Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Grafting and Healing Process
2.3. Light Treatments in the Healing Chamber (First Phase)
2.4. Acclimatization Process
2.5. Transplantation (Second Phase)
2.6. Sampling and Measurements
2.6.1. Total Phenolic Compounds
2.6.2. Total Antioxidant Capacity (FRAP)
2.7. Statistical Analysis
3. Results
3.1. Exit from the Healing Chamber (First Phase)
3.2. Transplantation (Second Phase)
4. Discussion
4.1. Exit from the Healing Chamber (First Phase)
4.2. Transplantation (Second Phase)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT Database; FAO: Rome, Italy, 2012. [Google Scholar]
- Lee, J.M.; Kubota, C.; Tsao, S.J.; Bie, Z.; Echevarria, P.H.; Morra, L.; Oda, M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 2010, 127, 93–105. [Google Scholar] [CrossRef]
- Mudge, K.; Janick, J.; Scofield, S.; Goldschmidt, E.E. A history of grafting. Hortic. Rev. 2009, 35, 437–493. [Google Scholar]
- Nieves, F.G.; Carvajal, M.; Olmos, E. Graft union formation in tomato plants: Peroxidase and catalase involvement. Ann. Bot. 2004, 93, 53–60. [Google Scholar]
- Yang, X.; Hu, X.; Zhang, M.; Xu, J.; Ren, R.; Liu, G.; Chen, X. Effect of low night temperature on graft union formation in watermelon grafted onto bottle gourd rootstock. Sci. Hortic. 2016, 212, 29–34. [Google Scholar] [CrossRef]
- Hunter, D.C.; Burritt, D.J. Light quality influences adventitious shoot production from cotyledon explants of lettuce (Lactuca sativa L.). In Vitro Cell. Dev. Biol. Plant 2004, 40, 215–220. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Bantis, F.; Panteris, E.; Dangitsis, C.; Carrera, E.; Koukounaras, A. Blue light promotes vascular reconnection, while red light boosts the physiological response and quality of grafted watermelon seedlings. Sci. Rep. 2021, 11, 21754. [Google Scholar] [CrossRef]
- Morrow, R.C. LED lighting in horticulture. Hortic. Sci. 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- D’Souza, C.; Yuk, H.G.; Khoo, G.H.; Zhou, W. Application of light-emitting diodes in food production, postharvest preservation, and microbiological food safety. Compr. Rev. Food Sci. Food Saf. 2015, 14, 719–740. [Google Scholar] [CrossRef]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Metereol. 1972, 9, 191–216. [Google Scholar] [CrossRef]
- Zheng, J.; Gan, P.; Ji, F.; He, D.; Yang, P. Growth and Energy Use Efficiency of Grafted Tomato Transplants as Affected by LED Light Quality and Photon Flux Density. Agriculture 2021, 11, 816. [Google Scholar] [CrossRef]
- Vu, N.-T.; Kim, Y.-S.; Kang, H.-M.; Kim, I.-S. Influence of short-term irradiation during pre- and post-grafting period on the graft-take ratio and quality of tomato seedlings. Hortic. Environ. Biotechnol. 2014, 55, 27–35. [Google Scholar] [CrossRef]
- Sharma, N.; Abrams, S.R.; Waterer, D.R. Uptake, movement, activity, and persistence of an abscisic acid analog (8′ acetylene ABA methyl ester) in marigold and tomato. J. Plant Growth Regul. 2005, 24, 28–35. [Google Scholar] [CrossRef]
- Passioura, J.B. Soil conditions and plant growth. Plant Cell Environ. 2002, 25, 311–318. [Google Scholar] [CrossRef]
- Waheed, H.; Javaid, M.M.; Shahid, A.; Ali, H.H.; Nargis, J.; Mehmood, A. Impact of foliar-applied Hoagland’s nutrient solution on growth and yield of mash bean (Vigna mungo L.) under different growth stages. J. Plant Nutr. 2019, 42, 1133–1141. [Google Scholar] [CrossRef]
- Al-Shwaiyat, M.; Denisenko, T.; Miekh, Y.; Vishnikin, A. Spectrophotometric determination of polyphenols in green teas with 18-molybdodiphosphate. Chem. Chem. Technol. 2018, 12, 135–142. [Google Scholar] [CrossRef]
- Fidrianny, I.; Sari, P.I.; Wirasutisna, K.R. Antioxidant activities in various peel extracts of four varieties rambutan (Nephelium lappaceum) using DPPH, FRAP assays. Int. J. Pharmac. Phytoc. Res. 2015, 7, 280–285. [Google Scholar]
- Bantis, F.; Koukounaras, A.; Siomos, A.S.; Fotelli, M.N.; Kintzonidis, D. Bichromatic red and blue LEDs during healing enhance the vegetative growth and quality of grafted watermelon seedlings. Sci. Hortic. 2020, 261, 109000. [Google Scholar] [CrossRef]
- Nelson, J.; Bugbee, B. Economic analysis of greenhouse lighting: Light emitting diodes vs. high intensity discharge fixtures. PLoS ONE 2014, 9, e99010. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Xin, G.; Wei, M.; Shi, Q.; Yang, F.; Wang, X. Carbohydrate accumulation and sucrose metabolism responses in tomato seedling leaves when subjected to different light qualities. Sci. Hortic. 2017, 225, 490–497. [Google Scholar] [CrossRef]
- Dougher, T.A.; Bugbee, B. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. J. Am. Soc. Hortic. Sci. 2004, 129, 467–472. [Google Scholar] [CrossRef] [Green Version]
- Javanmardi, J.; Emami, S. Response of tomato and pepper transplants to light spectra provided by light emitting diodes. Int. J. Veget. Sci. 2013, 19, 138–149. [Google Scholar] [CrossRef]
- Głowacka, B. The effect of blue light on the height and habit of the tomato (Lycopersicon esculentum Mill.) transplant. Folia Hortic. 2004, 16, 3–10. [Google Scholar]
- Casal, J.J. Photoreceptor signaling networks in plant responses to shade. Annu. Rev. Plant Biol. 2013, 64, 403–427. [Google Scholar] [CrossRef]
- Hernández, R.; Eguchi, T.; Deveci, M.; Kubota, C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci. Hortic. 2016, 213, 270–280. [Google Scholar] [CrossRef] [Green Version]
- Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.J.; Visser, R.G.F.; Marcelis, L.F.M. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. Acta Hortic. 2016, 1134, 251–258. [Google Scholar] [CrossRef]
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menexes, G.; Dangitsis, C.; Kintzonidis, D. Assessing quantitative criteria for characterization of quality categories of grafted watermelon seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Cope, K.R.; Snowden, M.C.; Bugbee, B. Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broad-spectrum light sources. Photochem. Photobiol. 2014, 90, 574–584. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H.; Chang, H.M. A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Folta, K.M.; Lieg, E.J.; Durham, T.; Spalding, E.P. Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol. 2003, 133, 1464–1470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernández, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 121, 66–74. [Google Scholar] [CrossRef]
- Björkman, O.; Demmig, B. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origin. Planta 1987, 170, 489–504. [Google Scholar] [CrossRef]
- Lattanzio, V.; Lattanzio, V.M.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem. Adv. Res. 2006, 661, 23–67. [Google Scholar]
- Długosz-Grochowska, O.; Kołton, A.; Wojciechowska, R. Modifying folate and polyphenol concentrations in Lamb’s lettuce by the use of LED supplemental lighting during cultivation in greenhouses. J. Funct. Foods 2016, 26, 228–237. [Google Scholar] [CrossRef]
- Bantis, F.; Fotelli, M.; Ilic, Z.S.; Koukounaras, A. Physiological and Phytochemical Responses of Spinach Baby Leaves Grown in a PFAL System with LEDs and Saline Nutrient Solution. Agriculture 2020, 10, 574. [Google Scholar] [CrossRef]
Waveband | Light Treatment | |||||
---|---|---|---|---|---|---|
FL | W | B | 24B | 12B | R | |
Blue%; 400–499 nm | 35 | 11 | 100 | 24 | 12 | 0 |
Green%; 500–599 nm | 24 | 18 | 0 | 0 | 0 | 0 |
Red%; 600–699 nm | 37 | 70 | 0 | 76 | 88 | 100 |
Far-red%; 700–780 nm | 4 | 1 | 0 | 0 | 0 | 0 |
PPS | 0.82 | 0.89 | 0.51 | 0.89 | 0.89 | 0.89 |
Parameter | Light Treatment | ||||||
---|---|---|---|---|---|---|---|
FL | W | B | 24B | 12B | R | p-Value | |
Fv/Fm d7 | 0.84 ± 0.00 ab | 0.84 ± 0.00 ab | 0.84 ± 0.00 a | 0.84 ± 0.00 ab | 0.83 ± 0.00 b | 0.84 ± 0.00 ab | 0.136 |
Fv/Fm d14 | 0.81 ± 0.00 a | 0.80 ± 0.01 a | 0.80 ± 0.00 a,* | 0.80 ± 0.00 a,* | 0.81 ± 0.00 a | 0.81 ± 0.00 a | 0.509 |
TPC d7 | 0.33 ± 0.03 a | 0.29 ± 0.03 a | 0.30 ± 0.01 a | 0.34 ± 0.01 a | 0.29 ± 0.01 a | 0.32 ± 0.02 a | 0.435 |
TPC d14 | 0.30 ± 0.01 a | 0.28 ± 0.01 ab | 0.25 ± 0.00 b,* | 0.29 ± 0.03 a | 0.26 ± 0.01 ab | 0.28 ± 0.00 ab | 0.060 |
FRAP d7 | 155.6 ± 7.1 a | 168.1 ± 6.0 a | 162.3 ± 17.7 a | 165.6 ± 1.8 a | 166.9 ± 3.6 a | 168.1 ± 5.5 a | 0.866 |
FRAP d14 | 146.5 ± 5.1 c | 166.4 ± 8.7 abc | 165.5 ± 8.3 abc | 179.1 ± 6.8 a,* | 171.4 ± 7.5 ab | 152.4 ± 2.4 bc | 0.048 |
R/SA d7 | 0.74 ± 0.02 a | 0.61 ± 0.01 b,* | 0.68 ± 0.07 ab | 0.71 ± 0.02 a | 0.70 ± 0.01 ab | 0.69 ± 0.02 ab | 0.085 |
R/SA d14 | 0.57 ± 0.01 a | 0.63 ± 0.03 a | 0.64 ± 0.03 a | 0.73 ± 0.09 a | 0.56 ± 0.11 a | 0.62 ± 0.03 a | 0.430 |
%DWR d7 | 13.8 ± 1.4 a | 13.6 ± 0.9 a | 13.7 ± 4.2 a | 17.8 ± 0.8 a | 16.5 ± 0.2 a | 14.0 ± 0.8 a | 0.459 |
%DWR d14 | 9.4 ± 0.1 b | 10.3 ± 0.5 ab | 13.0 ± 2.2 a,* | 12.3 ± 1.0 ab | 11.1 ± 1.2 ab | 10.6 ± 0.5 ab | 0.115 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melissas, C.; Bantis, F.; Dangitsis, C.; Kostas, S.; Koukounaras, A. Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock. Agriculture 2022, 12, 797. https://doi.org/10.3390/agriculture12060797
Melissas C, Bantis F, Dangitsis C, Kostas S, Koukounaras A. Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock. Agriculture. 2022; 12(6):797. https://doi.org/10.3390/agriculture12060797
Chicago/Turabian StyleMelissas, Christos, Filippos Bantis, Christodoulos Dangitsis, Stefanos Kostas, and Athanasios Koukounaras. 2022. "Proposed Light Wavelengths during Healing of Grafted Tomato Seedlings Enhance Their Adaptation to Transplant Shock" Agriculture 12, no. 6: 797. https://doi.org/10.3390/agriculture12060797