The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieniasz, M.; Dziedzic, E.; Kaczmarczyk, E. The effect of storage and processing on vitamin C content in Japanese quince fruit. Folia Hort. 2017, 29, 83–93. [Google Scholar] [CrossRef]
- Bieniek, A. Fruits of Actinidia Arguta and Actinidia Purpurea and Some of Their Hybrid Cultivars Grown in Northeastern Poland. Pol. J. Environ. Stud. 2012, 21, 1543–1550. [Google Scholar]
- Dziedzic, E.; Błaszczyk, J.; Bieniasz, M.; Dziadek, K.; Kopeć, A. Effect of modified (MAP) and controlled atmosphere (CA) storage on the quality and bioactive compounds of blue honeysuckle fruits (Lonicera caerulea L.). Sci. Hortic. 2020, 265, 109226. [Google Scholar] [CrossRef]
- Mech-Nowak, A.; Kruczek, M.; Kaszycki, P.; Bieniasz, M.; Kostecka-Gugała, A. Polifenole, hydroksykwasy karboksylowe ikarotenoidy w owocachsuchodrzewujadalnego (Lonicera coelurea var. kamtschatica). Przemysł Chem. 2014, 93, 948–953. [Google Scholar]
- Mikiciuk, G.; Mikiciuk, M.; Hawrot-Paw, M. Influence of superabsorbent polymers on the chemical composition of strawberry (Fragaria × ananassa Duch.) and biological activity in the soil. Folia Hortic. 2015, 27, 63–69. [Google Scholar] [CrossRef][Green Version]
- Simeone, A.M.; Nota, P.; Ceccarelli, D.; Del Toro, A.; Piazza, G.; De Salvador, F.R.; Caboni, E.; Krupa, T. Anthocyanins in blueberry cultivars: Effect of the growing area. Acta Hortic. 2012, 926, 713–716. [Google Scholar] [CrossRef]
- Soural, I.; Šnurkovič, P.; Bieniasz, M. l-Ascorbic acid content and antioxidant capacity in less-known fruit juices. Czech J. Food Sci. 2019, 37, 359–365. [Google Scholar] [CrossRef]
- Szot, I.; Szot, P.; Lipa, T.; Sosnowska, B.; Dobrzański, B. Determination of physical and chemical properties of cornelian cherry (Cornus mas l.) fruits depending on degree of ripening and ecotypes. Acta Sci. Pol. Hortorum Cultus 2019, 18, 251–262. [Google Scholar] [CrossRef]
- Bagnara, D.; Vincent, C. The role of insect pollination and plant genotype in strawberry fruit set and fertility. J. Hortic. Sci. 1988, 63, 69–75. [Google Scholar] [CrossRef]
- Bieniasz, M. The Differentiation of Highbush Blueberry Flower Buds. Acta Hortic. 2012, 932, 117–122. [Google Scholar] [CrossRef]
- Rutkowski, K.; Łysiak, G. Thinning Methods to Regulate Sweet Cherry Crops—A Review. Appl. Sci. 2022, 12, 1280. [Google Scholar] [CrossRef]
- Bieniasz, M.; Małodobry, M.; Dziedzic, E. The effect of foliar fertilization with calcium on quality of strawberry cultivars ‘Luna’ and ‘Zanta’. Acta Hortic. 2012, 926, 457–461. [Google Scholar] [CrossRef]
- Domagała-Świątkiewicz, I.; Błaszczyk, J. The effect of late spraying with calcium nitrate on mineral contents in ‘Elise’ apples. Folia Hortic. 2007, 19, 47–56. [Google Scholar]
- Domagała-Świątkiewicz, I.; Błaszczyk, J. Effect of calcium nitrate spraying on mineral contents and storability of ‘Elise’ apples. Pol. J. Environ. Stud. 2009, 18, 971–976. [Google Scholar]
- Przybyłko, S.; Kowalczyk, W.; Wrona, D. The effect of mycorrhizal fungi and PGPR on tree nutritional status and growth in organic apple production. Agronomy 2021, 11, 1402. [Google Scholar] [CrossRef]
- Rutkowski, K.P.; Kruczynska, D.E.; Żurawicz, E. Quality and shelf life of strawberry cultivars in Poland. Acta Hortic. 2006, 708, 329–332. [Google Scholar] [CrossRef]
- Sosna, I.; Kortylewska, D. Evaluation of several less knownpear (Pyruscommunis, L.) cultivars in the climatic conditions of Lower Silesia. Acta Agrobot. 2012, 65, 157–162. [Google Scholar] [CrossRef][Green Version]
- Tomala, K.; Araucz, M.; Żaczek, B. Growth dynamics and calcium content in McIntosh and Spartan apples. Commun. Soil Sci. Plant Anal. 1989, 20, 529–537. [Google Scholar] [CrossRef]
- Wysocki, K.; Kopytowski, J.; Bieniek, A.; Bojarska, J. The effect of substrates on yield and quality of strawberry fruits cultivated in heated foil tunnel. Zemdirb.-Agric. 2017, 104, 283–286. [Google Scholar] [CrossRef]
- Abu-Zahra, T.R. Effect of Cold Storage and Modified Atmosphere Packaging on Strawberry (Fragaria × Ananassa Duch.) cv. ‘Arben’ Fruit Keeping Quality. Biosci. Biotechnol. Res. Asia 2017, 14, 1251–1258. [Google Scholar] [CrossRef]
- Forney, F.C.; Kalt, W.; Jordan, M.A. The Composition of Strawberry Aroma is Influenced by Cultivar, Maturity, and Storage. HortScience 2000, 35, 1022–1026. [Google Scholar] [CrossRef]
- Mishra, R.; Kar, A. Effect of Storage on the Physicochemical and Flavour Attributes of Two Cultivars of Strawberry Cultivated in Northern India. Sci. World J. 2014, 2014, 794926. [Google Scholar] [CrossRef]
- Battino, M.; Beekwilder, J.; Denoyes-Rothan, B.; Laimer, M.; McDougall, G.J.; Mezzetti, B. Bioactive compounds in berries relevant to human health. Nutr. Rev. 2009, 67, 145–150. [Google Scholar] [CrossRef]
- Yang, D.; Xie, H.; Jiang, Y.; Wei, X. Phenolics from strawberry cv. Falandi and their antioxidant and α-glucosidase inhibitory activities. Food Chem. 2016, 194, 857–863. [Google Scholar] [CrossRef]
- Mazur, S.P.; Nes, A.; Wold, A.B.; Remberg, S.F.; Martinsen, B.K.; Aaby, K. Effects of ripeness and cultivar on chemical composition of strawberry (Fragaria × ananassa Duch.) fruits and their suitability for jam production as a stable product at different storage temperatures. Food Chem. 2014, 146, 412–422. [Google Scholar] [CrossRef]
- Domínguez, P.; Medina, J.J.; Miranda, L.; López-Aranda, J.M.; Ariza, M.T.; Soria, C.; Bielinski, M.S.; Torres-Quezadac, E.A.; Hernández-Ochoa, I. Effect of Planting and Harvesting Dates on Strawberry Fruit Quality under High Tunnels. Int. J. Fruit Sci. 2016, 16, 228–238. [Google Scholar] [CrossRef]
- Błaszczyk, J. Influence of harvest date and storage conditions on the content of chlorophyll pigments in pear peels. Folia Hortic. 2012, 24, 91–95. [Google Scholar] [CrossRef]
- Łysiak, G. The determination of harvest index of ‘Sampion’ apples intended for long storage. Acta Sci. Pol. Hortorum Cultus. 2011, 10, 3. [Google Scholar]
- Peano, C.; Giuggioli, N.R.; Girgenti, V. Effect of different packaging materials on postharvest quality of cv. Envie2 strawberry. Int. Food Res. J. 2014, 21, 1165–1170. [Google Scholar]
- Mirahmadi, F.; Hanafi, Q.M.; Alizadeh, M.; Mohamadi, H.; Sarsaifee, M. Effect of low temperature on physico-chemical properties of different strawberry cultivars. Afr. J. Food Sci. Technol. 2011, 2, 109–115. [Google Scholar]
- Cordenunsi, B.R.; Genovese, M.I.; Nascimento, J.R.O.; Hassimotto, N.M.A.; Santos, R.J.; Lajolo, F.M. Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 2005, 91, 113–121. [Google Scholar] [CrossRef]
- Sallato, B.V.; Torres, R.; Zoffoli, J.P.; Latorre, B.A. Effect of boscalid on postharvest decay of strawberry caused by Botrityscinerea and Rhizopus stolonifer. Span. J. Agric. Res. 2007, 5, 67–78. [Google Scholar] [CrossRef]
- Tournas, V.H.; Katsoudas, E. Mould and yeast flora in fresh berries, grapes and citrus fruits. Int. J. Food Microbiol. 2005, 23, 684–688. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.C.N.; Brecht, J.C.; Morais, A.M.; Sargent, S.A. Physiochemical changes during strawberry development in the field compared with those that occur in harvested fruits during storage. J. Sci. Food and Agric. 2006, 1, 180–190. [Google Scholar] [CrossRef]
- Ceredi, G.; Mari, M.; Antoniacci, L.; Montuschi, C.; De Paoli, E.; Gengotti, S. Ten years of field trials on grey mold control on strawberries. Acta Hortic. 2009, 842, 327–330. [Google Scholar] [CrossRef]
- Pathare, P.B.; Opra, U.L.; Vigneault, C.; Delele, M.A.; Al-Said, F.A. Design of packaging vents for cooling fresh horticultural produce. Food Bioprocess Technol. 2012, 5, 2031–2045. [Google Scholar] [CrossRef]
- Pelletier, W.; Brech, J.K.; Nunes, M.C.N.; Mond, J.P.E. Quality of strawberries shipped by truck from California to Florida as influenced by postharvest temperature management practices. Hortic. Technol. 2011, 21, 482–493. [Google Scholar] [CrossRef]
- Li, L.; Luo, Z.; Huang, X.; Zhang, L.; Zhao, P.; Ma, H. Label-free quantitative proteomics to investigate strawberry fruit proteome changes under controlled atmosphere and low temperature storage. J. Proteom. 2015, 120, 44–57. [Google Scholar] [CrossRef]
- Krivorot, A.M.; Daris, R. Shelf life and quality changes of strawberry cultivars. Acta Hortic. 2002, 567, 755–758. [Google Scholar] [CrossRef]
- Sandhya, S. Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Sci. Technol. 2010, 43, 381–392. [Google Scholar] [CrossRef]
- Ikegaya, A.; Ohba, S.; Nakajima, T.; Toyoizumi, T.; Ito, S.; Arai, E. Practical long-term storage of strawberries in refrigerated containers at ice temperature. Food Sci. Nutr. 2020, 8, 5138–5148. [Google Scholar] [CrossRef]
- Terry, L.A. Soft fruit. In Crop Post-Harvest: Science and Technology, 1st ed.; Rees, D., Farrell, G., Orchard, J., Eds.; Blackwell Publishing Ltd.: Boston, MA, USA, 2012; pp. 226–246. [Google Scholar]
- Ertan, U.; Ozelkok, S.; Celikel, F.; Kepenek, K. The effects of pre-cooling and increased atmospheric concentrations of CO2 on fruit quality and postharvest life of strawberries. Bahçe 1990, 19, 59–76. [Google Scholar]
- Bishop, D. Controlled atmosphere storage. In Cold and Chilled Storage Technology; Dellino, C.V.J., Ed.; Springer: Boston, MA, USA, 1997. [Google Scholar]
- Nunes, M.C.N.; Morais, A.M.M.B.; Brecht, J.K.; Sargent, S.A. Fruit maturity and storage temperature influence response of strawberries to controlled atmospheres. J. Am. Soc. Hortic. Sci. 2002, 127, 836–842. [Google Scholar] [CrossRef]
- Nunes, M.C.N.; Morais, A.M.M.B.; Brecht, J.K.; Sargent, S.A. Quality of strawberries after storage in controlled atmosphere at above optimum storage temperatures. Proc. Fla. State Hortic. Soc. 1995, 108, 273–278. [Google Scholar]
- Zhang, Y.; Yang, M.; Hou, G.; Zhang, Y.; Chen, Q.; Lin, Y.; Li, M.; Wang, Y.; He, W.; Wang, X. Effect of Genotype and Harvest Date on Fruit Quality, Bioactive Compounds, and Antioxidant Capacity of Strawberry. Horticulturae 2022, 8, 348. [Google Scholar] [CrossRef]
- Kader, A.A. Fruit maturity, ripening, and quality relationships. Acta Hortic. 1999, 485, 203–208. [Google Scholar] [CrossRef]
- Ariza, M.T.; Martiınez-Ferria, E.; Domiınguez, P.; Medina, J.J.; Miranda, L.; Soria, C. Effects of harvest time on functional compounds and fruit antioxidant capacity in ten strawberry cultivars. J. Berry Res. 2015, 5, 71–80. [Google Scholar] [CrossRef]
- Wang, S.Y.; Camp, M.J. Temperatures after bloom affect plant growth and fruit quality of strawberry. Sci. Hortic. 2000, 85, 183–199. [Google Scholar] [CrossRef]
- MacKenzie, S.J.; Chandler, C.K.; Hasing, T.; Whitaker, V.M. The role of temperature in the late-season decline in soluble solids content of strawberry fruit in a subtropical production system. HortScience 2011, 46, 1562–1566. [Google Scholar] [CrossRef]
- Chandra, D.; Choi, A.J.; Lee, J.S.; Lee, J.; Kim, J.G. Changes in Physicochemical and Sensory Qualities of “Goha” Strawberries Treated with Different Conditions of Carbon Dioxide. Agric. Sci. 2015, 6, 325–334. [Google Scholar] [CrossRef][Green Version]
- Alamar, M.C.; Collings, E.; Cools, K.; Terry, L.A. Impact of controlled atmosphere scheduling on strawberry and imported avocado fruit. Postharvest Biol. Technol. 2017, 134, 76–86. [Google Scholar] [CrossRef]
- Ebtsam, H.A.; Ragab, M.E.; Abd El-Gawad, H.G.; Emam, M.S. Effect of active and passive modified atmosphere packaging on quality attributes of strawberry fruits during cold storage. Arab Univ. J. Agric. Sci. 2016, 24, 157–168. [Google Scholar]
- Ozkaya, O.; Dündar, O.; Camerata Scovazzo, G.; Volpe, G. Evaluation of quality parameters of strawberry fruits in modified atmosphere packaging during storage. Afr. J. Biotechnol. 2009, 8, 789–793. [Google Scholar]
- Holcroft, D.M.; Kader, A.A. Controlled atmosphere-induced changes in pH and organic acid metabolism may affect color of stored strawberry fruit. Postharvest Biol. Technol. 1999, 17, 19–32. [Google Scholar] [CrossRef]
- Almenar, E.; Hernández-Muñoz, P.; Laragón, J.M.; Catalá, R.; Gavara, R. Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.). J. Agric. Food Chem. 2006, 54, 86–91. [Google Scholar] [CrossRef]
- Fonseca, S.C.; Oliveira, F.A.R.; Brecht, J.K. Modeling respiration rate of fresh fruits and vegetables for modified atmosphere packages. A Review. J. Food Eng. 2002, 52, 99–119. [Google Scholar] [CrossRef]
- Panda, A.K.; Goyal, R.K.; Godara, A.K.; Sharma, V.K. Effect of packaging materials on the shelf-life of strawberry cv. Sweet Charlie under room temperature storage. J. Appl. Nat. Sci. 2016, 8, 1290–1294. [Google Scholar] [CrossRef]
- Choi, H.J.; Bae, Y.S.; Lee, J.S.; Park, M.H.; Kim, J.G. Effects of Carbon Dioxide Treatment and Modified Atmosphere Packaging on the Quality of Long Distance Transporting ‘Maehyang’ Strawberry. Agric. Sci. 2016, 7, 813–821. [Google Scholar]
- Robinson, J.E.; Browne, K.M.; Burton, W.G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 1975, 81, 399–408. [Google Scholar] [CrossRef]
- Shiina, T. Food aging and deterioration of freshness. In Syokuhin-to Rekka (Food and Its Deterioration); Tsushida, T., Ed.; Korin: Tokyo, Japan, 2003; pp. 205–257. [Google Scholar]
Year | Harvest | Fruit Firmness [N] | Soluble Solids Content [%] | Total acidity [% Citric Acid] | Ratio SSC/TA | Respiration rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | 1 | 3.2 ± 0.24 a * | 7.5 ± 0.34 a | 0.96 ± 0.07 b | 7.9 ± 0.64 a | 67.9 ± 11.46 ab |
2 | 3.3 ± 0.18 a | 7.6 ± 0.28 a | 0.76 ± 0.03 a | 10.0 ± 0.56 b | 73.9 ± 12.08 b | |
3 | 5.7 ± 0.38 b | 9.4 ± 0.38 b | 0.77 ± 0.04 a | 12.2 ± 0.75 c | 61.6 ± 11.44 a | |
2019 | 1 | 3.1 ± 0.32 a | 8.7 ± 0.57 c | 1.12 ± 0.06 c | 7.8 ± 0.25 a | 106.4 ± 24.66 c |
2 | 3.2 ± 0.22 a | 8.0 ± 0.27 b | 0.93 ± 0.06 b | 8.6 ± 0.48 b | 56.7 ± 16.87 b | |
3 | 3.8 ± 0.23 b | 7.6 ± 0.27 a | 0.84 ± 0.09 a | 9.1 ± 1.06 b | 51.7 ± 13.39 b | |
4 | 4.9 ± 0.54 c | 10.5 ± 0.61 d | 0.82 ± 0.03 a | 12.8 ± 0.56 c | 36.1 ± 7.70 a | |
2020 | 1 | 3.2 ± 0.11 a | 8.7 ± 0.76 b | 1.03 ± 0.09 c | 8.5 ± 0.85 a | 55.5 ± 9.40 b |
2 | 3.4 ± 0.17 b | 7.9 ± 0.56 a | 0.89 ± 0.03 b | 8.9 ± 0.79 b | 61.8 ± 10.85 b | |
3 | 4.3 ± 0.35 c | 8.3 ± 0.40 ab | 0.78 ± 0.05 a | 10.7 ± 0.61 c | 47.1 ± 31.35 a |
Year | Harvest | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | 1 | 3.0 ± 0.14 a * | 9.7 ± 0.26 a | 1.19 ± 0.08 b | 8.2 ± 0.78 a | 77.5 ± 17.70 c |
2 | 3.0 ± 0.20 a | 8.7 ± 0.51 a | 0.77 ± 0.03 a | 11.4 ± 0.62 b | 65.0 ± 13.45 b | |
3 | 4.7 ± 0.36 b | 10.3 ± 0.44 c | 0.72 ± 0.05 a | 14.3 ± 0.94 c | 29.0 ± 8.27 a | |
2019 | 1 | 3.5 ± 0.11 a | 11.0 ± 0.67 b | 1.21 ± 0.05 c | 9.1 ± 0.78 a | 112.0 ± 26.11 d |
2 | 3.6 ± 0.21 a | 8.3 ± 0.22 a | 0.93 ± 0.07 b | 8.7 ± 0.80 a | 64.0 ± 20.55 c | |
3 | 3.4 ± 0.18 a | 8.4 ± 0.20 a | 0.74 ± 0.04 a | 11.5 ± 0.42 b | 40.1 ± 18.37 b | |
4 | 5.3 ± 0.32 b | 11.0 ± 0.48 b | 0.79 ± 0.03 a | 13.9 ± 0.66 c | 24.0 ± 9.02 a | |
2020 | 1 | 3.1 ± 0.53 a | 9.3 ± 0.33 b | 0.89 ± 0.10 b | 10.9 ± 0.71 a | 44.9 ± 9.85 a |
2 | 4.1 ± 0.30 b | 9.1 ± 0.29 ab | 0.84 ± 0.03 a | 10.8 ± 0.36 a | 47.5 ± 11.83 a | |
3 | 4.9 ± 0.44 c | 8.9 ± 0.58 a | 0.86 ± 0.02 ab | 10.4 ± 0.92 a | 47.1 ± 20.13 a |
Year | Harvest | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | 1 | 3.3 ± 0.16 a * | 9.1 ± 0.34 b | 0.79 ± 0.05 b | 11.6 ± 0.74 a | 84.0 ± 16.76 c |
2 | 3.3 ± 0.22 a | 8.4 ± 0.62 a | 0.68 ± 0.04 a | 12.5 ± 1.08 a | 50.5 ± 10.59 b | |
3 | 5.5 ± 0.50 b | 10.9 ± 0.58 c | 0.67 ± 0.02 a | 16.6 ± 0.80 b | 37.4 ± 9.45 a | |
2019 | 1 | 3.0 ± 0.27 a | 11.0 ± 0.46 d | 1.22 ± 0.09 c | 9.5 ± 1.20 a | 128.0 ± 15.08 d |
2 | 3.0 ± 0.19 a | 8.2 ± 0.35 a | 0.94 ± 0.08 b | 8.8 ± 0.90 a | 66.8 ± 10.38 c | |
3 | 3.6 ± 0.67 b | 8.5 ± 0.54 b | 0.73 ± 0.07 a | 11.8 ± 1.68 b | 45.3 ± 5.73 b | |
4 | 4.5 ± 0.80 c | 10.4 ± 0.36 c | 0.74 ± 0.06 a | 14.4 ± 1.29 c | 28.4 ± 9.26 a | |
2020 | 1 | 4.3 ± 0.17 b | 11.3 ± 0.46 c | 0.88 ± 0.12 b | 12.9 ± 1.70 b | 49.2 ± 14.78 c |
2 | 3.9 ± 0.23 a | 8.2 ± 0.70 a | 0.69 ± 0.06 a | 11.8 ± 0.66 a | 39.9 ± 14.15 b | |
3 | 5.1 ± 0.49 c | 10.7 ± 0.72 b | 0.72 ± 0.07 a | 14.8 ± 1.21 c | 34.3 ± 7.10 a |
Year | Storage Conditions | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | AA | 3.6 ± 0.40 a * | 8.7 ± 0.72 b | 0.90 ± 0.05 b | 9.7 ± 1.28 a | 63.6 ± 22.86 c |
MAP | 4.0 ± 0.56 b | 8.4 ± 0.68 a | 0.87 ± 0.04 ab | 9.8 ± 1.16 a | 35.0 ± 9.98 a | |
CA | 4.1 ± 0.80 b | 8.4 ± 0.76 a | 0.85 ± 0.06 a | 9.9 ± 1.40 a | 48.4 ± 12.04 b | |
2019 | AA | 3.5 ± 0.69 a | 8.8 ± 1.34 b | 0.89 ± 0.09 a | 9.6 ± 1.70 a | 80.2 ± 24.44 c |
MAP | 3.6 ± 0.79 a | 9.0 ± 1.47 c | 0.90 ± 0.12 ab | 9.9 ± 1.79 b | 64.3 ± 23.46 a | |
CA | 4.0 ± 1.03 b | 8.6 ± 1.31 a | 0.92 ± 0.11 b | 9.7 ± 1.59 ab | 69.9 ± 14.75 b | |
2020 | AA | 3.7 ± 0.41 a | 8.4 ± 0.67 b | 0.86 ± 0.07 b | 9.8 ± 0.98 a | 69.8 ± 26.64 c |
MAP | 3.9 ± 0.52 b | 8.3 ± 0.69 b | 0.83 ± 0.07 a | 10.1 ± 1.13 a | 53.6 ± 23.78 a | |
CA | 4.1 ± 0.42 c | 8.1 ± 0.70 a | 0.82 ± 0.05 a | 10.0 ± 1.22 a | 64.7 ± 25.76 b |
Year | Storage conditions | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | AA | 3.6 ± 0.74 a * | 9.9 ± 1.16 a | 0.97 ± 0.12 a | 10.2 ± 1.88 a | 69.5 ± 30.14 b |
MAP | 3.7 ± 0.68 ab | 10.1 ± 1.24 a | 0.94 ± 0.10 a | 10.7 ± 1.64 a | 52.7 ± 21.34 a | |
CA | 4.0 ± 0.70 b | 10.1 ± 1.22 a | 0.95 ± 0.13 a | 10.6 ± 1.79 a | 58.4 ± 20.96 a | |
2019 | AA | 3.2 ± 0.66 a | 9.9 ± 1.91 a | 0.93 ± 0.11 a | 10.9 ± 2.25 a | 82.3 ± 23.54 c |
MAP | 3.5 ± 0.77 b | 9.9 ± 1.95 a | 0.94 ± 0.14 a | 10.7 ± 2.36 a | 54.5 ± 18.91 a | |
CA | 3.8 ± 0.87 c | 9.8 ± 1.82 a | 0.93 ± 0.12 a | 10.8 ± 2.11 a | 61.1 ± 34.69 b | |
2020 | AA | 3.5 ± 0.60 a | 9.1 ± 1.18 ab | 0.87 ± 0.10 b | 10.5 ± 1.65 a | 91.5 ± 34.75 c |
MAP | 3.7 ± 0.63 b | 8.9 ± 1.10 a | 0.81 ± 0.10 a | 11.1 ± 1.87 b | 54.8 ± 23.63 a | |
CA | 4.3 ± 0.78 c | 9.2 ± 1.07 b | 0.80 ± 0.09 a | 11.6 ± 1.52 c | 61.1 ± 14.94 b |
Year | Storage Conditions | Fruit Firmness [N] | Soluble Solids Content [%] | Total Acidity [% Citric Acid] | Ratio SSC/TA | Respiration Rate [mg CO2kg−1h−1] |
---|---|---|---|---|---|---|
2018 | AA | 4.1 ± 0.84 a * | 10.5 ± 1.46 b | 0.89 ± 0.10 b | 11.8 ± 1.18 a | 77.3 ± 30.78 c |
MAP | 4.0 ± 0.76 a | 10.3 ± 1.22 ab | 0.80 ± 0.08 a | 12.9 ± 1.48 b | 28.9 ± 18.88 a | |
CA | 4.2 ± 0.92 a | 10.0 ± 1.40 a | 0.80 ± 0.09 a | 12.5 ± 1.42 b | 53.5 ± 24.06 b | |
2019 | AA | 3.0 ± 0.78 a | 7.9 ± 1.27 a | 0.59 ± 0.11 a | 13.4 ± 1.93 c | 56.4 ± 30.82 c |
MAP | 4.0 ± 0.37 c | 8.6 ± 1.20 b | 0.70 ± 0.12 b | 12.4 ± 1.65 b | 32.5 ± 21.69 a | |
CA | 3.8 ± 0.30 b | 8.1 ± 1.20 a | 0.71 ± 0.11 b | 11.4 ± 1.64 a | 39.9 ± 14.14 b | |
2020 | AA | 4.5 ± 0.89 a | 10.2 ± 1.55 b | 0.76 ± 0.08 b | 13.6 ± 1.35 a | 64.2 ± 23.96 c |
MAP | 5.4 ± 0.88 b | 9.8 ± 1.48 a | 0.70 ± 0.07 a | 14.0 ± 1.63 b | 45.0 ± 20.26 a | |
CA | 6.1 ± 1.05 c | 10.0 ± 1.63 ab | 0.71 ± 0.10 a | 14.0 ± 1.59 b | 60.4 ± 20.37 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błaszczyk, J.; Bieniasz, M.; Nawrocki, J.; Kopeć, M.; Mierzwa-Hersztek, M.; Gondek, K.; Zaleski, T.; Knaga, J.; Bogdał, S. The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture 2022, 12, 1193. https://doi.org/10.3390/agriculture12081193
Błaszczyk J, Bieniasz M, Nawrocki J, Kopeć M, Mierzwa-Hersztek M, Gondek K, Zaleski T, Knaga J, Bogdał S. The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture. 2022; 12(8):1193. https://doi.org/10.3390/agriculture12081193
Chicago/Turabian StyleBłaszczyk, Jan, Monika Bieniasz, Jacek Nawrocki, Michał Kopeć, Monika Mierzwa-Hersztek, Krzysztof Gondek, Tomasz Zaleski, Jarosław Knaga, and Stanisław Bogdał. 2022. "The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers" Agriculture 12, no. 8: 1193. https://doi.org/10.3390/agriculture12081193
APA StyleBłaszczyk, J., Bieniasz, M., Nawrocki, J., Kopeć, M., Mierzwa-Hersztek, M., Gondek, K., Zaleski, T., Knaga, J., & Bogdał, S. (2022). The Effect of Harvest Date and Storage Conditions on the Quality of Remontant Strawberry Cultivars Grown in a Gutter System under Covers. Agriculture, 12(8), 1193. https://doi.org/10.3390/agriculture12081193