Accessions | SNS | SWS (g) | 1000-KW (g) | TY (g) | STW (g) |
---|---|---|---|---|---|
AC1 | 38.28 r ± 1.68 | 2.60 ef ± 0.08 | 50.60 f–i ± 0.68 | 45.73 u–z ± 7.26 | 160.26 ae ± 11.94 |
AC2 | 40.83 p ± 5.64 | 2.75 de ± 0.27 | 57.30 b ± 1.56 | 72.64 q–y ± 6.93 | 232.70 ab–ac ± 6.71 |
AC3 | 42.72 n ± 0.66 | 2.05 k–n ± 0.03 | 43.17 t–w ± 0.52 | 15.83 z ± 1.49 | 72.52 ag ± 12.04 |
AC4 | 51.89 e ± 0.68 | 2.84 d ± 0.06 | 44.30 q–u ± 0.65 | 55.97 s–z ± 7.50 | 191.55 ad ± 5.95 |
AC5 | 36.06 s ± 3.61 | 2.17 jk ± 0.13 | 45.13 o–t ± 1.18 | 27.30 yz ± 6.85 | 136.53 af ± 9.53 |
AC6 | 40.06 q ± 2.17 | 1.97 l–o ± 0.03 | 41.44 v–y ± 1.83 | 37.68 v–z ± 5.08 | 127.74 af ± 3.03 |
AC7 | 41.89 o ± 1.16 | 1.93 mno ± 0.05 | 36.59 ab–ac ± 0.56 | 30.36 w–z ± 6.13 | 127.80 af ± 11.48 |
AC8 | 38.89 r ± 2.05 | 1.93 mno ± 0.04 | 43.40 s–v ± 1.51 | 86.25 n–v ± 13.62 | 230.76 ac ± 22.30 |
AC9 | 48.33 h ± 1.07 | 2.42 ghi ± 0.05 | 42.84 t–x ± 0.48 | 118.05 j–r ± 9.36 | 292.31 yz ± 16.57 |
AC10 | 43.44 lm ± 3.48 | 2.57 fg ± 0.20 | 49.18 g–m ± 0.87 | 79.82 o–x ± 11.02 | 246.47 ab ± 18.27 |
AC11 | 38.44 r ± 0.73 | 2.22 jk ± 0.03 | 47.83 j–n ± 1.62 | 97.26 l–t ± 20.22 | 274.39 aa ± 37.48 |
AC12 | 41.06 p ± 2.47 | 2.21 jk ± 0.04 | 43.96 r–v ± 1.93 | 29.66 xyz ± 6.21 | 126.24 af ± 12.93 |
AC13 | 54.83 c ± 1.33 | 3.27 b ± 0.03 | 48.12 i–n ± 0.94 | 198.89 def ± 21.13 | 452.80 lmn ± 9.33 |
AC14 | 46.06 j ± 3.36 | 2.50 fgh ± 0.04 | 48.95 h–m ± 2.83 | 133.30 i–n ± 8.46 | 410.97 st ± 3.97 |
AC15 | 44.00 kl ± 0.29 | 2.40 ghi ± 0.06 | 44.61 p–u ± 1.69 | 129.55 i–o ± 17.29 | 367.80 vw ± 37.26 |
AC16 | 48.00 hi ± 0.41 | 2.45 f–i ± 0.04 | 44.04 r–u ± 0.54 | 203.69 def ± 20.39 | 484.32 j ± 7.02 |
AC17 | 44.28 k ± 1.04 | 2.49 f–i ± 0.08 | 46.01 n–r ± 0.94 | 209.53 cde ± 28.96 | 464.93 l ± 12.39 |
AC18 | 47.67 i ± 0.54 | 2.10 klm ± 0.12 | 38.62 z–ab ± 2.18 | 51.22 t–z ± 1.00 | 227.47 ac ± 43.00 |
AC19 | 53.44 d ± 1.16 | 2.20 jk ± 0.02 | 37.06 aa–ac ± 0.81 | 94.34 l–u ± 7.42 | 300.77 xy ± 10.50 |
AC20 | 23.39 xy ± 0.31 | 1.28 uvw ± 0.02 | 45.92 n–s ± 0.94 | 104.01 l–s ± 11.16 | 310.36 x ± 3.70 |
AC21 | 56.83 b ± 2.17 | 3.23 b ± 0.11 | 47.67 k–o ± 0.37 | 202.32 def ± 21.99 | 479.92 jk ± 17.12 |
AC22 | 41.22 p ± 0.87 | 2.19 jk ± 0.06 | 47.02 l–p ± 0.64 | 140.83 g–m ± 12.52 | 376.85 uv ± 5.25 |
AC23 | 19.98 ac ± 0.54 | 1.34 u ± 0.08 | 51.64 efg ± 4.53 | 86.46 n–v ± 15.12 | 360.14 w ± 33.58 |
AC24 | 23.83 x ± 0.23 | 1.34 u ± 0.02 | 48.96 h–m ± 0.94 | 104.27 l–s ± 23.13 | 313.80 x ± 47.55 |
AC25 | 22.56 zaa ± 0.41 | 1.80 op ± 0.06 | 63.66 de ± 1.89 | 229.29 cd ± 21.18 | 726.23 b ± 18.39 |
AC26 | 23.67 xy ± 0.22 | 1.15 vwx ± 0.02 | 44.04 r–u ± 0.97 | 129.26 i–o ± 9.95 | 377.34 uv ± 14.31 |
AC27 | 23.06 yz ± 0.22 | 1.39 tu ± 0.03 | 52.37 def ± 1.17 | 158.37 f–k ± 14.82 | 409.17 st ± 37.01 |
AC28 | 25.17 w ± 0.47 | 1.72 pq ± 0.04 | 56.94 b ± 0.99 | 188.16 d–g ± 18.60 | 537.90 fg ± 7.03 |
AC29 | 27.50 u ± 2.07 | 1.89 no ± 0.12 | 56.59 b ± 1.02 | 184.63 d–g ± 25.17 | 539.63 f ± 30.43 |
AC30 | 31.83 t ± 0.56 | 2.00 lmn ± 0.05 | 51.13 e–h ± 0.86 | 255.06 bc ± 18.02 | 630.47 d ± 4.43 |
AC31 | 23.44 xy ± 0.78 | 1.69 pqr ± 0.02 | 56.63 b ± 1.63 | 189.66 d–g ± 16.10 | 509.07 h ± 17.00 |
AC32 | 24.94 w ± 0.61 | 1.61 qrs ± 0.04 | 49.89 g–k ± 0.93 | 167.30 e–j ± 24.20 | 440.33 nop ± 10.31 |
AC33 | 21.06 ab ± 0.25 | 1.05 xy ± 0.02 | 42.36 u–x ± 1.03 | 117.74 j–r ± 7.58 | 458.23 lm ± 16.21 |
AC34 | 23.78 x ± 0.73 | 1.26 uvw ± 0.03 | 46.01 n–r ± 1.04 | 122.67 j–q ± 21.88 | 467.58 kl ± 14.16 |
AC35 | 44.44 k ± 0.26 | 2.38 hi ± 0.04 | 48.22 i–n ± 1.01 | 134.22 i–n ± 15.98 | 499.93 hi ± 16.57 |
AC36 | 28.06 u ± 0.28 | 1.51 st ± 0.02 | 51.29 e–h ± 0.82 | 71.85 q–y ± 10.66 | 241.77 ab–ac ± 23.96 |
AC37 | 26.22 v ± 0.68 | 1.56 q–t ± 0.04 | 46.64 m–q ± 0.90 | 128.35 i–p ± 17.63 | 369.46 vw ± 45.64 |
AC38 | 22.11 aa ± 0.59 | 1.32 uv ± 0.07 | 49.41 g–l ± 1.91 | 119.29 j–r ± 14.87 | 415.43 rst ± 4.43 |
AC39 | 22.00 aa ± 0.26 | 1.52 rst ± 0.02 | 55.36 bc ± 1.12 | 180.20 d–h ± 39.55 | 485.06 j ± 68.21 |
AC40 | 24.61 w ± 0.31 | 1.68 p–s ± 0.02 | 54.07 cd ± 1.04 | 80.56 o–w ± 5.44 | 301.92 xy ± 1.74 |
AC41 | 23.61 xy ± 0.80 | 1.31 uv ± 0.06 | 44.41 q–u ± 1.46 | 114.09 k–r ± 21.49 | 423.04 qrs ± 22.18 |
AC42 | 26.56 v ± 0.63 | 1.60 qrs ± 0.05 | 49.56 g–l ± 0.93 | 101.83 l–t ± 9.89 | 314.77 x ± 21.00 |
AC43 | 49.83 g ± 0.25 | 2.45 f–i ± 0.06 | 43.64 r ± 1.14 | 212.27 cde ± 10.84 | 525.90 fg ± 7.04 |
AC44 | 21.00 ab ± 0.78 | 0.98 xy ± 0.03 | 40.81 w–z ± 1.29 | 83.43 n–v ± 10.48 | 437.39 opq ± 6.34 |
AC45 | 25.22 w ± 1.51 | 1.41 tu ± 0.04 | 47.59 k–o ± 1.68 | 144.53 g–l ± 16.38 | 427.37 pqr ± 32.25 |
AC46 | 22.50 zaa ± 0.90 | 1.13 wxy ± 0.07 | 42.52 u–x ± 1.76 | 92.38 m–u ± 13.76 | 449.60 mno ± 19.91 |
AC47 | 18.22 ad ± 0.29 | 0.77 z ± 0.02 | 36.46 ab–ac ± 1.25 | 69.57 r–y ± 12.16 | 368.86 vw ± 20.63 |
AC48 | 19.94 ac ± 0.39 | 0.81 z ± 0.02 | 35.01 ac ± 1.23 | 77.61 p–x ± 10.51 | 402.90 t ± 8.17 |
AC49 | 43.28 mn ± 0.31 | 2.40 ghi ± 0.02 | 49.07 h–m ± 0.58 | 155.21 f–k ± 16.41 | 490.05 ij ± 2.67 |
AC50 | 41.94 o ± 0.56 | 1.95 mno ± 0.02 | 40.65 x–z ± 0.69 | 213.84 cde ± 11.80 | 572.49 e ± 12.35 |
AC51 | 48.61 h ± 0.99 | 2.13 kl ± 0.05 | 39.21 y–aa ± 0.44 | 68.88 r–y ± 11.85 | 291.12 yz ± 5.14 |
AC52 | 19.78 ac ± 0.26 | 1.06 xy ± 0.03 | 46.06 n–r ± 2.06 | 70.26 r–y ± 7.23 | 367.29 vw ± 32.83 |
AC53 | 21.94 aa ± 2.12 | 0.97 y ± 0.07 | 37.90 aaab ± 1.39 | 61.91 s–z ± 9.42 | 371.47 vw ± 12.27 |
AC54 | 24.56 w ± 0.33 | 1.56 q–t ± 0.06 | 53.31 cde ± 3.09 | 92.70 m–u ± 11.22 | 284.98 zaa ± 9.37 |
AC55 | 51.39 e ± 1.38 | 3.03 c ± 0.19 | 47.30 k–o ± 2.45 | 337.47 a ± 42.52 | 741.59 a ± 16.77 |
AC56 | 40.83 p ± 0.52 | 2.21 jk ± 0.03 | 43.05 t–x ± 1.33 | 84.16 n–v ± 17.77 | 378.81 u ± 44.64 |
AC57 | 50.67 f ± 2.44 | 2.32 ij ± 0.12 | 38.67 z–ab ± 0.72 | 128.16 i–p ± 7.11 | 387.33 u ± 13.44 |
AC58 | 46.11 j ± 2.25 | 3.07 c ± 0.08 | 50.32 f–j ± 0.99 | 176.44 e–i ± 20.98 | 523.77 g ± 62.66 |
AC59 | 65.72 a ± 2.87 | 3.74 a ± 0.12 | 49.04 h–m ± 0.49 | 291.98 b ± 35.86 | 656.98 c ± 37.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahir, N.A.-r.; Lateef, D.D.; Mustafa, K.M.; Rasul, K.S. Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions. Agriculture 2022, 12, 1502. https://doi.org/10.3390/agriculture12091502
Tahir NA-r, Lateef DD, Mustafa KM, Rasul KS. Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions. Agriculture. 2022; 12(9):1502. https://doi.org/10.3390/agriculture12091502
Chicago/Turabian StyleTahir, Nawroz Abdul-razzak, Djshwar Dhahir Lateef, Kamil Mahmud Mustafa, and Kamaran Salh Rasul. 2022. "Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions" Agriculture 12, no. 9: 1502. https://doi.org/10.3390/agriculture12091502
APA StyleTahir, N. A.-r., Lateef, D. D., Mustafa, K. M., & Rasul, K. S. (2022). Under Natural Field Conditions, Exogenous Application of Moringa Organ Water Extract Enhanced the Growth- and Yield-Related Traits of Barley Accessions. Agriculture, 12(9), 1502. https://doi.org/10.3390/agriculture12091502