Improving Cleaning Performance of Rice Combine Harvesters by DEM–CFD Coupling Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Terminal Velocity Test-Bed for Each Threshing Output Component
2.2. Test Materials and Their Basic Physical Characteristics
2.3. Analyzing the Motion Law of the Threshing Output in the Existing Cleaning Shoe Based on EDEM-CFD Simulation
2.3.1. EDEM-CFD Coupling Theory
2.3.2. Governing Equations of the Fluid System
2.3.3. Governing Equations of DEM Simulation
2.3.4. Simulation Settings in the EDEM-FLUENT Simulation
2.3.5. Measurement of Airflow Distribution Inside the Newly Designed Cleaning Shoe
3. Results and Discussion
3.1. Basic Physical Characteristics of the Test Samples
3.2. Terminal Velocity for Each Component’s Analysis
3.3. Analyzing Velocity Variation of Grains and Short Straws in Longitudinal Direction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Statistical Situation of Grain Combine Harvester in China from 2016 to 2019. Available online: https://www.chinabaogao.com/data/202201/566288.html (accessed on 4 January 2022).
- Ouyang, Y.D.; Li, X.; Zhang, Q.F. Understanding the genetic and molecular constitutions of heterosis for developing hybrid rice. J. Genet. Genom. 2022, 49, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Li, Y.; Li, H.; Xu, L.; Zhao, Z. Analysis on the eddy current of the air-and-screen cleaning device. Trans. Chin. Soc. Agric. Mach. 2010, 41, 62–66. [Google Scholar]
- Li, F.; Li, Y.M. Optimization and simulation research of the airway of tangential-axial combine harvester cleaning room. J. Agric. Mech. Res. 2015, 2, 75–78. [Google Scholar]
- Yu, A.B.; Xu, B.H. Particle-scale modelling of gas–solid flow in fluidisation. J. Chem. Technol. Biotechnol. 2003, 78, 111–121. [Google Scholar] [CrossRef]
- Muggli, F.A.; Holbein, P.; Dupont, P. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow. ASME J. Fluids Eng. 2002, 124, 798–802. [Google Scholar] [CrossRef]
- Gebrehiwot, M.G.; de Baerdemaeker, J.; Baelmans, M. Effect of a cross-flow opening on the performance of a centrifugal fan in a combine harvester. Biosyst. Eng. 2010, 105, 247–256. [Google Scholar] [CrossRef]
- Karim, A.A.; Nolan, P.F. Modelling reacting localized air pollution using Computational Fluid Dynamics (CFD). Atmos. Environ. 2011, 45, 889–895. [Google Scholar] [CrossRef]
- Kawaguchi, T.; Tanaka, T.; Tsuji, Y. Numerical simulation of two-dimensional fluidized beds using the discrete element method (comparison between the two- and three-dimensional models). Powder Technol. 1998, 96, 129–138. [Google Scholar] [CrossRef]
- Rong, D.G.; Horio, M. Behavior of particles and bubbles around immersed tubes fluidized bed at high temperature and pressure: A DEM simulation. Int. J. Multiph. Flow 2001, 27, 89–105. [Google Scholar] [CrossRef]
- Ibsen, C.H.; Helland, E.; Hjertager, B.H.; Solberg, T.; Tadrist, L.; Occelli, R. Comparison of multi-fluid and discrete particle modelling in numerical predictions of gas particle flow in circulating fluidised beds. Powder Technol. 2004, 149, 29. [Google Scholar] [CrossRef]
- Chu, K.W.; Yu, A.B. Numerical simulation of the gas–solid flow in three-dimensional pneumatic conveying bends. Ind. Eng. Chem. Res. 2008, 47, 7058–7071. [Google Scholar] [CrossRef]
- Chu, K.W.; Wang, B.; Vince, A.; Yu, A.B.; Barnett, G.D.; Barnett, P.J. CFD–DEM study of the effect of particle density distribution on the multiphase flow and performance of dense medium cyclone. Miner. Eng. 2009, 22, 893–909. [Google Scholar] [CrossRef]
- Chu, K.W.; Wang, B.; Yu, A.B.; Vince, A. CFD–DEM modelling of multiphase flow in dense medium cyclones. Powder Technol. 2009, 193, 235–247. [Google Scholar] [CrossRef]
- Liang, Z.; Xu, L.Z.; De Baerdemaeker, J.; Li, Y.; Saeys, W. Optimisation of a multi-duct cleaning device for rice combine harvesters utilizing CFD and experiments. Biosyst. Eng. 2020, 190, 25–40. [Google Scholar] [CrossRef]
- Anderson, T.B.; Jackson, R. A fluid mechanical description of fluidized beds. Ind. Eng. Chem. Fundam. 1967, 6, 527–539. [Google Scholar] [CrossRef]
- Gharekhani, M.; Kashaninejad, M.; Garmakhany, A.D.; Ranjbari, A. Physical and aerodynamic properties of paddy and white rice as a function of moisture content. Qual. Assur. Saf. Crops Foods 2013, 5, 187–197. [Google Scholar] [CrossRef]
- Feizollah, S. Evaluation and modeling of aerodynamic properties of mung bean seeds. Int. Agrophysics 2015, 29, 121–126. [Google Scholar]
- Yang, M.J.; Yang, L.; Li, Q.D. Simple measurement of restitution coefficient of granular material and its application. J. Agric. Mech. Res. 2009, 31, 25–27. [Google Scholar]
- Hou, H.; Cui, Q.; Guo, Y.; Zhang, Y.; Sun, D.; Lai, S.; Liu, J. Design and test of air-sweeping suspension velocity testing device for cleaning threshed materials of grain and oil crops. Trans. Chin. Soc. Agric. Eng. 2018, 34, 43–49. [Google Scholar]
- Geng, L.X.; Yang, F.; Wang, S.S.; Han, R.; Hu, J.P. Experimental study on aerodynamic characteristics of Chinese cabbage seed extraction components. J. Agric. Mech. Res. 2020, 42, 161–165. [Google Scholar]
- Ahmadi, C.H.; Movahhed, S. Assessment of physical and aerodynamic properties of corn kernel (KSC 704). J. Food Process Eng. 2021, 87, 237–246. [Google Scholar]
- Nahal, A.M.; Arabhosseini, A.; Kianmehr, M.H. Separation of shelled walnut particles using pneumatic method. Int. J. Agric. Biol. Eng. 2013, 6, 88–93. [Google Scholar]
- Murilo, D.M.I.; Wellington, S.B.; Maicon, N.O.A.; Reinaldo, P. Pneumatic separation of hulls and meats from cracked soybeans. Food Bioprod. Processing 2009, 87, 237–246. [Google Scholar]
- Shellard, J.E.; Macmillan, R.H. Aerodynamic properties of threshed wheat materials. J. Agric. Eng. Res. 1978, 23, 273–281. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gopika, A.; Rajiv, S. Aerodynamic properties of sunflower seed (Helianthus annuus L.). J. Food Eng. 2006, 79, 899–904. [Google Scholar] [CrossRef]
- Chen, L.; Liao, Q.X.; Zong, W.Y.; Liao, Y.T.; Li, H.T.; Huang, P. Aerodynamic characteristics measurement of extraction components for rape combine harvester. Trans. Chin. Soc. Agric. Mach. 2012, 43, 125–130. [Google Scholar]
- Zhou, Z.Y.; Kuang, S.B.; Chu, K.W.; Yu, A.B. Assessments of CFD–DEM models in particle–fluid flow modelling. J. Fluid Mech. 2010, 661, 482–510. [Google Scholar] [CrossRef]
- Yu, A.B.; Wright, B.; Zhou, Z.Y.; Zhu, H.P.; Zulli, P. Discrete particle simulation of gas–solids flow in a blast-furnace. Comput. Chem. Eng. 2008, 32, 1760–1772. [Google Scholar]
- Xu, B.H.; Yu, A.B.; Chew, S.J.; Zulli, P. Numerical simulation of the gas–solid flow in a bed with lateral gas blasting. Powder Technol. 2000, 109, 13–26. [Google Scholar] [CrossRef]
- Kuang, S.B.; Chu, K.W.; Yu, A.B.; Zou, Z.S.; Feng, Y.Q. Computational investigation of horizontal slug flow in pneumatic conveying. Ind. Eng. Chem. Res. 2008, 47, 470–480. [Google Scholar] [CrossRef]
- Cundall, P.A.; Strack, O.D.L. Discrete numerical-model for granular assemblies. Geotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Renzo, A.D.; Maio, F. Homogeneous and bubbling fluidization regimes in DEM–CFD simulations: Hydrodynamic stability of gas and liquid fluidized beds. Chem. Eng. Sci. 2007, 62, 116–130. [Google Scholar] [CrossRef]
- Renzo, A.D.; Maio, F. Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 2004, 59, 525–541. [Google Scholar] [CrossRef]
Items | Measuring Result | ||||||||
---|---|---|---|---|---|---|---|---|---|
Rice Variety 1 | Rice Variety 2 | Rice Variety 3 | |||||||
Three-dimensional size of full grains, mm | 3.48 × 2.71 × 7.72 | 3.22 × 2.38 × 8.13 | 2.37 × 3.49 × 8.14 | ||||||
Moisture content of full grains, % | 26.1 | 25.4 | 24.3 | 25.9 | 24.8 | 23.6 | 25.9 | 25.3 | 23.2 |
1000-grain weight of full grains, g | 30.2 | 31.2 | 33.6 | 28.6 | 30.1 | 31.7 | 29.4 | 31.4 | 33.6 |
Three-dimensional size of blight grains, mm | 1.06 × 2.40 × 7.12 | 1.20 × 3.35 × 7.18 | 3.21 × 1.04 × 7.87 | ||||||
Moisture content of short straws, % | 69.2 | 65.4 | 62.5 | 65.8 | 64.2 | 61.5 | 67.8 | 64.0 | 62.1 |
Length of the long branches with grains, mm | 74–83 (with 10–16 grains) | 78–83 (with 10–13 grains) | 65–77 (with 8–15 grains) | ||||||
Length of small branches with grains, mm | 14–21 (with 3–5 grains) | 12–15 (with 3–5 grains) | 12–15 (with 3–5 grains) | ||||||
Length of grains with small handles, mm | 11–13 | 10–12 | 10–13 | ||||||
Length of short straws, mm | 10, 20, 30 | ||||||||
Length of leaves, mm | 15, 25, 30 |
Material Properties | Grain | Short Straw | Plate | |
---|---|---|---|---|
Density (kg/m3) | 1350 | 160 | 7850 | |
Poisson’s ratio | 0.25 | 0.45 | 0.29 | |
Shear modulus (Pa) | 2.0 × 108 | 4.4 × 106 | 8.0 × 1010 | |
Collision properties | Grain–grain | Grain–plate | Short straw –plate | Short straw –grain |
Coefficient of restitution | 0.43 | 0.5 | 0.26 | 0.2 |
Coefficient of static friction | 0.75 | 0.56 | 0.8 | 0.8 |
Coefficient of rolling friction | 0.01 | 0.01 | 0.01 | 0.01 |
Vibrating sieve | Motion form | Amplitude | Frequency vibrating direction angle | |
Sinusoidal translation | 20 mm | 6 Hz 20° |
Test No. | Fan Speed /rpm | Guide Plate I Angle /° | Guide Plate II Angle /° | Sieve Opening /mm | Grain Sieve Loss /% | Grain Impurity Ratio /% |
---|---|---|---|---|---|---|
1 | 1100 | 8 | 13 | 20 | 0.26 | 1.03 |
2 | 1100 | 27 | 29 | 25 | 0.42 | 1.22 |
3 | 1100 | 45 | 45 | 30 | 0.16 | 2.01 |
4 | 1300 | 8 | 29 | 30 | 0.39 | 0.76 |
5 | 1300 | 27 | 45 | 20 | 0.69 | 0.63 |
6 | 1300 | 45 | 13 | 25 | 0.53 | 1.22 |
7 | 1500 | 8 | 45 | 25 | 1.28 | 0.94 |
8 | 1500 | 27 | 13 | 30 | 1.80 | 0.75 |
9 | 1500 | 45 | 29 | 20 | 0.78 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, B.; Liang, Z.; Qi, Y.; Ye, Z.; Zhou, J. Improving Cleaning Performance of Rice Combine Harvesters by DEM–CFD Coupling Technology. Agriculture 2022, 12, 1457. https://doi.org/10.3390/agriculture12091457
Ding B, Liang Z, Qi Y, Ye Z, Zhou J. Improving Cleaning Performance of Rice Combine Harvesters by DEM–CFD Coupling Technology. Agriculture. 2022; 12(9):1457. https://doi.org/10.3390/agriculture12091457
Chicago/Turabian StyleDing, Bochuan, Zhenwei Liang, Yongqi Qi, Zhikang Ye, and Jiahao Zhou. 2022. "Improving Cleaning Performance of Rice Combine Harvesters by DEM–CFD Coupling Technology" Agriculture 12, no. 9: 1457. https://doi.org/10.3390/agriculture12091457
APA StyleDing, B., Liang, Z., Qi, Y., Ye, Z., & Zhou, J. (2022). Improving Cleaning Performance of Rice Combine Harvesters by DEM–CFD Coupling Technology. Agriculture, 12(9), 1457. https://doi.org/10.3390/agriculture12091457