A Comprehensive Review of Organochlorine Pesticide Monitoring in Agricultural Soils: The Silent Threat of a Conventional Agricultural Past
Abstract
:1. Introduction
1.1. Research Methodology—Inclusion/Exclusion Criteria
1.2. General Overview of Organochlorine Pesticides
1.3. Context of This Review
1.4. Practices Used in Soil Monitoring and Surveys of OCPs
2. Determination of Organochloride Pesticide Residues in Soil
2.1. Analytes to Be Determined and Their Physico-Chemical Properties—A Step before Chemical Analysis
2.2. Sampling
3. Chemical Analysis
3.1. Extraction Techniques Used for Solid Environmental Samples
3.1.1. Solvent Extraction Techniques
Conventional Solvent Extraction Techniques
Modern Extraction Techniques
3.1.2. Other Extraction and Clean-Up Techniques
QuEChERS Extraction Technique
3.1.3. An Overview of the Extraction Procedures
3.2. Analytical Methods
4. OCPs’ Occurrence in Agricultural Soil
4.1. European Countries
4.2. African Countries
4.3. Asian Countries
4.4. American Countries
4.5. Overall Integration of the Studies Outcomes
5. World-Wide Data Combination
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jones, K.C.; de Voogt, P. Persistent organic pollutants (POPs): State of the science. Environ. Pollut. 1999, 100, 209–221. [Google Scholar] [CrossRef]
- Aikpokpodion, P.E.; Lajide, L.; Aiyesanmi, A.F.; Lacorte, S.; Grimalt, J.; Carretero, J. Residues of diazion and endosulfan in cocoa beans collected from three cocoa ecological zones in Nigeria. Eur. J. Appl. Sci. 2012, 4, 265–272. [Google Scholar] [CrossRef]
- Egbe, C.C.; Oyetibo, G.O.; Ilor, M.O. Ecological impact of organochlorine pesticides consortium on autochthonous microbial community in agricultural soil. Ecotoxicol. Environ. Saf. 2021, 207, 111319. [Google Scholar] [CrossRef] [PubMed]
- Joseph, L.; Paulose, S.V.; Cyril, N.; Santhosh, S.K.; Varghese, A.; Nelson, A.B.; Kasu, S. Organochlorine pesticides in the soils of Cardamom Hill Reserve (CHR), Kerala, India: Geo spatial distribution, ecological and human health risk assessment. Environ. Chem. Ecotoxicol. 2020, 2, 1–11. [Google Scholar] [CrossRef]
- Fosu-Mensah, B.Y.; Okoffo, E.D.; Darko, G.; Gordon, C. Assessment of organochlorine pesticide residues in soils and drinking water sources from cocoa farms in Ghana. SpringerPlus 2016, 5, 869. [Google Scholar] [CrossRef] [Green Version]
- Rissato, S.R.; Galhiane, M.S.; Ximenes, V.F.; de Andrade, R.M.B.; Talamoni, J.L.B.; Libânio, M.; de Almeida, M.V.; Apon, B.M.; Cavalari, A.A. Organochlorine pesticides and polychlorinated biphenyls in soil and water samples in the Northeastern part of São Paulo State, Brazil. Chemosphere 2006, 65, 1949–1958. [Google Scholar] [CrossRef]
- Olisah, C.; Okoh, O.O.; Okoh, A.I. Occurrence of organochlorine pesticide residues in biological and environmental matrices in Africa: A two-decade review. Heliyon 2020, 6, e03518. [Google Scholar] [CrossRef]
- Dan, Y.; Shi-Hua, Q.I.; Jia-Quan, Z.; Ling-Zhi, T.; Jun-Peng, Z.; Yuan, Z.; Feng, X.U.; Xin-Li, X.; Ying, H.U.; Wei, C.; et al. Residues of Organochlorine Pesticides (OCPs) in Agricultural Soils of Zhangzhou City, China. Pedosphere 2012, 22, 178–189. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). Available online: https://www.unep.org/ (accessed on 16 April 2021).
- Zhang, H.B.; Luo, Y.M.; Zhao, Q.G.; Wong, M.H.; Zhang, G.L. Residues of organochlorine pesticides in Hong Kong soils. Chemosphere 2006, 63, 633–641. [Google Scholar] [CrossRef]
- EI-Shahawi, M.S.; Hamza, A.; Bashammakh, A.S.; Al-Saggaf, W.T. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef]
- Grimalt, J.O.; Van Drooge, B.L.; Ribes, A.; Vilanova, R.M.; Fernandez, P.; Appleby, P. Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes. Chemosphere 2004, 54, 1549–1561. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Mol, H.G.J.; Zomer, P.; Tienstra, M.; Ritsema, C.J.; Geissen, V. Pesticide residues in European agricultural soils–A hidden reality unfolded. Sci. Total Environ. 2019, 653, 1532–1545. [Google Scholar] [CrossRef] [PubMed]
- Covaci, A.; Manirakiza, P.; Schepens, P. Persistent Organochlorine Pollutants in Soils from Belgium, Italy, Greece, and Romania. Bull. Environ. Contam. Toxicol. 2002, 68, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Orton, T.G.; Saby, N.P.A.; Arrouays, D.; Jolivet, C.C.; Villanneau, E.J.; Marchant, B.P.; Caria, G.; Barriuso, E.; Briand, O. Spatial distribution of Lindane concentration in topsoil across France. Sci. Total Environ. 2013, 443, 338–350. [Google Scholar] [CrossRef]
- Teng, Y.; Wu, J.; Lu, S.; Wang, Y.; Jiao, X.; Song, L. Soil and soil environmental quality monitoring in China: A review. Environ. Int. 2014, 69, 177–199. [Google Scholar] [CrossRef]
- Hernandez, L.M.; Fernandez, M.A.; Gonzalez, M.J. Organochlorine Pollutants in Water, Soils, and Earthworms in the Guadalquivir River, Spain. Bull. Environ. Contam. Toxicol. 1992, 49, 192–198. [Google Scholar] [CrossRef]
- Taiwo, A.M. A review of environmental and health effects of organochlorine pesticide residues in Africa. Chemosphere 2019, 220, 1126–1140. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [Green Version]
- Aktar, M.D.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisc. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kumar, B.; Kumar, S.; Gaur, R.; Goel, G.; Mishra, M.; Singh, S.K.; Sharma, C.S. Persistent organochlorine pesticides and polychlorinated biphenyls in intensive agricultural soils from North India. Soil Water Res. 2011, 6, 190–197. [Google Scholar] [CrossRef]
- Sparling, D.W.; Gaines, K.F.; Linder, G. Chemistry and Effect of Major Families of Contaminants: Organochlorine Pesticides. In Ecotoxicology Essentials: Environmental Contaminants and Their Biological Effects on Animals and Plants; Chapter 4; Elsevier Science & Technology: San Diego, CA, USA, 2016; pp. 69–104. [Google Scholar]
- Wong, F.; Alegria, H.A.; Bidleman, T.F. Organochlorine pesticides in soils of Mexico and the potential for soil–air exchange. Environ. Pollut. 2010, 158, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Smaranda, C.; Gavrilescu, M. Migration and fate of persistent organic pollutants in the atmosphere-a modelling approach. Environ. Eng. Manag. J. 2008, 7, 743–761. [Google Scholar]
- EI Bouraie, M.M.; El Barbary, A.A.; Yehia, M. Determination of organochlorine pesticide (OCPs) in shallow observation wells from El-Rahawy contaminated area, Egypt. Environ. Res. Eng. Manag. 2011, 57, 28–38. [Google Scholar]
- World Health Organization (WHO). A Review of Selected Persistent Organic Pollutants. Available online: https://www.who.int/ipcs/assessment/en/pcs_95_39_2004_05_13.pdf. (accessed on 20 February 2022).
- Yuan, G.L.; Wu, M.Z.; Sun, Y.; Li, J.; Han, P.; Wang, G.H. Concentration and chiral signature of chlordane in soils and sediments of the Central Tibetan Plateau, China: Transformation in the surficial process. Environ. Pollut. 2015, 206, 282–288. [Google Scholar] [CrossRef]
- Berntssen, M.H.G.; Maage, A.; Lundebye, A.-K. Chemical Contamination of Finfish with Organic Pollutants and Metals. In Chemical Contaminants and Residues in Food, 2nd ed.; Schrenk, D., Cartus, A., Eds.; Woodhead Publishing: Woodhead, UK, 2017; Chapter 20; pp. 517–551. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profiles: Toxicological Profile for Chlordane ATSDR; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2021. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp1.pdf (accessed on 3 June 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Heptachlor and Heptachlore Epoxide; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2007. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp12.pdf (accessed on 2 June 2021).
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for DDT, DDE, and DDD; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2022. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf (accessed on 4 June 2021).
- Cheremisinoff, N.P. DDT and Related Compounds. In Handbook of Pollution Prevention and Cleaner Production: Best Practices in the Agrochemical Industry; Cheremisinoff, N.P., Rosenfeld, P.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; Chapter 6; pp. 247–259. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological Profile for Aldrin/Dieldrin; Agency for Toxic Substances and Disease Registry: Atlanta, GA, USA, 2002. Available online: ttps://www.atsdr.cdc.gov/toxprofiles/tp1-c1-b.pdf (accessed on 3 June 2021).
- Muir, D.; Sverko, E. Analytical methods for PCBs and organochlorine pesticides in environmental monitoring and surveillance: A critical appraisal. Anal. Bioanal. Chem. 2006, 386, 769–789. [Google Scholar] [CrossRef] [Green Version]
- Pinto, M.I.; Burrows, H.D.; Sontag, G.; Vale, C.; Noronha, J.P. Priority pesticides in sediments of European coastal lagoons: A review. Mar. Pollut. Bull. 2016, 112, 6–16. [Google Scholar] [CrossRef]
- Pesticide Property Database (PPDB). Available online: https://sitem.herts.ac.uk/aeru/ppdb/en/atoz.htm (accessed on 25 April 2021).
- United States Environmental Protection Agency (EPA). EPA CompTox Chemicals Dashboard. Available online: https://comptox.epa.gov/dashboard/ (accessed on 7 June 2021).
- Yalkowsky, S.H.; He, Y. Handbook of Aqueous Solubility Data, 2nd ed.; CRC Press LLC: Boca Raton, FL, USA; London, UK, 2010; p. 720. [Google Scholar]
- Ibadov, N.A.; Humbatov, F.Y.; Samadov, M. Determination of Organochlorine Pesticides in Soils And Sediments Taken from the Kura-Araks Rivers Systems Using GC/ECD. Biol. Chem. Res. 2017, 283–294. [Google Scholar]
- Kim, L.; Lee, D.; Cho, H.K.; Choi, S.D. Review of the QuEChERS method for the analysis of organic pollutants: Persistent organic pollutants, polycyclic aromatic hydrocarbons, and pharmaceuticals. Trends Environ. Anal. Chem. 2019, 22, e00063. [Google Scholar] [CrossRef]
- Vera, J.; Correia-Sá, L.; Paíga, P.; Bragança, I.; Fernandes, V.C.; Domingues, V.F.; Delerue-Matos, C. QuEChERS and soil analysis. An Overview. Sample Prep. 2013, 1, 54–77. [Google Scholar] [CrossRef]
- Colin, F.; Cohen, G.J.V.; Delerue, F.; Chery, P.; Atteia, O. Status of Dieldrin in vegetable growing soils across a peri-urban agricultural area according to an adapted sampling strategy. Environ. Pollutio 2022, 295, 118666. [Google Scholar] [CrossRef]
- Ahmad, L.; Mahdi, S.S. Satellite Farming: An Information and Technology Based Agriculture, 1st ed.; Springer Nature: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Theocharopoulosa, S.P.; Wagnerb, G.; Sprengartb, J.; Mohrb, M.E.; Desaulesc, A.; Muntau, H.; Christou, M.; Quevauville, P. European soil sampling guidelines for soil pollution studies. Sci. Total Environ. 2001, 264, 51–62. [Google Scholar] [CrossRef]
- Hu, W.; Lu, Y.; Wang, T.; Luo, W.; Zhang, X.; Geng, J.; Chen, C. Factors affecting HCH and DDT in soils around watersheds of Beijing reservoirs, China. Environ. Geochem. Health 2009, 32, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Orgiazzi, A.; Ballabio, C.; Panagos, P.; Jones, A.; Fernández-Ugalde, O. LUCAS Soil, the largest expandable soil dataset for Europe: A review. Eur. J. Soil Sci. 2017, 69, 140–153. [Google Scholar] [CrossRef] [Green Version]
- Durovic, R.; Dordevic, T. Modern Extraction Techniques for Pesticide Residues Determination in Plant and Soil Samples. In Pesticides in the Modern World. Trends in Pesticides Analysis; Stoytcheva, M., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 10. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, C.A. Considerations for Sampling Contaminants in Agricultural Soils. J. AOAC Int. 2015, 98, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P. Modern Sample Preparation Techniques for Pesticide Residues Analysis in Soil. In Soil Analysis: Recent Trends and Applications; Rakshit, A., Ghosh, S., Chakraborty, S., Philip, V., Datta, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 10; pp. 163–186. [Google Scholar] [CrossRef]
- Vig, K.; Singh, D.K.; Agarwal, H.C.; Dhawan, A.K.; Dureja, P. Insecticide residues in cotton crop soil. J. Environ. Sci. Health Part B 2001, 36, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Garimella, U.I.; Stearman, G.K.; Wells, M.J.M. Comparison among Soil Series and Extraction Methods for the Analysis of Trifluralin. J. Agric. Food Chem. 2000, 48, 5874–5880. [Google Scholar] [CrossRef] [PubMed]
- Wobst, M.; Wichmann, H.; Bahadir, M. Surface contamination with PASH, PAH and PCDD/F after fire accidents in private residences. Chemosphere 1999, 38, 1685–1691. [Google Scholar] [CrossRef]
- Fatoki, O.; Awofolu, R. Methods for selective determination of persistent organochlorine pesticide residues in water and sediments by capillary gas chromatography and electron-capture detection. J. Chromatogr. A 2003, 983, 225–236. [Google Scholar] [CrossRef]
- Banjoo, D.R.; Nelson, P.K. Improved ultrasonic extraction procedure for the determination of polycyclic aromatic hydrocarbons in sediments. J. Chromatogr. A 2005, 1066, 9–18. [Google Scholar] [CrossRef]
- Ye, M.; Yang, X.-L.; Sun, M.M.; Bian, Y.R.; Wang, F.; Gu, C.G.; Jiang, X. Use of Organic Solvents to Extract Organochlorine Pesticides (OCPs) from Aged Contaminated Soils. Pedosphere 2013, 23, 10–19. [Google Scholar] [CrossRef]
- Tor, A.; Aydin, M.E.; Özcan, S. Ultrasonic solvent extraction of organochlorine pesticides from soil. Anal. Chim. Acta 2006, 559, 173–180. [Google Scholar] [CrossRef]
- Merdassa, Y.; Liu, J.-F.; Megersa, N.; Tessema, M. An efficient and fast microwave-assisted extraction method developed for the simultaneous determination of 18 organochlore pesticides in sediment. Int. J. Environ. Anal. Chem. 2015, 95, 225–239. [Google Scholar] [CrossRef]
- Lehnik-Habrink, P.; Hein, S.; Win, T.; Bremser, W.; Nehls, I. Multi-residue analysis of PAH, PCB, and OCP optimized for organic matter of forest soil. J. Soils Sediments 2010, 10, 1487–1498. [Google Scholar] [CrossRef]
- Wells, D.E.; Hess, P. Separation, Clean-Up and Recoveries of Persistent Trace Organic Contaminants from Soils, Sediment and Biological Matrices. In Sample Handling and Trace Analysis of Pollutants: Techniques Applications and Quality Assurance; Barcelo, D., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; Chapter 2; Volume 21, pp. 73–113. [Google Scholar] [CrossRef]
- Luque de Castro, M.D.; Ruiz Jiménez, J.; García Ayuso, L.E. Environmental Applications: Soxhlet Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Manion, M.A., Ed.; American Library Association CHOICE: Middletown, CT, USA, 2014. [Google Scholar] [CrossRef]
- Lopez-Avila, V.; Young, R.; Beckert, W.F. Microwave-Assisted Extraction of Organic Compounds from Standard Reference Soils and Sediments. Anal. Chem. 1994, 66, 1097–1106. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, W.; Wei, Q.; Hou, Y.; Si, J.; Li, T.; Zang, L. Residue occurrence and potential risk assessment of HCHs and DDTs in campus surface soils: In case of Jilin University in Changchun, China. IOP Conf. Ser. Earth Environ. Sci. 2020, 585, 012199. [Google Scholar] [CrossRef]
- Tesi, J.N.; Tesi, G.O.; Ossai, J.C.; Agbozu, I.E. Organochlorine pesticides (OCPs) in agricultural soils of Southern Nigeria: Spatial distribution, source identification, ecotoxicological and human health risks assessment. Environ. Forensics 2020, 1–13. [Google Scholar] [CrossRef]
- Xing, X.; Mao, Y.; Hu, T.; Tian, Q.; Chen, Z.; Liao, T.; Qi, S. Spatial distribution, possible sources and health risks of PAHs and OCPs in surface soils from Dajiuhu Sub-alpine Wetland, central China. J. Geochem. Explor. 2019, 208, 106393. [Google Scholar] [CrossRef]
- Helaleh, M.I.H.; Al-Omair, A.; Ahmed, N.; Gevao, B. Quantitative determination of organochlorine pesticides in sewage sludges using soxtec, soxhlet and pressurized liquid extractions and ion trap mass–mass spectrometric detection. Anal. Bioanal. Chem. 2005, 382, 1127–1134. [Google Scholar] [CrossRef]
- Carro, N.; Garcia, I.; Ignacio, M.; Mouteira, A. Optimization of Soxtec Extraction for the Determination of Polychlorinated Biphenyls (PCBs) in Mussel and Comparison with Soxhlet Extraction, Accelerated Solvent Extraction, and Microwave Assisted Extraction. Anal. Lett. 2012, 45, 2161–2175. [Google Scholar] [CrossRef]
- Rashid, A.; Nawaz, S.; Barker, H.; Ahmad, I.; Ashraf, M. Development of a simple extraction and clean-up procedure for determination of organochlorine pesticides in soil using gas chromatography–tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 2933–2939. [Google Scholar] [CrossRef]
- Ozcan, S.; Tor, A.; Aydin, M.E. Application of miniaturised ultrasonic extraction to the analysis of organochlorine pesticides in soil. Anal. Chim. Acta 2009, 640, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Herbert, P.; Morais, S.; Paíga, P.; Alves, A.; Santos, L. Development and validation of a novel method for the analysis of chlorinated pesticides in soils using microwave-assisted extraction-headspace solid phase microextraction and gas chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2005, 384, 810–816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fuentes, E.; Báez, M.E.; Reyes, D. Microwave-assisted extraction through an aqueous medium and simultaneous cleanup by partition on hexane for determining pesticides in agricultural soils by gas chromatography: A critical study. Anal. Chim. Acta 2006, 578, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Esteve-Turrillas, F.A.; Aman, C.S.; Pastor, A.; De la Guardia, M. Microwave-assisted extraction of pyrethroid insecticides from soil. Anal. Chim. Acta 2004, 522, 73–78. [Google Scholar] [CrossRef]
- Rouvière, F.; Buleté, A.; Cren-Olivé, C.; Arnaudguilhem, C. Multiresidue analysis of aromatic organochlorines in soil by gas chromatography-mass spectrometry and QuEChERS extraction based on water/dichloromethane partitioning. Comparison with accelerated solvent extraction. Talanta 2012, 93, 336–344. [Google Scholar] [CrossRef]
- Hussen, A.; Westbom, R.; Megersa, N.; Mathiasson, L.; Björklund, E. Development of a pressurized liquid extraction and clean-up procedure for the determination of α-endosulfan, β-endosulfan and endosulfan sulfate in aged contaminated Ethiopian soils. J. Chromatogr. A 2006, 1103, 202–210. [Google Scholar] [CrossRef]
- Hu, W.; Wang, T.; Khim, J.S.; Luo, W.; Jiao, W.; Lu, Y.; Giesy, J.P. HCH and DDT in Sediments from Marine and Adjacent Riverine Areas of North Bohai Sea, China. Arch. Environ. Contam. Toxicol. 2010, 59, 71–79. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, X.; Yuan, J.; Jiang, T.; Fu, S.; Xu, X. A novel headspace solid-phase microextraction method for the exact determination of organochlorine pesticides in environmental soil samples. Anal. Bioanal. Chem. 2006, 384, 1584–1589. [Google Scholar] [CrossRef]
- Wang, L.; Xue, C.; Zhang, Y.; Li, Z.; Liu, C.; Pan, X.; Liu, Y. Soil aggregate-associated distribution of DDTs and HCHs in farmland and bareland soils in the Danjiangkou Reservoir Area of China. Environ. Pollut. 2018, 243, 734–742. [Google Scholar] [CrossRef]
- Rallis, G.N.; Sakkas, V.A.; Boumba, V.A.; Vougiouklakis, T.; Albanis, T.A. Determination of organochlorine pesticides and polychlorinated biphenyls in post-mortem human lung by matrix solid-phase dispersion with the aid of response surface methodology and desirability function. J. Chromatogr. A 2012, 1227, 1–9. [Google Scholar] [CrossRef]
- Flores-Ramírez, R.; Medellín-Garibay, S.E.; Castillo, C.G.; Ilizaliturri-Hernández, C.A.; Zuki-Orozco, B.A.; Batres-Esquivel, L.; Díaz-Barriga, F. Application of Focused Ultrasound-Assisted Extraction to the Determination of Persistent Organic Pollutants (POPs) in Soil Samples. Bull. Environ. Contam. Toxicol. 2015, 95, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Errekatxo, A.; Prieto, A.; Zuloaga, O.; Usobiaga, A.; Etxebarria, N.; Fernández, L.A. Simultaneous extraction of several persistent organic pollutants in sediment using focused ultrasonic solid-liquid extraction. Anal. Bioanal. Chem. 2008, 392, 1471–1478. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Prado, L.; Garcia-Jares, C.; Dagnac, T.; Llompart, M. Microwave-assisted extraction of emerging pollutants in environmental and biological samples before chromatographic determination. TrAC Trends Anal. Chem. 2015, 71, 119–143. [Google Scholar] [CrossRef]
- Wang, W.; Meng, B.; Lu, X.; Liu, Y.; Tao, S. Extraction of polycyclic aromatic hydrocarbons and organochlorine pesticides from soils: A comparison between Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction techniques. Anal. Chim. Acta 2007, 602, 211–222. [Google Scholar] [CrossRef]
- Gan, J.; Papiernik, S.K.; Koskinen, W.C.; Yates, S.R. Evaluation of Accelerated Solvent Extraction (ASE) for Analysis of Pesticide Residues in Soil. Environ. Sci. Technol. 1999, 33, 3249–3253. [Google Scholar] [CrossRef]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Optimization of in-cell accelerated solvent extraction technique for the determination of organochlorine pesticides in river sediments. Talanta 2016, 150, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Moreno, D.V.; Ferrera, Z.S.; Santana RodrÍguez, J.J.; Aixalà, E.P.; BallarÍn, F.B. Determination of Organochlorine Pesticides from Agricultural Soils Using Pressurized Liquid Extraction. Soil Sediment Contam. Int. J. 2017, 17, 1–11. [Google Scholar] [CrossRef]
- Mwevura, H.; Othman, O.C.; Mhehe, G.L. Organochlorine pesticide residues in sediments and biota from the coastal area of Dar es Salaam city, Tanzania. Mar. Pollut. Bull. 2002, 45, 262–267. [Google Scholar] [CrossRef]
- Zhao, X.; Cui, T.; Guo, R.; Liu, Y.; Wang, X.; An, Y.; Zheng, B. A clean-up method for determination of multi-classes of persistent organic pollutants in sediment and biota samples with an aliquot sample. Anal. Chim. Acta 2019, 1047, 71–80. [Google Scholar] [CrossRef]
- Chaza, C.; Rayane, S.; Sopheak, N.; Moomen, B.; Baghdad, O. Distribution of Organochlorine Pesticides and Heavy Metals in Lebanese Agricultural Soil: Case Study—Plain of Akkar. Int. J. Environ. Res. 2018, 12, 631–649. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Smreczak, B.; Siebielec, G. Assessment of pesticide residue content in Polish agricultural soils. Molecules 2020, 25, 587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, Y.; Yun, X.; Ruan, Z.; Lu, C.; Shi, Y.; Qin, Q.; Xie, Y. Review of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) contamination in Chinese soils. Sci. Total Environ. 2020, 749, 141212. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, P.N.; Rodrigues, P.N.R.; Alves, F.; Evangelista, R.; Basto, M.C.P.; Vasconcelos, M.T.S.D. An expeditious method for the determination of organochlorine pesticides residues in estuarine sediments using microwave assisted pre-extraction and automated headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry. Talanta 2008, 76, 1124–1129. [Google Scholar] [CrossRef] [PubMed]
- Concha-Graña, E.; Barriada-Pereira, M.; Turnes-Carou, M.I.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada Rodríguez, D. Microwave extraction of organochlorine pesticides from soils. Anal. Bioanal. Chem. 2003, 375, 1225–1228. [Google Scholar] [CrossRef] [PubMed]
- Basheer, C.; Obbard, J.P.; Lee, H.K. Analysis of persistent organic pollutants in marine sediments using a novel microwave assisted solvent extraction and liquid-phase microextraction technique. J. Chromatogr. A 2005, 1068, 221–228. [Google Scholar] [CrossRef]
- Wang, H.; Ding, J.; Ren, N. Recent advances in microwave-assisted extraction of trace organic pollutants from food and environmental samples. TrAC Trends Anal. Chem. 2016, 75, 197–208. [Google Scholar] [CrossRef]
- Moreno, D.V.; Ferrera, Z.S.; Rodríguez, J.J.S. Microwave assisted micellar extraction coupled with solid phase microextraction for the determination of organochlorine pesticides in soil samples. Anal. Chim. Acta 2006, 571, 51–57. [Google Scholar] [CrossRef]
- Di, S.; Shi, P.; Xu, P.; Diao, J.; Zhou, Z. Comparison of different extraction methods for analysis of 10 organochlorine pesticides: Application of MAESPE method in soil from Beijing. Bull. Environ. Contam. Toxicol. 2015, 95, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Ling, Y.C.; Liao, J.H. Matrix effect on supercritical fluid extraction of organochlorine pesticides from sulfur-containing soils. J. Chromatogr. A 1996, 754, 285–294. [Google Scholar] [CrossRef]
- Camel, V. Enviromental Applications: Supercritical Fluid Extraction. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; American Library Association CHOICE: Middletown, CT, USA, 2014. [Google Scholar] [CrossRef]
- Gonçalves, C.; Carvalho, J.J.; Azenha, M.A.; Alpendurada, M.F. Optimization of supercritical fluid extraction of pesticide residues in soil by means of central composite design and analysis by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 2006, 1110, 6–14. [Google Scholar] [CrossRef]
- Dąbrowska, H.; Dąbrowski, Ł.; Biziuk, M.; Gaca, J.; Namieśnik, J. Solid-phase extraction clean-up of soil and sediment extracts for the determination of various types of pollutants in a single run. J. Chromatogr. A 2003, 1003, 29–42. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, X.; Tao, S.; Liu, L.; Li, W.; Meng, B. Comparison and Analysis of Organochlorine Pesticides and Hexabromobiphenyls in Environmental Samples by Gas Chromatography-Electron Capture Detector and Gas Chromatography-Mass Spectrometry. J. Chromatogr. Sci. 2014, 53, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawliszyn, J. 1-Solid-Phase Microextraction in Perspective. In Handbook of Solid Phase Microextraction, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 11–12. [Google Scholar] [CrossRef]
- Doong, R.A.; Liao, P.L. Determination of organochlorine pesticides and their metabolites in soil samples using headspace solid-phase microextraction. J. Chromatogr. A 2001, 918, 177–188. [Google Scholar] [CrossRef]
- Concha-Graña, E.; Fernández-González, V.; Grueiro-Noche, G.; Muniategui-Lorenzo, S.; López-Mahía, P.; Fernández-Fernández, E.; Prada-Rodríguez, D. Development of an environmental friendly method for the analysis of organochlorine pesticides in sediments. Chemosphere 2010, 79, 698–705. [Google Scholar] [CrossRef] [PubMed]
- Miclean, M.; Senila, L.; Cadar, O.; Levei, E.; Roman, M. Determination of organochlorine pesticides in soil using PHWE-SPE-SPME/GC-ECD method. Bull. USAMV Ser. Agric. 2014, 71, 247–250. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Zhou, Y.; Yang, W.; Li, S.; Liu, T.; Wang, T.; Hou, X. Microwave assisted magnetic solid phase extraction using a novel amino-functionalized magnetic framework composite of type Fe3O4-NH2@MIL-101(Cr) for the determination of organochlorine pesticides in soil samples. Talanta 2019, 196, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Simon, M.P.; Knuth, K.; Böhm, L.; Wiltschka, K.; Schatz, M.; Düring, R.A. A miniaturized method for fast, simple, and sensitive pesticide analysis in soils. J. Soils Sediments 2022, 22, 496–508. [Google Scholar] [CrossRef]
- Shen, X.; Cai, J.; Gao, Y.; Su, Q. Determination of Organophosphorus Pesticides in Soil by MMSPD-GC-NPD and Confirmation by GC-MS. Chromatographia 2006, 64, 71–77. [Google Scholar] [CrossRef]
- Mesquita, T.C.R.; Santos, R.R.; Cacique, A.P.; De SÁ, L.J.; Silvério, F.O.; Pinho, G.P. Easy and fast extraction methods to determine organochlorine pesticides in sewage sludge, soil, and water samples based at low temperature. J. Environ. Sci. Health Part B 2017, 53, 199–206. [Google Scholar] [CrossRef]
- Pinho, G.P.; Silvério, F.O.; Evangelista, G.F.; Mesquita, L.V.; Barbosa, É.S. Determination of Chlorobenzenes in Sewage Sludge by Solid-Liquid Extraction with Purification at Low Temperature and Gas Chromatography Mass Spectrometry. J. Braz. Chem. Soc. 2014, 25, 1292–1301. [Google Scholar] [CrossRef]
- Anastassiades, M.; Lehotay, S.J.; Štajnbaher, D.; Schenck, F.J. Fast and Easy Multiresidue Method Employing Acetonitrile Extraction/Partitioning and “Dispersive Solid-Phase Extraction” for the Determination of Pesticide Residues in Produce. J. AOAC Int. 2003, 86, 412–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Standard Method EN 15662; Food of Plant Origin–Determination of Pesticide Residues Using GC–MS and/or LC–MS/MS Following Acetonitrile Extraction/Partitioning and Clean-Up by Dispersive SPE–QuEChERS Method. European Committee for Standardization (CEN): Brussels, Belgium, 2008. Available online: https://www.cencenelec.eu/ (accessed on 2 April 2021).
- Lehotay, S.J.; O’Neil, M.; Tully, J.; García, A.V.; Contreras, M.; Mol, H. Determination of Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate: Collaborative Study. J. AOAC Int. 2007, 90, 485–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldas, S.S.; Bolzan, C.M.; Cerqueira, M.B.; Tomasini, D.; Furlong, E.B.; Fagundes, C.; Primel, E.G. Evaluation of a Modified QuEChERS Extraction of Multiple Classes of Pesticides from a Rice Paddy Soil by LC-APCI-MS/MS. J. Agric. Food Chem. 2011, 59, 11918–11926. [Google Scholar] [CrossRef] [PubMed]
- Baduel, C.; Mueller, J.F.; Tsai, H.; Gomez Ramos, M.J. Development of sample extraction and clean-up strategies for target and non-target analysis of environmental contaminants in biological matrices. J. Chromatogr. A 2015, 1426, 33–47. [Google Scholar] [CrossRef]
- Perestrelo, R.; Silva, P.; Porto-Figueira, P.; Pereira, J.A.M.; Silva, C.; Medina, S.; Câmara, J.S. QuEChERS-fundamentals, relevant improvements, applications and future trends. Anal. Chim. Acta 2019, 1070, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Cvetkovic, J.S.; Mitic, V.D.; Stankov Jovanovic, V.P.; Dimitrijevic, M.V.; Petrovic, G.M.; Nikolic-Mandic, S.D.; Stojanovic, G.S. Optimization of the QuEChERS extraction procedure for the determination of polycyclic aromatic hydrocarbons in soil by gas chromatography-mass spectrometry. Anal. Methods 2016, 8, 1711–1720. [Google Scholar] [CrossRef]
- João Ramalhosa, M.; Paíga, P.; Morais, S.; Delerue-Matos, C.; Prior Pinto Oliveira, M.B. Analysis of polycyclic aromatic hydrocarbons in fish: Evaluation of a quick, easy, cheap, effective, rugged, and safe extraction method. J. Sep. Sci. 2009, 32, 3529–3538. [Google Scholar] [CrossRef]
- Omar, N.; Bakar, J.; Muhammad, K. Determination of organochlorine pesticides in shrimp by gas chromatography–mass spectrometry using a modified QuEChERS approach. Food Control 2013, 34, 318–322. [Google Scholar] [CrossRef]
- Norli, H.R.; Christiansen, A.; Deribe, E. Application of QuEChERS method for extraction of selected persistent organic pollutants in fish tissue and analysis by gas chromatography mass spectrometry. J. Chromatogr. A 2011, 1218, 7234–7241. [Google Scholar] [CrossRef] [PubMed]
- Lesueuer, C. Comparison of four extraction methods for the analysis of 24 pesticides in soil samples with gas hromatography–mass spectrometry and liquid chromatography–ion trap–mass spectrometry. Talanta 2008, 75, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Correia-Sá, L.; Fernandes, V.C.; Carvalho, M.; Calhau, C.; Domingues, V.F.; Delerue-Matos, C. Optimization of QuEChERS method for the analysis of organochlorine pesticides in soils with diverse organic matter. J. Sep. Sci. 2012, 35, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Nikolić, J.S.; Mitić, V.D.; Stankov Jovanović, V.P.; Dimitrijević, M.V.; Ilić, M.D.; Simonović, S.R.; Stojanović, G.S. Novel Sorbent and Solvent Combination for QuEChERS Soil Sample Preparation for the Determination of Polycyclic Aromatic Hydrocarbons by Gas Chromatography–Mass Spectrometry. Anal. Lett. 2018, 51, 1087–1107. [Google Scholar] [CrossRef]
- Socas-Rodríguez, B.; González-Sálamo, J.; Herrera-Herrera, A.V.; Hernández-Borges, J.; Rodríguez-Delgado, M.Á. Recent Advances and Developments in the QuEChERS Method. In Comprehensive Analytical Chemistry-Green Extraction Techniques: Principles, Advances and Applications; Ibanez, E., Cifuentes, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 76, pp. 319–374. [Google Scholar] [CrossRef]
- Yang, X.B.; Ying, G.G.; Kookana, R.S. Rapid multiresidue determination for currently used pesticides in agricultural drainage waters and soils using gas chromatography–mass spectrometry. J. Environ. Sci. Health Part B 2010, 45, 152–161. [Google Scholar] [CrossRef] [PubMed]
- European Agency for Safety and Health at Work. Regulation (EC) No 1907/2006-Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH). Available online: https://osha.europa.eu/en/legislation/directives/ (accessed on 17 February 2022).
- European Commission. Guidance Document on Pesticide Analytical Methods for Risk Assessment and Post-Approval Control and Monitoring Purposes-SANTE/2020/12830., Rev.1. Available online: https://ec.europa.eu/food/plants/pesticides/approval-active-substances/guidelines-active-substances-and-plant-protection-products_en (accessed on 24 June 2021).
- Lopez-Avila, V.; Young, R.; Benedicto, J.; Ho, P.; Kim, R.; Beckert, W.F. Extraction of Organic Pollutants from Solid Samples Using Microwave Energy. Anal. Chem. 1995, 67, 2096–2102. [Google Scholar] [CrossRef]
- Ben Salem, F.; Ben Said, O.; Duran, R.; Monperrus, M. Validation of an Adapted QuEChERS Method for the Simultaneous Analysis of Polycyclic Aromatic Hydrocarbons, Polychlorinated Biphenyls and Organochlorine Pesticides in Sediment by Gas Chromatography–Mass Spectrometry. Bull. Environ. Contam. Toxicol. 2016, 96, 678–684. [Google Scholar] [CrossRef]
- Cheng, Z.; Dong, F.; Xu, J.; Liu, X.; Wu, X.; Chen, Z.; Zheng, Y. Atmospheric pressure gas chromatography quadrupole-time-of-flight mass spectrometry for simultaneous determination of fifteen organochlorine pesticides in soil and water. J. Chromatogr. A 2016, 1435, 115–124. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; He, Z.; Wang, L.; Luo, M.; Peng, Y.; Zhou, Q. Development of a multi-residue method for 58 pesticides in soil using QuEChERS and gas chromatography-tandem mass spectrometry. Anal. Methods 2016, 8, 2463–2470. [Google Scholar] [CrossRef]
- Acosta-Dacal, A.; Rial-Berriel, C.; Díaz-Díaz, R.; Bernal-Suárez, M.; Del, M.; Zumbado, M.; Henríquez-Hernández, L.A.; Luzardo, O.P. Extension of an extraction method for the determination of 305 organic compounds in clay-loam soil to soils of different characteristics. Methods X 2021, 8, 101476. [Google Scholar] [CrossRef]
- Tsiantas, P.; Tzanetou, E.N.; Karasali, H.; Kasiotis, K.M. A Dieldrin Case Study: Another Evidence of an Obsolete Substance in the European Soil Environment. Agriculture 2021, 11, 314. [Google Scholar] [CrossRef]
- Sánchez-Brunete, C.; Albero, B.; Tadeo, J.L. Multiresidue Determination of Pesticides in Soil by Gas Chromatography−Mass Spectrometry Detection. J. Agric. Food Chem. 2004, 52, 1445–1451. [Google Scholar] [CrossRef]
- Bichon, E.; Guiffard, I.; Vénisseau, A.; Marchand, P.; Antignac, J.P.; Le Bizec, B. Ultra-trace quantification method for chlordecone in human fluids and tissues. J. Chromatogr. A 2015, 1408, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Naidu, N.V.; Smith-Baker, C.; Sapp, J.B.; Yakubu, M.A. Determination of γ-hexachlorocyclohexane and its metabolites in biological samples from rat. J. Anal. Chem. 2016, 71, 310–319. [Google Scholar] [CrossRef]
- Oliveira, J.L.; Da, M.; Silva, D.P.; Martins, E.M.; Langenbach, T.; Dezotti, M. Biodegradation of 14C-dicofol in wastewater aerobic treatment and sludge anaerobic biodigestion. Environ. Technol. 2011, 33, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Shivaramaiah, H.M.; Odeh, I.O.A.; Kennedy, I.R.; Skerritt, J.H. Mapping the Distribution of DDT Residues as DDE in the Soils of the Irrigated Regions of Northern New South Wales, Australia Using ELISA and GIS. J. Agric. Food Chem. 2002, 50, 5360–5367. [Google Scholar] [CrossRef] [PubMed]
- Hongsibsong, S.; Wipasa, J.; Pattarawarapan, M.; Chantara, S.; Stuetz, W.; Nosten, F.; Prapamontol, T. Development and Application of an Indirect Competitive Enzyme-Linked Immunosorbent Assay for the Detection of p,p′-DDE in Human Milk and Comparison of the Results against GC-ECD. J. Agric. Food Chem. 2011, 60, 16–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, C.; Albanese, S.; Li, J.; Cicchella, D.; Duzolo, C.; Hope, D.; Cerino, P.; Pizzolante, A.; Doherty, A.L.; Lima, A.; et al. Organochlorine pesticides in the soils from Benevento provincial territory, southern Italy: Spatial distribution, air-soil exchange, and implications for environmental health. Sci. Total Environ. 2019, 674, 159–170. [Google Scholar] [CrossRef]
- Qu, C.; Albanese, S.; Lima, A.; Li, J.; Doherty, A.L.; Qi, S.; Vivo, B. Residues of hexachlorobenzene and chlorinated cyclodiene pesticides in the soils of the Campanian Plain, southern Italy. Environ. Pollut. 2017, 231, 1497–1506. [Google Scholar] [CrossRef]
- Thiombane, M.; Petrik, A.; Di Bonito, M.; Albanese, S.; Zuzolo, D.; Cicchella, D.; Lima, A.; Qu, C.; Qi, S.; De Vivo, B. Status, sources and contamination levels of organochlorine pesticide residues in urban and agricultural areas: A preliminary review in central–southern Italian soils. Environ. Sci. Pollut. Res. 2018, 25, 26361–26382. [Google Scholar] [CrossRef] [Green Version]
- Ene, A.; Bogdevich, O.; Sion, A. Levels and distribution of organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) in topsoils from SE Romania. Sci. Total Environ. 2012, 439, 76–86. [Google Scholar] [CrossRef]
- Tarcau, D.; Cucu-Man, S.; Boruvkova, J.; Klanova, J.; Covaci, A. Organochlorine pesticides in soil, moss and tree-bark from North-Eastern Romania. Sci. Total Environ. 2013, 456–457, 317–324. [Google Scholar] [CrossRef]
- Covacia, A.; Hurab, C.; Schepens, P. Selected persistent organochlorine pollutants in Romania. Sci. Total Environ. 2001, 280, 143–152. [Google Scholar] [CrossRef]
- Ion, A.C.; Bley, S.; Ion, I.; Culetu, A.; Zahov, S.; Hollert, H.; Seiler, T.B. Investigation of the contaminant sorption of treated Romanian soils using “batch” and biological toxicity assays. Catena 2013, 101, 205–211. [Google Scholar] [CrossRef]
- Ferencz, L.; Adalbert, B. A pesticide survey in soil, water and foodstuffs from central Romania. Carpathian J. Earth Environ. Sci. 2010, 5, 111–118. [Google Scholar]
- Juan Muñoz, A.; Begoña, J. New DDT inputs after 30 years of prohibition in Spain. A case study in agricultural soils from south-western Spain. Environ. Pollut. 2011, 159, 3640–3646. [Google Scholar] [CrossRef]
- Aichner, B.; Bussian, B.; Lehnik-Habrink, P.; Hein, S. Levels and Spatial Distribution of Persistent Organic Pollutants in the Environment: A Case Study of German Forest Soils. Environ. Sci. Technol. 2013, 47, 12703–12714. [Google Scholar] [CrossRef] [PubMed]
- Meijer, S.N.; Halsall, J.T.; Harner, C.; Peters, A.J.; Ockenden, W.A.; Johnston, A.E.; Jones, K.C. Organochlorine Pesticide Residues in Archived UK Soil. Environ. Sci. Technol. 2001, 35, 1989–1995. [Google Scholar] [CrossRef]
- Ballschmiter, K.; Wittlinger, R. Interhemisphere exchange of hexachlorocyclohexanes, hexachlorobenzene, polychlorobiphenyls, and 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane in the lower troposphere. Environ. Sci. Technol. 1991, 25, 1103–1111. [Google Scholar] [CrossRef]
- Falandysz, J.; Brudnowska, B.; Kawano, M.; Wakimoto, T. Polychlorinated Biphenyls and Organochlorine Pesticides in Soils from the Southern Part of Poland. Arch. Environ. Contam. Toxicol. 2001, 40, 173–178. [Google Scholar] [CrossRef]
- Łozowicka, B.; Kaczynskia, P.; Wolejkob, E.; Piekutinb, J.; Sagitovc, A.; Toleubayevc, K.; Isenovac, G.; Abzeitovad, E. Evaluation of organochlorine pesticide residues in soil and plants from East Europe and Central Asia. Desalination Water Treat. 2016, 57, 1310–1321. [Google Scholar] [CrossRef]
- Dvoršćak, M.; Stipičević, S.; Mendaš, C.; Drevenkar, V.; Medunić, G.; Stančić, Z.; Vujević, D. Soil burden by persistent organochlorine compounds in the vicinity of a coal-fired power plant in Croatia: A comparison study with an urban-industrialized area. Environ. Sci. Pollut. Res. 2019, 26, 23707–23716. [Google Scholar] [CrossRef]
- RůŽičková, P.; Klánová, J.; Čupr, P.; Lammel, G.; Holoubek, I. An Assessment of Air-Soil Exchange of Polychlorinated Biphenyls and Organochlorine Pesticides Across Central and Southern Europe. Environ. Sci. Technol. 2008, 42, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Aiyesanmi, A.F.; Ademefun, A.E.; IbigbamI, O.A.; Adelodund, A.A. Polycyclic aromatic hydrocarbons and organochlorine pesticides in floodplain soils: A case study of Onuku River in Okitipupa, Nigeria. Environ. Chall. 2021, 5, 100351. [Google Scholar] [CrossRef]
- Mwevura, H.; Kylin, H.; Vogt, T.; Bouwman, H. Dynamics of organochlorine and organophosphate pesticide residues in soil, water, and sediment from the Rufiji River Delta, Tanzania. Reg. Stud. Mar. Sci. 2021, 41, 101607. [Google Scholar] [CrossRef]
- Mahugija, J.A.M.; Henkelmann, B.; Schramm, K.W. Levels, compositions and distributions of organochlorine pesticide residues in soil 5–14 years after clean-up of former storage sites in Tanzania. Chemosphere 2014, 117, 330–337. [Google Scholar] [CrossRef]
- Mungai, T.M.; Wang, J. Occurrence and Toxicological Risk Evaluation of Organochlorine Pesticides from Suburban Soils of Kenya. Int. J. Environ. Res. Public Health 2019, 16, 2937. [Google Scholar] [CrossRef] [Green Version]
- Umulisa, V.; Kalisa, D.; Skutlarek, D.; Reichert, B. First evaluation of DDT (dichlorodiphenyltrichloroethane) residues and other Persistence Organic Pollutants in soils of Rwanda: Nyabarongo urban versus rural wetlands. Ecotoxicol. Environ. Saf. 2020, 197, 110574. [Google Scholar] [CrossRef]
- Ma, X.; Ran, Y.; Gong, J.; Zou, M. Concentrations and inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in watershed soils in the Pearl River Delta, China. Environ. Monit. Assess. 2008, 145, 453–464. [Google Scholar] [CrossRef]
- Huang, T.; Guo, Q.; Tian, H.; Mao, X.; Ding, Z.; Zhang, G.; Jun, L.; Ma, J.; Gao, H. Assessing spatial distribution, sources, and human health risk of organochlorine pesticide residues in the soils of arid and semiarid areas of northwest China. Environ. Sci. Pollut. Res. Int. 2014, 21, 6124–6135. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Xi, Z.; Cheng, H.; Xu, X. Organochlorine pesticides (DDTs and HCHs) in soils from the outskirts of Beijing, China. Chemosphere 2005, 60, 770–778. [Google Scholar] [CrossRef]
- Fu, J.; Mai, B.; Sheng, G.; Zhang, G.; Wang, X.; Peng, P.; Xiao, X.; Ran, R.; Cheng, F.; Peng, X.; et al. Persistent organic pollutants in environment of the Pearl River Delta, China: An overview. Chemosphere 2003, 52, 1411–1422. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, H.; Pan, G.; Wang, J.; Chen, B. Factors Influencing the Persistence of Organochlorine Pesticides in Surface Soil from the Region around the Hongze Lake, China. Sci. Total Environ. 2013, 443, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, D.; Qin, X.; Xu, X. Residues of organochlorine pesticides in surface soils from college school yards in Beijing, China. J. Environ. Sci. 2008, 20, 1090–1096. [Google Scholar] [CrossRef]
- Sun, Y.; Chang, X.; Zhao, L.; Zhoua, B.; Weng, L.; Li, Y. Comparative study on the pollution status of organochlorine pesticides (OCPs) and bacterial community diversity and structure between plastic shed and open-field soils from northern China. Sci. Total Environ. 2020, 741, 139620. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Liu, Y.; Shu, X.; Ma, L.; Pan, Y. Assessment of the spatial distribution of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban soil of China. Chemosphere 2020, 243, 125392. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, R.; Li, Y.; Wang, P.; Zhu, Y.; Yuan, G.; Zhang, Q.; Jiang, J. Accumulation and fate processes of organochlorine pesticides (OCPs) in soil profiles in Mt. Shergyla, Tibetan Plateau: A comparison on different forest types. Chemosphere 2019, 231, 571–578. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, Z.; Ahrens, L.; Liu, W.; Li, Y.F. Concentrations of DDTs and Enantiomeric Fractions of Chiral DDTs in Agricultural Soils from Zhejiang Province, China, and Correlations with Total Organic Carbon and Ph. J. Agric. Food Chem. 2012, 60, 8294–8301. [Google Scholar] [CrossRef] [PubMed]
- Da, C.; Liu, G.; Sun, R.; Yuan, Z.; Tang, Q.; Liu, H. Sources and Risk Assessment of Organochlorine Pesticides in Surface Soils from the Nature Reserve of the Yellow River Delta, China. Soil Sci. Soc. Am. J. 2014, 78, 779–786. [Google Scholar] [CrossRef]
- Li, O.; Lu, Y.; Wang, P.; Wang, T.; Zhang, Y.; Suriyanarayanan, S.; Liang, R.; Baninla, Y.; Khan, K. Distribution, source, and risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in urban and rural soils around the Yellow and Bohai Seas, China. Environ. Pollut. 2018, 239, 233–241. [Google Scholar] [CrossRef]
- Zheng, Q.; Li, J.; Wang, Y.; Lin, T.; Xu, Y.; Zhong, G.; Bing, H.; Luo, C.; Zhang, G. Levels and enantiomeric signatures of organochlorine pesticides in Chinese forest soils: Implications for sources and environmental behavior. Environ. Pollut. 2020, 262, 114139. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, J.; Meng, B.; Cheng, J.; Lin, G.; Chen, J.; Zheng, D.; Yu, Y. Distribution and sources of organochlorine pesticides in agricultural soils from central China. Ecotoxicol. Environ. Saf. 2013, 93, 163–170. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Yuan, Z.; Wu, X. Organochlorine pesticides in riparian soils and sediments of the middle reach of the Huaihe River: A traditional agricultural area in China. Chemosphere 2022, 296, 134020. [Google Scholar] [CrossRef] [PubMed]
- Sanjenbam, N.K.; Vinod, P.G.; Bharat, G.; Mohana Kumar, Y.S.; Chakraborty, P. Spatial distribution and compositional profiles of organochlorine pesticides in the surface soil from the agricultural, coastal and backwater transects along the south-west coast of India. Chemosphere 2020, 254, 126699. [Google Scholar] [CrossRef]
- Liu, M.; Cheng, S.; Ou, D.; Yang, Y.; Liu, H.; Hou, L.; Gao, L.; Xu, S. Organochlorine pesticides in surface sediments and suspended particulate matters from the Yangtze estuary, China. Environ. Pollut. 2008, 156, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Fang, L.; Wang, J.; Liu, W.; Yuan, H.; Jantunen, L.; Li, Y.F. Residues of Currently and Never Used Organochlorine Pesticides in Agricultural Soils from Zhejiang Province, China. J. Agric. Food Chem. 2012, 60, 2982–2988. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, P.; Zhang, G.; Li, J.; Sivakumar, A.; Jones, K.C. Occurrence and sources of selected organochlorine pesticides in the soil of seven major Indian cities: Assessment of air-soil exchange. Environ. Pollut. 2015, 204, 74–80. [Google Scholar] [CrossRef] [PubMed]
- Can-Güven, E.; Gedik, K.; Kurt-Karakuş, P.B. Organochlorine pesticides and polychlorinated biphenyls from a greenhouse area on the Mediterranean coast of Turkey: Distribution, air-soil exchange, enantiomeric signature, and source implications. Atmos. Pollut. Res. 2022, 13, 101263. [Google Scholar] [CrossRef]
- Ahad, K.; Mohammad, A.; Khan, H.; Ahmad, I.; Hayat, Y. Monitoring results for organochlorine pesticides in soil and water from selected obsolete pesticide stores in Pakistan. Environ. Monit. Assess. 2010, 166, 191–199. [Google Scholar] [CrossRef]
- Alamdar, A.; Syed, J.H.; Malik, R.N.; Katsoyiannis, A.; Liud, J.; Li, J.; Zhang, G.; Jones, K.C. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: Contamination levels and their potential for air–soil exchange. Sci. Total Environ. 2014, 470–471, 733–741. [Google Scholar] [CrossRef]
- Sultan, M.; Waheed, S.; Ali, U.; Sweetman, A.J.; Jones, K.C.; Malik, R.N. Insight into occurrence, profile and spatial distribution of organochlorine pesticides in soils of solid waste dumping sites of Pakistan: Influence of soil properties and implications for environmental fate. Ecotoxicol. Environ. Saf. 2019, 170, 195–204. [Google Scholar] [CrossRef]
- Bajwa, A.; Ali, U.; Mahmood, A.; Iqbal Chaudhry, M.G.; Syed, J.H.; Li, J.; Zhang, G.; Jones, K.C.; Malik, R.N. Organochlorine pesticides (OCPs) in the Indus River catchment area, Pakistan: Status, soileair exchange and black carbon mediated distribution. Chemosphere 2016, 152, 292–300. [Google Scholar] [CrossRef]
- Kafaei, R.; Arfaeinia, H.; Savari, A.; Mahmoodi, M.; Rezaei, M.; Rayani, M.; Sorial, G.A.; Fattahi, N.; Ramavandi, B. Organochlorine pesticides contamination in agricultural soils of southern Iran. Chemosphere 2020, 240, 124983. [Google Scholar] [CrossRef] [PubMed]
- Osman, B.E.; Khalik, W.M. Data on organochlorine concentration levels in soil of lowland paddy field, Kelantan, Malaysia. Data Brief 2018, 20, 999–1003. [Google Scholar] [CrossRef] [PubMed]
- Barron, M.G.; Ashurova, Z.G.; Kukaniev, M.A.; Avloev, H.K.; Khaidarov, K.K.; Jamshedov, J.N.; Rahmatullova, O.S.; Atolikshoeva, S.S.; Mamadshova, S.S.; Manzenyuk, O. Residues of organochlorine pesticides in surface soil and raw foods from rural areas of the Republic of Tajikistan. Environ. Pollut. 2017, 224, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Daly, G.L.; Lei, Y.D.; Teixeira, C.; Muir, D.G.G.; Castillo, L.E.; Jantunen, L.M.M.; Wania, F. Organochlorine Pesticides in the Soils and Atmosphere of Costa Rica. Environ. Sci. Technol. 2007, 41, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Miglioranza, K.S.B.; Sagrario, M.A.G.; De Moreno, J.E.A.; Moreno, V.J.; Escalante, A.E.; Osterrieth, M.L. Agricultural Soil as a Potential Source of Input of Organochlorine Pesticides into a Nearby Pond. Environ. Sci. Pollut. Res. 2002, 9, 250–256. [Google Scholar] [CrossRef]
- Reyes, E.S.; Liberda, E.L.; Tsuji, L.J.S. Human exposure to soil contaminants in subarctic Ontario, Canada. Int. J. Circumpolar Health 2015, 74, 27357. [Google Scholar] [CrossRef]
- Klánová, J.; Matykiewiczová, N.; Mácka, Z.; Prošek, P.; Láska, K.; Klán, K. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environ. Pollut. 2008, 152, 416–423. [Google Scholar] [CrossRef]
- Harner, T.; Wideman, J.L.; Jantunen, L.M.M.; Bidleman, T.F.; Parkhurst, W.J. Residues of organochlorine pesticides in Alabama soils. Environ. Pollut. 1999, 106, 323–332. [Google Scholar] [CrossRef]
Analyte; IUPAC Name; Molecular Formula, etc. | Molecular Weight (g mol−1) | Molecular Structure | Regulatory Status: EC Regulation 1107/2009 Repealing 91/414 (Introduced/First Reported) | Soil Degradation DT 50 (Days) | Vapor Pressure (VP) at 20 °C (mPa) | Henry’s Law Constant (H) at 25 °C (Pa m³ /mol) | Octanol–Water Partition Coefficient, LogKow (pH 7, 20 °C) | Solubility in Water (mg L−1)/ Solubility in Organic Solvents |
---|---|---|---|---|---|---|---|---|
DDT is an Unstated isomer mix containing roughly 75–85% p,p′-DDT, 10–15% o,p′-DDT, and a small amount of o,o′-DDT. Any balance is composed of transformation products DDE and DDD; 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane; C14H9Cl5, CAS 50-29-3 p,p′-DDT major isomer; 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane; o,p′-DDT, an isomer of DDT which is normally around 10–15% of the DDT isomeric mix; 1-chloro-2-(2,2,2-trichloro-1-(4-chlorophenyl)ethyl)benzene o,o′-DDT a minor isomer; 1-chloro-2-(2,2,2-trichloro-1-(2-chlorophenyl)ethyl)benzene | 354.49 | Not approved (1944) | 6200 Other sources: 3 months in tropical regions, 4–30 years in temperate regions | 0.025 for DDT, 0.025–0.8 (at 20–25 °C) for p,p′ DDT | 8.43 × 10−1 for DDT 0.86–8.2 (at 20–25 °C for p,p-′DDT) | 6.91, 6.36 | 0.006 (at 20 °C for DDT), 0.025 (at 25 °C for p,p′-DDT): insoluble/readily soluble in aromatic and chlorinated solvents (e.g., ethyl ether, acetone, cyclohexanone, dichloromethane, benzene, and xylene) | |
DDD consists of three isomeric forms: p,p′-DDD, o,p′-DDD, and o,o′-DDD. p,p′-DDD is the dominant isomer: impurities or metabolites of technical DDT; 1,1-dichloro-2,2-bis(4-chlorophenyl)ethane; C14H10C4,CAS 72-54-8 | 320.02 | Not approved (1944) | 1000 | 0.18 | 4.0 × 10−6 | 6.02 | 0.090 (at 20 °C): very slightly soluble. | |
p,p′-DDE impurities or metabolites of technical DDT; p,p′ Dichloro diphenyl dichloroethane; CAS 72-55-9 | 318.02 | No commercial use | 5000 | 0.024 | 2.1 × 10−5 | 6.51 | 0.12 (at 25 °C): slightly soluble/lipids, many organic solvents | |
Endrin, known also as Aldrin epoxide; 1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a-octahydro-exo-1,4-exo-5,8-dimethanonaphthalene; C12H8Cl6O, CAS 72-20-8 | 380.91 | Not approved (1950s) | 4300 Other sources: up to 12 years; DT₅₀ 4–14 days (FAO) | 2 × 10−7, other sources: 0.02720- (at 25 °C) | 1.48 × 10−1, other sources: 0.05–0.76 (at 20–25 °C) | 3.2, 5.20 Other sources: 5.6, 5.34, 5.45 (calculated) | 0.24 (at 20°C): slightly soluble. Acetone: 17 g/100 mL; benzene: 13.8 g/100 mL; carbon tetrachloride: 3.3 g/100 mg/L; hexane: 7.1 g/100 mL; xylene: 18.3 g/100 mL | |
Dieldrin, a chiral cyclodiene molecule, can be the metabolite of aldrin; (1R,4S,4aS,5R,6R,7S,8S,8aR)-1,2,3,4,10,10-hexachloro-1,4,4a,5,6,7,8,8a-octahydro-6,7-epoxy-1,4:5,8-dimethanonaphthalene; C12H8Cl6O, CAS 60–57-1 | 380.91 | Not approved (1949) | 1400 Other sources: 800–900 days, 2.6–12.5 years | 0.024, other sources: 0.02–2.4, 3.1 × 10−3 mmHg (at 20 °C) 5.89 × 10−3 mmHg (at 25 °C) | 6.50 × 10−2, other sources: 0.02–5.88 | 3.7, 3.69–6.2 | 0.l4 (at 20 °C), 0.2 (at 20–25 °C): slightly soluble/moderately soluble in common organic solvents except aliphatic petroleum solvents and methyl alcohol | |
Chlordane is a chiral molecule. Chlordane is a complex mixture of isomers, other chlorinated hydrocarbons, and a range of by-products: 1,2,4,5,6,7,8,8-octachloro-2,3,3a,4,7,7a-hexahydro-4,7-methanoindene; C10H6Cl8, CAS 57-74-9 | 409.78 | Not approved (circa 1950) | 350 Other sources: approx 1 year; 283 days to 3.8 years; 4 years (FAO) | 1.3 Other sources: cis-chlordane 2.2 × 10−5 mmHg (crystal) 3.0 × 10−6 mmHg trans-chlordane 2.9 × 10−5 mmHg (crystal) 3.9 × 10−6 mmHg | 0.39 × 10−3, other sources: 2.92–9.5 | 2.78, 5.54 | 0.1–1.83 at 20 °C: slightly soluble/miscible: miscible with most aliphatic and aromatic organic solvents; ethanol, cyclohexane, and isopropanol, including acetone | |
Heptachlor is a molecule with 5 chiral centers: 1,4,5,6,7,8,8-heptachloro-3a,4,7,7a-tetrahydro-4,7-methanoindene; C10H5Cl7, CAS 76-44-8 | 373.32 | Not approved (1951) | 285 Other sources: 9–10 months, about 2 years | 53 highly volatile | 3.53 × 102, 112–845 volatile | 5.44, 4.4–5.5 | 0.056 at 20 °C: very slightly soluble/soluble in many organic solvents, e.g., in acetone 75, benzene 106, xylene 102, cyclohexanone 1190, carbon tetrachloride 1130, and ethanol 450 | |
HCH: C6H6Cl6, CAS 608-73-1 chiral, exists as eight or more isomers: 60–70% alpha-isomer (α-HCH); 5–12% beta-isomer (β-HCH), 6–10% delta isomer (δ-HCH), 3–4% epsilon isomer (ε-HCH), 10–15% gamma isomer (γ-HCH), etc. | 290.82 | α-HCH = 3–6 β-HCH = 0.04–0.12 δ-HCH = 0.02–0.08 γ-HCH = 1–21.3 | 3.80 α and β isomer, 4.14 δ-HCH, 3.5 γ-HCH | 8.52 (25 °C): 8.35 (pH 5, 25 °C). In acetone > 200, methanol 29–40, ethyl acetate < 200, and n-heptane 10–14 (all at 20 °C) | ||||
α-HCH: 1-alpha, 2-alpha, 3-beta, 4-alpha, 5-beta, 6-beta-benzene-transhexachloride; CAS 319-84-6 | 5.99, 4.5 × 10−5 mmHg at 25 °C | 6.86 × 10−6 | 3.8 high | 69.5 mg/L at 28 °C: moderately soluble | ||||
β-HCH: 1-alpha, 2-beta, 3-alpha, 4-beta, 5-aplha, 6-beta-exachlorocyclohexane; CAS 319-85-7 | 0.029, 3.6 × 10−7 mmHg at 20 °C | 4.5 × 10−7 | 3.78 high | 2.41/- | ||||
δ-HCH: 1-alpha,2-alpha,3-alpha, 4-beta, 5-alpha, 6-beta-hexachlorocyclohexane; CAS 319-86-8 | 3.5 × 10−5 mmHg at 25 °C | 2.1 × 10−7 | 4.14 | |||||
γ-HCH or LND: 1α,2α,3β,4α,5α,6β-hexachlorocyclohexane; C6H6Cl6, CAS 58-89-9 | Not approved (circa 1945; first prepared in 1825) | 400–980 | 4.4, 4.2 × 10−5 mmHg at 20 °C | 1.483 × 10−6, 3.5 × 10−6 | 3.50, 3.72 | 7.3 at 25 °C; 8.52 at 20 °C: slightly soluble/readily soluble in acetone, benzene, methanol, and ethyl acetate | ||
Endosulfan is an isomer mixture of alpha- and beta-endosulfan; 1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenebismethylene sulfite; C9H6Cl6O3S, CAS 115-29-7, CAS [959–98-8] α-endosulfan, CAS [891–86-1] β-endosulfan | 406.93 | Not approved (circa 1956) | 50, other sources: 28–50, 62–126, 68–87; 60–800 (FAO) | 0.83 mixture of α- and β-isomers 2:1), 0.28–1.47 at 20–25 °C | 1.48 (α-isomer) 0.07 (β-isomer) (22 °C) | 4.74 α-isomer (pH 5) 4.79 β-isomer (pH 5) | 0.32 at 20 °C: slightly soluble/ readily soluble in ethyl acetate, dichloro-methane, toluene 200, ethanol 65, and n-hexane 24 | |
Isodrin is an isomer of aldrin. Isomeric. The 5S,8R isomeris known as aldrin (1R,4S,5R,8S)-1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8a-hexahydro-1,4:5,8-dimethanonaphthalene; C12H8Cl6 CAS 4 65-73-6 | 364.91 | Not approved (circa 1940s) | Very persistent | 5.866, 10.35 | 39.21 | 6.75 | 0.014 at 20 °C: very slightly soluble. | |
Aldrin (ALD) is a chiral molecule; aldrin is one of the several isomers of hexachlorohexahydrodimethanonaphthalene; (1R,4S,4aS,5S,8R,8aR)-1,2,3,4,10,10-hexachloro-1,4,4a,5,8,8α-hexahydro-1,4:5,8-dimethanonaphthalene; C12H8Cl6, CAS 309-00-2 | 364.91 | Not approved (circa 1950) | 365 Other sources: 20–100 days (FAO) | 8.6 at 20 °C, 0.9–3.1 at 20–25 °C, 7.5 × 10−5 mmHg at 20 °C, 1.2 × 10−4 mmHg at 25 °C, 8.6 at 20 °C | 17.2 at 25 °C, 4.46–91.23 at 20–25 °C | 6.50, 5.17–7.4, 6.82 | 0.027 at 20 °C, 0.017 at 20–25 °C: very slightly soluble/ moderately to very soluble in most aromatic hydrocarbons, esters, ketones, and halogenated solvents: acetone, benzene, and xylene | |
MRX: dodecachloropentacyclodecane; C10Cl12, CAS 2385-85-5 | 545.54 | Not approved (1946, first reported) | 300 Other sources: 3000, up to 10 years | 0.11 at 20–25 °C, 3 × 10−7 mm Hg (at 25 °C) | 839.4 at 25 °C volatile, 8.11 × 10−4 atm-m3/mole | 6.89, 5.28 (pH 7, 20 °C) | 0.085 at 25 °C, 0.0001 at 20 °C: insoluble/very soluble in dioxane, benzene chloroform, and xylene | |
HCB: perchlorobenzene; C₆Cl₆, CAS 118-74-1 | 284.80 | Not approved (circa 1947) | 2.7–7.5 years | 1.45 | 10.3 | 3.93 | 0.0047 at 20 °C: insoluble. | |
Chlordecone is a chiral molecule; perchloropentacyclodecan-5-one; C₁₀Cl₁₀O, CAS 143-50-0 | 490.64 | Not approved (first reported 1952, 1966 commercial production) | - | 3.5 × 10−5 | 2.53 × 10−3 | 4.5 | 3.0 at 20 °C: slightly soluble/slightly soluble in hydrocarbon solvents; soluble in alcohols, ketones, and acetic acid | |
DCF is chemically related to DDT and used as acaricide.; 2,2,2-trichloro-1,1-bis(4-chlorophenyl)ethanol; C14H9Cl5O, CAS 115–32-2 | 370.5 | Not approved (1956 first reported, 1957 commercial production) | 40–80, other source: 95 days (FAO) | 0.25, 5.3 × 10−3 at 25 °C | 2.45 × 10−2, 5.7 × 10−5 | 3.5–4.3 | 0.8 at 25 °C: insoluble/soluble in organic solvents: toluene 400, methanol 36, and isopropanol 30 | |
Toxaphene or Camphechlor a chiral molecule; reaction mixture of chlorinated camphenes containing 67–69% chlorine; CAS name:2,2,5-endo,6-exo,8,8,9,10-Octachlorobornane; C10H10Cl8 (approximately, CAS 8001–35-2) | 414 (average) | Not approved (1947, first developed) | 365, other sources (highly variable): 2 months and 14 years; US sources: 9 days; Field DT₅₀ 9 to 500 days | 0.67, other sources: 0.13–0.53 (at 20–25 °C) | 6.08 × 10−1, 0.42–6382 at 20–25 °C | 3.2–5.5 | In water: 0.3–3/soluble in organic solvents: benzene, xylene, and carbon tetrachloride |
Analytes | Sample Treatment | Technique | LODs, LOQs | Recovery % (RSD %) | Reference/Year | |
---|---|---|---|---|---|---|
α-, β-, γ-HCH, aldrin, endrin, dieldrin, p,p′-DDE, p,p′-DDD, p,p′-DDT, α-, β-endosulfan, heptachlorobenzene (HPT) | ASE Extraction solvent: hexane-acetone (1:1–45 mL); conditions: 50 °C; 1500 psi; preheating period, 5 min; static extraction, 5 min | GC–ECD HP-5MS (cross-linked 5%-phenyl-methylpolysiloxane) of 30 m × 0.25 mm with a 0.25 µm, carrier gas; helium, was 2.8 mL min−1 | 0.0003–0.2 ng/g (LOD) highest for p,p′-DDT and lowest for p,p′-DDD and β- endosulfan | 64–103 (1.8–11) | [84]/2008 | |
MRX, α- and γ- Chlordane, p,p′-DDT, heptachlor, heptachlor epoxies isomer A, γ-HCH, dieldrin, endrin, aldrin, and HCB | MAE 20 mL (n-hexane–acetone 1:1)-HS SPME HS-SPME conditions: headspace sampling of 40 mL of sample (1.8% of ethanol) at 65 °C for 60 min, with 100 μm PDMS-coated fiber | GC–MS/MS (EI at 70 eV) with multiple reaction monitoring (MRM)), Varian 60 m × 0.25 mm CP-Sil 8 CB lowbleed/MS (0.24 μm film thickness). Helium (0.9 mL/min, constant flow) as carrier gas | 0.02 to 3.6 ng/g (LOD) | 35–51 with four exceptions (aldrin, the chlordanes, and MRX) (2–13) for soil with high content of organics (8.4%) 72–115 (16–31) for soil with low content of organics (2.2%) | [69]/2006 | |
MRX, DDT, chlordane, HPT, LND, HCB, heptachlor, aldrin, trans- and cis- chlordane, endrin | SLE-LTP 4.00 g of soil with 4 mL of water and 8 mL of acetonitrile, vortex for 5 min, freezer at −20 °C for 1 h for phase separation. Organic phase to 375 mg of anhydrous sodium sulphate, vortex for 30 s and centrifuged at 4000 rpm for 10 min | GC–MS (EI at 70 Ev) and selective ion monitoring mode (SIM), DB-5 MS capillary column, with 5% phenyl stationary phase and 95% methylpolysiloxane (30 m × 0.32 mm i.d. × 0.25 μm, helium as carrier gas at a flow rate of 1.0 mL min−1 | 1 and 6 ng/g (LOQ) | 78–115 (1–13) | [108]/2017 | |
p,p′-DDD, p,p′DDT, o,p′-DDT, p,p′-DDE, dieldrin | MAME-SPME 2 g sample, no solvent MAME: 8 mL of surfactant: Polyoxyethlylene 10 Lauryl Ether with concentration is 5% (v/v) for 2 g of soils; 1000 W for microwave power during 14 min SPME: PDMS/DVB fiber; 40 min for absorption time, 4 min for desorption time, room temperature, and non-addition of salt | HPLC-UV Varian Microsorb-MV 100 C18 column, 250 mm × 4.6 mm, 8 μm, methanol–water (85:15%, v/v) isocratic with a flow-rate of 1 mL min−1 238 nm (Diledrin 220 nm) | 56–96 ng/g (LOD) | 76–98 (5.5–8.4) soil (in the range of concentrations studied (120–2000 ng g−1) with organic matter (3.9–6.2%), except dieldrin for garden uses soil.) | [94]/2006 | |
α-, β-, γ-, δ- HCH, heptachlor, aldrin, dieldrin, o,p′-DDE, p,p′-DDE, p,p′-DDT, methoxychlor, MRX, heptachlor | USE Extraction: 10 g soil, twice petroleum ether and acetone (1/1 v/v) for 20 min, volume: 25 mL clean-up column activated Alumina, 1 mL extract with 100 mL of n-hexane:ethylacetate (7/3 v/v) | GC–ECD DB- 1701 (30 m length, 0.25 mm i.d. and 0.25 μm) and HP-5 (for confirmation) column, nitrogen was used as carrier (flow rate 1.23 mL/min) | 4.8–10.3 ng/g (LOQ) | >88 (<6) for 15–200 ng g−1, 92–101 (1–3) using clean-up chromatography (note: soil was 56.1% sand, 22.9% silt, 21.0% clay, organic matter: 1.68%, pH (0.01 M CaCl2): 7.1 and maximum water capacity: 21.2%.) | [56]/2006 | |
Simultaneous extraction of PAHs and OCPs including DDTs and HCHs (α-, β-, γ-, δ-HCH, o,p′-DDE, o,p′-DDD, o,p′-DDT, p,p′-DDE, p,p′-DDD, and p,p′-DDT) | Soxhlet Extraction: 5 g soil, 100 mL hexane/acetone (1:1, v/v) for 15 h. | Clean-up: dryness under reduced pressure in a 35 °C water bath using a rotary evaporator, n-hexane, chromatography column (30 cm × 10 mm i.d.) filled with 10 g silica gel (100–200 mesh) to separate the PAHs, DDTs | GC–ECD HP-5 column (0.25 mm i.d., 0.25 μm film thickness), N2 as carrier gas at a rate of 23 mL min−1. | 0.47–1.67 ng/g (LOQ) | 86.8–105.1 (0.61–13.12) at levels of 20 ng g−1 of each compound in soil samples | [81]/2007 |
MAE Extraction: 5 g soil, 25 mL n-hexane and acetone (1:1, v/v); 1200 W, 110 °C for 20 min, | 053–1.40 ng/g (LOQ) | 85.0–104.0 (0.5–9.3) at levels of 20 ng g−1 of each compound in soil samples | ||||
ASE Extraction: 10 g soil, DCM/ acetone (1:1) at 140 °C and 1500 psi, 11 min | 0.53–1.87 ng/g (LOQ) | 82.9–105.4 (0.5–1.9) at levels of 20 ng g−1 of each compound in soil samples | ||||
19 OCPs: α-HCH, γ-HCH, heptachlor, trans- and cis-chlordane, p,p′-DDT, o,p′-DDT, p,p′-DDD, p,p′-DDE, aldrin, dieldrin, α-endosulfan and β- endosulfan, endosulfan sulfate, heptachlor, trans- heptachlor epoxide, etc. | QuEChERS with liquid–liquid partition and hydration: 5 g air-dried, 5-day-aged soil with 10 mL water or 1.0 M aqueous Na2-EDTA solution for 30 min. Extraction: An aliquot (10 mL) of acetonitrile + acetic acid mixture (99:1, v/v) was added to the centrifuge tube containing the hydrated sample. After 30 s vortex, 4 g anhydrous MgSO4 (4.0 g) and NaAc·3H2O (1.7 g) were added. The contents were shaken vigorously and then centrifuged at 5000× g for 5 min. Simple clean-up/concentration step: aliquot (8 mL) of the upper acetonitrile layer in hexane | GC–MS/MS triple quadrupole MS/MS in EI mode and MRM, fused silica capillary column (Zebron ZB-50, 50% phenyl 50% methylpolysiloxane, 30 m × 0.25 mm i.d., and 0.25 μm film thickness; helium as carrier gas at 1 mL min−1 | 1 ng/g (LOQ) | 70–100 (<20) at 1–200 g kg−1 (exception of HCB) Notes: no significant difference in extraction efficiency for the two hydration methods—no need to use EDTA; 5 soils with organic matter: 1.0–9.8%, etc.—not adversely affected regardless of the type of 5 samples | [67]/2010 | |
Multi-residue method: 38 pesticides include 13 organophosphorus pesticides, 4 herbicides, 8 fungicides, 2 carbamates, 4 pyrethroids, and 7 other class pesticides including endosulfan, DCF | QuEChERS 1.10 g of freeze-dried soil/sediment samples, acetonitrile and buffer salt consisting of 8 g of magnesium sulfate anhydrous grit, 2 g of sodium chloride, 1 g di-sodium hydrogen citrate sesquihydrate, and 2 g of trisodium citrate dehydrate 2.10 mL acetonitrile phase, 1.5 g of MgSO4, and 250 mg PSA and internal stds: pentachloronitrobenzene and triphenylphosphate in methanol | GC–MS with electron impact ionization mode, 5MSi column (30 m × 0.25 mm, 0.25 µm film thickness); Helium carrier | 6–20 ng/g (LOQ) 6.4 ng/g (LOQ for dicofol), 22.4 ng/g (LOQ for endosulfan I); 10.3 ng/g (LOQ for endosulfan II) | 94–110 (3–11) | [124]/2010 | |
14 OCPs: α-,β-,γ-,δ--HCH, HCB, o,p′-DDT, p,p′-DDE, p, p′-DDD, aldrindieldrin, endrin, α-,β- endosulfan, etc. Note: two types of soils 1. HS (organic carbon 2.3%) 2. LS (organic carbon <2.3% | QuEChERS 5 g of dried sieved soil Two types of extraction: (i) adding 3 mL of water and 7 mL of ACN (ii) 20 mL of ACN. 6 g magnesium sulphate (MgSO4), 1.5 g sodium chloride (NaCl), 0.750 g disodium citrate sesquihydrate (Na2HCit 1.5H2O), and 1.5 g sodium citrate dihydrate (Na3Cit 2H2O) Clean-up: 1.5 mL of the supernatant, 50 mg of PSA, 150 mg of MgSO4 and 50 mg of C18 | GC–ECD ZB-XLB column (0.25 mm i.d., 0.25 μm film thickness, Zebron-Phenomenex), helium as carrier gas at flow rate of 1.3 mL/min GC–MS (SIM) and MS/MS (confirmation); SLB-5MS column (30 m 0.25 mm, 0.25 μm film thickness) | For HS 0.0114–0.079 ng g−1, for LS 0.0204–0.0493 ng g−1. | 77–130 (≤16) with the addition of H2O 20–46 without H2O addition Only dieldrin could be quantified attending the concentration level of 45.36 g kg–1 0.01–0.14 ng g−1 for HS soils and 0.005–0.100 ng g−1 for LS soils. | [112]/2012 | |
15 OCPs: α-CHLOR, β-CHLOR, o,p′-DDE, p,p′ -DDE, o,p′-DDT, p,p′ -DDT, o,p′-DDD, p,p′-DDD, α-, β-chlordane, α-endosulfan, LND, aldrin, endrin, MRX, etc. | QuEChERS 5 g soil with hydration step (water) Solvent: hexane:acetone (9:1 v/v) 1 g /NaCl; d-SPE: 1.5 mL upper layer solvent with 40 mg florisil and 150 mg MgSO4 | APGC-QTOF-MS HP-5MS with positive polarity (API), analytical column of 30 m × 0.250 mm inner diameter and 0.25 μm film thickness, helium as carrier gas at 2.0 mL/min Compared with EI: more sensitive | <9.99 μg/L (LOQ) | 70.3–118.9 (0.4–18.3 intra-day and 1.0–15.6 inter-day) 10–500 μg/L | [129]/2016 | |
26 OCPs including aldrin, α-, β-, γ-, δ- HCHs, α-, γ-chlordane, o, p′-DDD, p, p′-DDD, o, p -DDE, p, p′ -DDE, o,p′-DDT, p, p′-DDT, dieldrin, endosulfan I, endosulfan II, endrin, heptachlor, HCB, isodrin, methoxychlor, MRX, oxychlordane, etc., and 2 hexabromobiphenyls (HBBs) | MAE Extraction: hexane: acetone (1:1, v/v)) Clean-up: SPE (10 mm i.d. 350 mm length) with 10 g alumina, 10 g silica gel, and 1 cm anhydrous sodium sulfate. | GC–GC–MS with negative chemical ionization (NCI) and SIM, HP-5MS column HP-5MS column (30 m 0.25 mm i.d., 0.25 μm film thickness), helium as the carrier gas with a constant flow rate of 1.0 mL min−1 | 0.2–5 ng/mL (LOD) | 93.0–128.3 (3.0–10.8) 0.1–450 ng/mL Notes: Higher sensitivity with GC–ECD but false positives and overestimation were found by the GC–ECD | [100]/2013 | |
GC–ECD (30 m 0.32 mm i.d., 0.25 μm film thickness) | 0.05–0.2 ng/mL (LOD) | |||||
10 OCPs: α-, β- and γ-HCH, o,p′-DDT, o,p′-DDD, o,p′-DDE, cis-chlordane, trans- chlordane, α-endosulfan, and β-endosulfan. Several soils with organic matter 3.8–42.0 g/100 gdwt | MAE-SPE Soil samples (5 g), solvent: petroleum ether–acetone (1:1, v/v). 100 °C over 5 min and held for 10 min, cooled down for 15 min. The microwave power was 800 W—extracts were filtered through 5 g of anhydrous sodium sulfate for dehydration—purification on Florisil-SPE column | GC–ECD HP-5 column (30 m, 0.32 mm i.d., 0.25 μm film), N2 as the carrier gas and the flow rate was 1.0 mL/min; (confirmation with GC–MS\MS; TR-35MS column 30 m, 0.25 mm i.d., 0.25 μm film thickness). Helium as carrier gas at a constant flow rate of 1.0 mL/min) | 1.9–4.9 ng/g | 95–5-114.9 (1.9–4.9) 60.6–119.0 (2.7–12) for 0.01 μg/g 55.3–109.0 (2.3–4.6) for 0.1 μg/g Notes: Higher extraction efficiency compared to the other 3 extraction methods | [95]/2015 | |
ASE Soil samples (5 g), solvent: acetone: petroleum ether (1:1, v/v) at 110 °C, 1500 psi with 6 min for heating, 22 min | 47.5–117.9 (1.4–6.0) | |||||
USE 30 min using 20 mL of acetone: petroleum ether (1:1, v/v) as the solvent, at 3500 rpm for 3 min | 58–9–127.9 (3.0–7.4) | |||||
QuEChERS Soil samples (5 g), extraction solvent: 3 mL of water and 7 mL of acetonitrile; 6 g magnesium sulphate (MgSO4), 1.5 g sodium chloride (NaCl), 0.75 g disodium citrate sesquihydrate (Na2HCit1.5H2O), and 1.5 g sodium citrate dihydrate (Na3Cit2H2O); d-SPE: 50 mg of PSA (primary secondary amine), 150 mg of MgSO4, and 50 mg of C18. | 1–7–12.1 ng/g | 80–123.4 lowest recovery (56.8%) for o,p′-DDD (1.7–12.1) | ||||
17 OCPs: p,p′-DDE, p,p′-DDD, p,p′-DDT, α-HCH, γ-HCH, β-HCH, δ-HCH, aldrin, dieldrin, endrin, endrin aldehyde, α-, β-endosulfan, endosulfan sulphate, heptachlor, heptachlor epoxide, and methoxychlor | QuEChERS Air-dried soil samples (10 g), extraction: ACN; 4 g MgSO4 (activated), 1 g NaCl clean-up: 10 mL supernatant in 1.5 g MgSO4 and d-SPE: 500 mg PSA Dry residue reconstituted in 1 mL of n-hexane | GC–ECD T G-5MS column (30 m and 0.25 mm i.d. with a 0.25 μm film thickness), nitrogen as the carrier gas at 1 mL/min | 3.74–11.33 ng/g (LOQ) Highest LOQ was observed for β-endosulfan and lowest for aldrin 4.78 to 11.33 ng/g | 52.1–110.9 (0.19–3.57) The concentration of ∑OCP ranged from 6.35 ng/g to 118.29 ng/g, with most the frequently found being β-endosulfan. | [4]/2020 | |
19 OCPs: α-, β-, γ-, δ-HCHs, p,p′-DDE, o,p′-DDE, p,p′-TDE, o,p′-TDE, o,p′-DDT, p,p′-DDT, aldrin, dieldrin, heptachlor, heptachlor epoxide (isomer A), heptachlor epoxide (isomer B), α-endosulfan, β-endosulfan, and HCB | PHWE-SPE-SPME Extraction PHWE: 10 g clean soil μg/kg extracted in 1 L ultrapure water at 1500 psi and 150 °C SPE: concentrated at Lichrolut C18 cartridge SPME:Fiber type: PDMS/DVB | GC–ECD DB-XLB column (60 and 0.25 mm, 0.25 μm film thickness), helium as carrier gas | 24 and 22 ng/g, (LOQ) lowest HCB and highest p,p′-DDT | 80–115 and satisfactory precisions were obtained. Between LOQs and 500 lg/kg−1 for most of the studied pesticides | [103]/2010 | |
19 OCPs: α-, β-, γ-, δ-HCHs, p,p′--DDE, o,p′-DDE, p,p′TDE, o,p′-TDE, o,p′-DDT, p,p′-DDT, aldrin, dieldrin, heptachlor, heptachlor epoxide (isomer A), heptachlor epoxide (isomer B), α-endosulfan, β-endosulfan, and HCB | PHWE-SPE-SPME Extraction PHWE: 10 g clean soil μg/kg extracted in 1 L ultrapure water at 1500 psi and 150 °C SPE: concentrated at Lichrolut C18 cartridge SPME:Fiber type: PDMS/DVB | GC–ECD DB608 column (30 m × 0.32 mm ID × 0.50 μm), helium as carrier gas | 1.69–50.4 ng/kg (LOQ) lowest HCB and highest p,p′-DDT | 68–90.1 (9.87–20.9) Note: HCH and DDT isomers: 1.99 to 7.85 μg/kg g. The most predominant compounds | [104]/2014 | |
Multi-residue analysis: 34 organochlorines including α-, β-,γ-, and δ HCH, LND, HCB, etc. | QuEChERS Extraction: 5 g of wet peat soil with 15 mL ACN (or dichloromethane; 4 g MgSO4, 1 g NaCl, 1 g sodium citrate dehydrate, and 0.5 g di-sodium hydrogen citrate sesquihydrate. d-SPE: 150 mg PSA and 950 mg MgSO4. | GC–MS ionization was performed in the electron impact mode and the quadrupole analyzer operated in the SIM mode (selected ion monitoring); DB-VRX 60 m × 0.32 mm ID × 1.80 m column, with helium as carrier gas at a constant flow of 2 mL min−1 | 170.6–384.6 μg/Kg (LOQ) | 82.3–93.9 (4.0–8.5) | [72]/2012 | |
ASE 4 g anhydrous Na2SO4, extraction: dichloromethane at 40 °C and 10 MPa with a pre-heat time of 5 min, followed by a 10 min static extraction and a 100% flush volume | 1151–1808 μg/Kg | 64 (-δ HCH)-85 (10–13) | ||||
14 OCPS: α-, β-,γ-, and δ- HCHs, HCB, o,p′-DDT, p,p′-DDE, p,p′-DDD, aldrindieldrin, endrin, α- and β-endosulfan, and methoxychlor | QuEChERS Extraction: 5 g portion of dried sieved soil and 3 mL of water (hydration step) and 7 mL of ACN and or adding only 20 mL of CAN. 6 g magnesium sulphate (MgSO4), 1.5 g sodium chloride (NaCl), 0.750 g disodium citrate sesquihydrate (Na2HCit 1.5H2O), and 1.5 g sodium citrate dihydrate (Na3Cit 2H2O) Clean-up: 50 mg of PSA, 150 mg of MgSO4, and 50 mg of C18 | GC–ECD, column of 30 m, ZB-XLB (0.25 mm i.d., 0.25 μm), helium as carrier gas at constant flow rate of 1.3 mL/min Confirmatory by GC–MS/MS, SLB-5MS (30 m 0.25 mm, 0.25 m film thickness) column | 11.41 to 79.23 mg/g−1 (LOQs) | 77 to 130% (with hydration step) 20 to 46% (without hydration step), (≤16%) | [121]/2012 | |
α-, β-, γ-, δ-HCHs, p,p′-DDE, p,p′-DDD, o,p′-DDT, and p,p′-DDT | USE-SPE Extraction: hexane/dichloromethane (1:1, v/v) for 60 min SPE cartridges 1 g of florisil; 1 g silica gel and 1 g anhydrous sodium sulfate. | GC–ECD; HP-5 column | 0.05 to 0.20 ng/g. (LOD) | 73.3–96.2 (<10) | [45]/2009 [74]/2010 | |
α-HCH, β-HCH, γ-HCH, δ-HCH, p,p′-DDE, p,p′-DDD, o,p′-DDT, and p,p′-DDT | MAE-MSPE Extraction: ACN; MSPE sorbent: Fe3O4-NH2@MIL-101(Cr) | GC–ECD | 0.15–0.28 ng/g (LOD) | 71.2–102.4 (<10) | [105]/2019 | |
DDT, DDE | 10 g of soil with 25 mL of 90% methanol in water; supernatant diluted to 1:20 in 0.1% of fish gelatin in PBS (FG-PBS) | ELISA | - | 85–95 (0 to 10 ppm) | [137]/2002 | |
49 POPs, between OCPs: DCF, α- and β-endosulfan, p,p′ DDD, p,p′ DDE, dieldrin, endrin, heptachlor, HCB, ALD, α-HCH, β-HCH, γ-HCH, δ-HCH, etc. | QuEChERS Extraction: 10 g of dried and sieved soil and 10 mL of acetonitrile—2.5% FA, 6 g of MgSO4, and 1.5 g of CH3COONa were shaken and sonicated in an ultrasonic bath. The supernatant was filtered (PET filters). | GC–MS/MS, J&WHP-5MS (Crosslinked 5% phenyl-methyl-polysiloxane, 15 m length, 0.25 mm i.d., and 0.25 μm film thickness, helium as carrier | 0.5–20 ng/g | 70–120 at 0.5–5 ng/g (below 20) | [131]/2002 [116]/2021 | |
α-HCH, β-HCH, γ-HCH, δ-HCH, p,p′-DDD; DDE; DDT, ALD, heptachlor; heptachlor epoxide, α- and β-endosulfan and sulfate endosulfan, etc. | FUSE 1 g of soil with 10 mL of hexane: dichloromethane (75:25) for 1 min in duplicate, and at 60% irradiation power. | GC–MS (EI), HP 5 MS (60 m, 0.25 mm, 0.25 μm) column, helium as carrier gas at flow of 1 mL/min | 2.5 to 15 ng/g | 75.8 (1.63)–101 (2.81) at 25 ng/g and 82.3 (0.18)–109 at the 75 ng/g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzanetou, E.N.; Karasali, H. A Comprehensive Review of Organochlorine Pesticide Monitoring in Agricultural Soils: The Silent Threat of a Conventional Agricultural Past. Agriculture 2022, 12, 728. https://doi.org/10.3390/agriculture12050728
Tzanetou EN, Karasali H. A Comprehensive Review of Organochlorine Pesticide Monitoring in Agricultural Soils: The Silent Threat of a Conventional Agricultural Past. Agriculture. 2022; 12(5):728. https://doi.org/10.3390/agriculture12050728
Chicago/Turabian StyleTzanetou, Evangelia N., and Helen Karasali. 2022. "A Comprehensive Review of Organochlorine Pesticide Monitoring in Agricultural Soils: The Silent Threat of a Conventional Agricultural Past" Agriculture 12, no. 5: 728. https://doi.org/10.3390/agriculture12050728
APA StyleTzanetou, E. N., & Karasali, H. (2022). A Comprehensive Review of Organochlorine Pesticide Monitoring in Agricultural Soils: The Silent Threat of a Conventional Agricultural Past. Agriculture, 12(5), 728. https://doi.org/10.3390/agriculture12050728