Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Animal Grazing
2.3. Stubble Measurements: Biomass, Dry Matter, Ash, Protein, and Fiber Contents
2.4. Animal Measurements: Ewes’ Body Weight and Rumen Fermentation Parameters
2.5. Statistical Analysis
3. Results
3.1. Biomass and Nutritive Value of Wheat Stubbles
3.2. Body Weight and Rumen Fermentation Profile of Barbarine Ewes
4. Discussion
4.1. Ewes May Eat the No-Tillage Stubble Faster Than the Conventional Tillage Stubble
4.2. Stubbles from the No-Tillage System Tend to Be Less Nutritive Than Stubbles from the Conventional Tillage
4.3. Both No-Tillage and Conventional Tillage Systems Can Support Crop–Livestock Integration
4.4. Rumen Fermentation Parameters Suggest a Less Efficient Energy Utilization by Ewes Grazing on No-Tillage Plots Relative to Conventional Tillage Plots
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, A.H.; Squires, V.R. Drylands of the Mediterranean Basin: Challenges, Problems and Prospects. In Climate Variability Impacts on Land Use and Livelihoods in Drylands, 1st ed.; Gaur, M., Squires, V., Eds.; Springer: Cham, Switzerland, 2018; pp. 223–239. [Google Scholar] [CrossRef]
- Kühling, I.; Atoev, S.; Trautz, D. Sustainable Intensification in Dryland Cropping Systems—Perspectives for Adaptions across the Western Siberian Grain Belt. Agriculture 2018, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Swamila, M.; Philip, D.; Akyoo, A.M.; Sieber, S.; Bekunda, M.; Kimaro, A.A. Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania. Agriculture 2020, 10, 306. [Google Scholar] [CrossRef]
- Ben Nasr, J.; Chaar, H.; Bouchiba, F.; Zaibet, L. Assessing and building climate change resilience of farming systems in Tunisian semi-arid areas. Environ. Sci. Pollut. Res. 2021, 28, 46797–46808. [Google Scholar] [CrossRef]
- Serrano, J.; Shahidian, S.; Machado, E.; Paniagua, L.L.; Carreira, E.; Moral, F.; Pereira, A.; De Carvalho, M. Floristic Composition: Dynamic Biodiversity Indicator of Tree Canopy Effect on Dryland and Improved Mediterranean Pastures. Agriculture 2021, 11, 1128. [Google Scholar] [CrossRef]
- Derdous, O.; Bouamrane, A.; Mrad, D. Spatiotemporal analysis of meteorological drought in a Mediterranean dry land: Case of the Cheliff basin–Algeria. Model. Earth Syst. Environ. 2021, 7, 135–143. [Google Scholar] [CrossRef]
- Jat, R.A.; Wani, S.P.; Sahrawat, K.L. Conservation agriculture in the semi-arid tropics: Prospects and problems. Adv. Agron. 2012, 117, 191–273. [Google Scholar] [CrossRef] [Green Version]
- Ben Said, S.; Mahouachi, M.; El Ayeb, H.; Ben Hammouda, M. Evolution of the Characteristics of Stubble in Plots Conducted in Direct Seeding and Grazed by Sheep. Cah. Options Mediterr. A. 2011, 100, 335–339. Available online: http://om.ciheam.org/om/pdf/a100/00801525.pdf (accessed on 18 December 2021).
- De Vita, P.; Di Paolo, E.; Fecondo, G.; Di Fonzo, N.; Pisante, M. No-tillage and conventional tillage effects on durum wheat yield, grain quality and soil moisture content in southern Italy. Soil Tillage Res. 2007, 92, 69–78. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Shaxson, F.; Pretty, J. The spread of conservation agriculture: Justification, sustainability and uptake. Int. J. Agric. Sustain. 2009, 7, 292–320. [Google Scholar] [CrossRef]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 363, 543–555. [Google Scholar] [CrossRef]
- Guesmi, H.; Ben Salem, H.; Moujahed, N. Integration Crop-Livestock under Conservation Agriculture System. J. New Sci. Agri. Biotechnol. 2019, 65, 4061–4065. Available online: https://www.jnsciences.org/agri-biotech/96-volume-65/578-integration-crop-livestock-under-conservation-agriculture-system.html (accessed on 18 December 2021).
- Alary, V.; Moulin, C.-H.; Lasseur, J.; Aboul-Naga, A.; Sraïri, M.T. The dynamic of crop-livestock systems in the Mediterranean and future prospective at local level: A comparative analysis for South and North Mediterranean systems. Livest. Sci. 2019, 224, 40–49. [Google Scholar] [CrossRef]
- Ameur, W.; Frija, A.; Abdeladhim, M.A.; Thabet, C. Patterns of Use of Residue Biomass in Cereal–Sheep Production Systems of North Africa: Case of Tunisia. Agriculture 2021, 11, 612. [Google Scholar] [CrossRef]
- Cheruiyot, D.; Midega, C.A.O.; Pittchar, J.O.; Pickett, J.A.; Khan, Z.R. Farmers’ Perception and Evaluation of Brachiaria Grass (Brachiaria spp.) Genotypes for Smallholder Cereal-Livestock Production in East Africa. Agriculture 2020, 10, 268. [Google Scholar] [CrossRef]
- Guesmi, H.; Moujahed, N.; Ben Youssef, S.; Darej, C.; Chakroun, M.; Ben Salem, H. Performances of Barbarine ewes Grazing on Wheat Stubble under Conventional and Conservation Agricultural Conditions in a Tunisian Semi-Arid Area. Cah. Options Mediterr. A 2019, 123, 235–239. Available online: https://om.ciheam.org/om/pdf/a123/00007891.pdf (accessed on 18 December 2021).
- Baudron, F.; Sylvestre, D.; Marc, C.; Juan, H.M.; Pablo, T. Multi-scale trade-off analysis of cereal residue use for livestock feeding vs. soil mulching in the Mid-Zambezi Valley, Zimbabwe. Agric. Syst. 2015, 134, 97–106. [Google Scholar] [CrossRef]
- El-Shater, T.; Yigezu, Y.A. Can Retention of Crop Residues on the Field Be Justified on Socioeconomic Grounds? A Case Study from the Mixed Crop-Livestock Production Systems of the Moroccan Drylands. Agronomy 2021, 11, 1465. [Google Scholar] [CrossRef]
- Simić, M.; Dragičević, V.; Mladenović Drinić, S.; Vukadinović, J.; Kresović, B.; Tabaković, M.; Brankov, M. The Contribution of Soil Tillage and Nitrogen Rate to the Quality of Maize Grain. Agronomy 2020, 10, 976. [Google Scholar] [CrossRef]
- Park, E.Y.; Baik, B.-K.; Machado, S.; Gollany, H.T.; Fuerst, E.P. Functional and Nutritional Characteristics of Soft Wheat Grown in No-Till and Conventional Cropping Systems. Cereal Chem. 2015, 92, 332–338. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.C.; Dao, T.H. Straw Quality of 10 Wheat Cultivars under Conventional and No-Till Systems. Agron. J. 1994, 86, 833–837. [Google Scholar] [CrossRef]
- Tucke, C.B.; MacNeil, M.D.; Delta, G.; Webster, A.B. Guide for the Care and Use of Agricultural Animals in Research and Teaching, 4th ed.; The Federation of Animal Science Societies (ADSA, ASAS, Poultry Science): Champaign, IL, USA, 2020; pp. 1–227. Available online: https://www.asas.org/docs/default-source/default-document-library/agguide_4th.pdf?sfvrsn=56b44ed1_2 (accessed on 18 December 2021).
- Goufo, P.; Ferreira, L.M.M.; Carranca, C.; Rosa, E.A.S.; Trindade, H. Effect of elevated carbon dioxide concentration on rice quality: Proximate composition, dietary fibres and free sugars. Cereal Chem. 2014, 91, 293–299. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, R.A. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Sollenberger, L.E.; Moore, J.E.; Allen, V.G.; Pedreira, C.G.S. Reporting forage allowance in grazing experiments. Crop Sci. 2005, 45, 896–900. [Google Scholar] [CrossRef]
- Muizelaar, W.; Bani, P.; Kuhla, B.; Larsen, M.; Tapio, I.; Yáñez-Ruiz, D.; Van Gastelen, S. Rumen fluid sampling via oral stomach tubing method. In Methods in Cattle Physiology and Behaviour—Recommendations from the SmartCow Consortium, 1st ed.; Mesgaran, S.D., Baumont, R., Munksgaard, L., Humphries, D., Kennedy, E., Dijkstra, J., Dewhurst, R., Ferguson, H., Terré, M., Kuhla, B., Eds.; PUBLISSO: Cologne, Germany, 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile fatty acid analyses of blood and rumen fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Conway, E.J.; O’Malley, E. Microdiffusion methods. Ammonia and urea using buffered absorbents. (Revised methods for ranges greater than 10 p.g N). Biochem. J. 1941, 36, 655–661. [Google Scholar] [CrossRef]
- Moujahed, N.; Abidi, S.; Ben Youssef, S.; Darej, C.; Chakroun, M.; Ben Salem, H. Effect of stocking rate on biomass variation and lamb performances for barley stubble in Tunisian semi-arid region and under conservation agriculture conditions. Afr. J. Agric. Res. 2015, 10, 4584–4590. [Google Scholar] [CrossRef] [Green Version]
- Tahmasebi, P.; Manafian, N.; Ebrahimi, A.; Omidipour, R.; Faal, M. Managing Grazing Intensity Linked to Forage Quantity and Quality Trade-off in Semiarid Rangelands. Rangel. Ecol. Manag. 2020, 73, 53–60. [Google Scholar] [CrossRef]
- Houmani, M. Evolution of the Nutritional Value of Durum Wheat Stubble and Interest for Pregnant Ewes. Rech. Agron. 2002, 11, 49–56. Available online: http://www.webreview.dz/IMG/pdf/EVOLUTION_DE_LA_VALEUR_NUTRITIVE_DES_CHAUMES_DE_BL_DUR.pdf (accessed on 18 December 2021).
- Thierfelder, C.; Rusinamhodzi, L.; Ngwira, A.; Mupangwa, W.; Nyagumbo, I.; Kassie, G.; Cairns, J. Conservation agriculture in Southern Africa: Advances in knowledge. Renew. Agric. Food Syst. 2015, 30, 328–348. [Google Scholar] [CrossRef] [Green Version]
- Budel, J.C.C.; Ramos, A.F.O.; Araújo, G.S.; Lima, A.C.S.; Martorano, L.G.; Nahúm, B.S.; Sousa, L.F.; Silva, A.G.M.; Junior, J.B.L. Fermentation kinetics and ruminal parameters of animals fed diets containing Brazil nut cake inclusion levels. Semin. Ciências Agrárias 2017, 38, 1605–1616. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, G.; Bhat, S.; Sheikh, F.; Ganai, A.; Bilal, S. Postprandial Changes in Rumen Microflora and Fermentation Pattern in Sheep Fed Paddy Straw Based Complete Feed Supplemented with Probiotics Mix. Int. J. Livest. Res. 2018, 8, 265–275. [Google Scholar] [CrossRef]
- Geron, L.J.V.; Garcia, J.; Costa, F.G.; Aguiar, S.C.; Oliveira, E.B.; Silva, M.I.L.; Cabral, L.S.; Pierangeli, M.A.P.; Zeoula, L.M.; Mexia, A.A. Ruminal parameters and nitrogen balance in sheep fed diets containing residue from the extraction of tamarind pulp. Semin. Ciências Agrárias 2015, 36, 3411–3420. [Google Scholar] [CrossRef]
- Bedford, A.; Beckett, L.; Harthan, L.; Wang, C.; Jiang, N.; Schramm, H.; Guan, L.L.; Daniels, K.M.; Hanigan, M.D.; White, R.R. Ruminal volatile fatty acid absorption is affected by elevated ambient temperature. Sci. Rep. 2020, 10, 13092. [Google Scholar] [CrossRef]
- Syapura, S.; Bata, M.; Pratama, W.S. Improving of rice straw quality and its effect on ability nutrient digestibility and rumen metabolism products of Buffalo in-vitro with feces as inoculum source. J. Agripet 2013, 13, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Roman-Garcia, Y.; Denton, B.L.; Mitchell, K.E.; Lee, C.; Socha, M.T.; Firkins, J.L. Conditions stimulating neutral detergent fiber degradation by dosing branched-chain volatile fatty acids. I: Comparison with branched-chain amino acids and forage source in ruminal batch cultures. J. Dairy Sci. 2021, 104, 6739–6755. [Google Scholar] [CrossRef] [PubMed]
- Horst, E.H.; López, S.; Neumann, M.; Giráldez, F.J.; Bumbieris Junior, V.H. Effects of Hybrid and Grain Maturity Stage on the Ruminal Degradation and the Nutritive Value of Maize Forage for Silage. Agriculture 2020, 10, 251. [Google Scholar] [CrossRef]
Sampling Period (d) | Biomass | Cropping System | p Value | |
---|---|---|---|---|
Conventional (Tillage) Agriculture | Conservation (No-Till) Agriculture | |||
Leaves (kg ha−1) fw | 476.90 ± 14.58 | 522.38 ± 17.00 | 0.065 | |
Stems (kg ha−1) fw | 469.12 ± 11.71 | 420.36 ± 19.12 | 0.092 | |
Day 0 | Heads (kg ha−1) fw | 32.32 ± 6.81 | 32.49 ± 4.32 | 0.980 |
Grasses (kg ha−1) fw | 21.68 ± 7.90 | 24.81 ± 2.19 | 0.774 | |
Total biomass (kg ha−1) fw | 1002.02 ± 41.00 | 1000.04 ± 42.62 | 0.914 | |
Total biomass (kg ha−1) dw | 814.91 ± 38.02 | 931.04 ± 28.64 | 0.061 | |
Leaves (kg ha−1) fw | 442.48 ± 21.86 | 409.64 ± 16.82 | 0.264 | |
Stems (kg ha−1) fw | 512.84 ± 13.38 | 544.93 ± 19.05 | 0.272 | |
Day 15 | Heads (kg ha−1) fw | 26.60 ± 8.38 | 25.24 ± 3.89 | 0.927 |
Grasses (kg ha−1) fw | 18.12 ± 5.50 | 20.03 ± 4.07 | 0.850 | |
Total biomass (kg ha−1) fw | 1000.04 ± 49.12 | 999.84 ± 43.83 | 0.956 | |
Total biomass (kg ha−1) dw | 602.68 ± 31.26 | 533.25 ± 18.14 | 0.304 | |
Leaves (kg ha−1) fw | 406.97 ± 12.53 | 379.61 ± 26.59 | 0.359 | |
Stems (kg ha−1) fw | 565.22 ± 12.29 | 599.76 ± 19.44 | 0.233 | |
Day 30 | Heads (kg ha−1) fw | 18.24 ± 6.64 | 11.04 ± 4.83 | 0.614 |
Grasses (kg ha−1) fw | 9.57 ± 2.75 | 9.60 ± 5.34 | 0.998 | |
Total biomass (kg ha−1) fw | 1000.00 ± 34.21 | 1000.01 ± 56.20 | 0.997 | |
Total biomass (kg ha−1) dw | 403.23 ± 30.86 | 451.38 ± 24.00 | 0.471 | |
Leaves (kg ha−1) fw | 383.32 ± 10.62 | 360.60 ± 12.29 | 0.401 | |
Stems (kg ha−1) fw | 607.16 ± 15.48 | 636.06 ± 20.36 | 0.287 | |
Day 45 | Heads (kg ha−1) fw | 9.50 ± 4.99 | 3.30 ± 2.07 | 0.630 |
Grasses (kg ha−1) fw | 0.00 ± 0.00 | 0.00 ± 0.00 | 1.000 | |
Total biomass (kg ha−1) fw | 999.98 ± 31.09 | 999.96 ± 34.72 | 0.932 | |
Total biomass (kg ha−1) dw | 315.00 ± 30.55 | 380.40 ± 17.33 | 0.304 |
Varaiable | Sampling Period | Cropping System | Sampling Period × Cropping System |
---|---|---|---|
Leaf biomass | <0.001 | 0.512 | 0.173 |
Stem biomass | <0.001 | 0.405 | 0.101 |
Epic biomass | 0.030 | 0.590 | 0.979 |
Vegetation biomass | 0.010 | 0.814 | 0.990 |
Total biomass fw | 0.840 | 0.786 | 0.913 |
Total biomass dw | <0.001 | 0.227 | 0.245 |
Dry matter | 0.004 | 0.584 | 0.141 |
Crude protein | <0.001 | 0.099 | 0.075 |
Neutral detergent fiber | <0.001 | 0.125 | 0.247 |
Total ashes | <0.001 | 0.046 | <0.001 |
Body weight | 0.776 | 0.359 | 0.990 |
Body weight change | 0.091 | 0.998 | 0.386 |
Forage allowance | <0.001 | 0.160 | 0.209 |
pH | <0.001 | 0.456 | 0.214 |
Ammonia nitrogen | <0.001 | 0.143 | 0.321 |
Acetic acid | 0.027 | 0.187 | 0.115 |
Propionic acid | <0.001 | 0.010 | 0.015 |
Butyric acid | 0.010 | 0.274 | 0.567 |
Total volatile fatty acids | 0.032 | 0.626 | 0.943 |
Acetic acid/propionic acid | <0.001 | 0.002 | 0.076 |
Sampling Period (d) | Nutritive Value | Cropping System | p Value | |
---|---|---|---|---|
Conventional (Tillage) Agriculture | Conservation (No-Till) Agriculture | |||
Dry matter (g kg−1) | 866.67 ± 2.84 | 845.09 ± 27.91 | 0.979 | |
Crude protein (g kg−1) | 36.58 ± 1.40 | 37.2 ± 6.27 | 0.804 | |
Day 0 | Neutral detergent fiber (g kg−1) | 442.83 ± 29.79 | 431.45 ± 32.07 | 0.259 |
Total ashes (g kg−1) | 90.26 ± 1.93 | 80.97 ± 2.43 | <0.001 | |
Dry matter (g kg−1) | 883.33 ± 12.81 | 850.46 ± 9.85 | 0.037 | |
Crude protein (g kg−1) | 38.06 ± 1.89 | 29.15 ± 0.24 | 0.004 | |
Day 15 | Neutral detergent fiber (g kg−1) | 476.29 ± 6.04 | 455.70 ± 15.45 | 0.040 |
Total ashes (g kg−1) | 89.60 ± 2.97 | 71.24 ± 6.49 | <0.001 | |
Dry matter (g kg−1) | 893.42 ± 8.33 | 900.07 ± 12.67 | 0.275 | |
Crude protein (g kg−1) | 32.74 ± 1.56 | 29.88 ± 7.43 | 0.330 | |
Day 30 | Neutral detergent fiber (g kg−1) | 471.99 ± 6.57 | 465.41 ± 21.00 | 0.508 |
Total ashes (g kg−1) | 66.63 ± 2.54 | 82.46 ± 0.58 | <0.001 | |
Dry matter (g kg−1) | 900.05 ± 45.00 | 900.65 ± 28.55 | 1.000 | |
Crude protein (g kg−1) | 22.69 ± 2.65 | 23.67 ± 1.34 | 0.744 | |
Day 45 | Neutral detergent fiber (g kg−1) | 517.11 ± 36.04 | 524.64 ± 27.45 | 0.441 |
Total ashes (g kg−1) | 72.92 ± 16.23 | 74.50 ± 1.40 | 0.547 |
Sampling Period (d) | Cropping System | p Value | ||
---|---|---|---|---|
Conventional (Tillage) Agriculture | Conservation (No-Till) Agriculture | |||
Body weight (kg) | 41.21 ± 0.68 | 40.72 ± 4.25 | 0.725 | |
Day 0 | Body weight change from D0 (kg) | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.999 |
Forage allowance (kg dw kg−1 weight) | 0.65 ± 0.02 | 0.76 ± 0.01 | 0.043 | |
Body weight (kg) | 41.45 ± 6.04 | 40.97 ± 2.54 | 0.710 | |
Day 15 | Body weight change from D0 (kg) | 0.24 ± 0.06 | 0.25 ± 1.71 | 0.351 |
Forage allowance (kg dw kg−1 weight) | 0.43 ± 0.08 | 0.48 ± 0.05 | 0.232 | |
Body weight (kg) | 40.26 ± 7.11 | 39.82 ± 2.36 | 0.804 | |
Day 30 | Body weight change from D0 (kg) | −0.95 ± 0.43 | −0.90 ± 0.08 | 0.860 |
Forage allowance (kg dw kg−1 weight) | 0.33 ± 0.08 | 0.38 ± 0.07 | 0.347 | |
Body weight (kg) | 41.29 ± 4.68 | 40.70 ± 0.73 | 0.723 | |
Day 45 | Body weight change from D0 (kg) | 0.08 ± 0.04 | −0.02 ± 0.05 | 0.957 |
Forage allowance (kg dw kg−1 weight) | 0.25 ± 0.04 | 0.31 ± 0.16 | 0.173 |
Sampling Period (h) | Cropping System | p Value | ||
---|---|---|---|---|
Conventional (Tillage) Agriculture | Conservation (No-Till) Agriculture | |||
pH | 6.91 ± 0.03 | 6.96 ± 0.12 | 0.356 | |
Ammonia nitrogen (mg L−1) | 55.72 ± 3.02 | 63.40 ± 4.46 | 0.109 | |
Acetic acid (mmol L−1) | 69.07 ± 2.51 | 69.24 ± 3.85 | 0.960 | |
H0 | Propionic acid (mmol L−1) | 17.30 ± 0.15 | 16.72 ± 0.17 | 0.013 |
Butyric acid (mmol L−1) | 15.46 ± 5.62 | 11.08 ± 3.06 | 0.474 | |
Total volatile fatty acids (mmol L−1) | 101.83 ± 8.28 | 97.04 ± 7.08 | 0.601 | |
Acetic acid/propionic acid | 4.05 ± 0.04 | 4.29 ± 0.01 | 0.078 | |
pH | 6.72 ± 1.04 | 6.74 ± 2.73 | 0.860 | |
Ammonia nitrogen (mg L−1) | 89.81 ± 2.49 | 78.09 ± 5.11 | 0.092 | |
Acetic acid (mmol L−1) | 69.53 ± 0.37 | 69.83 ± 1.38 | 0.175 | |
H2 | Propionic acid (mmol L−1) | 18.75 ± 0.15 | 17.00 ± 0.01 | 0.010 |
Butyric acid (mmol L−1) | 9.73 ± 0.16 | 9.98 ± 2.88 | 0.737 | |
Total volatile fatty acids (mmol L−1) | 98.01 ± 0.68 | 96.73 ± 4.27 | 0.601 | |
Acetic acid/propionic acid | 3.70 ± 0.01 | 3.92 ± 0.03 | 0.017 | |
pH | 6.50 ± 0.87 | 6.50 ± 1.39 | 0.999 | |
Ammonia nitrogen (mg L−1) | 87.93 ± 6.14 | 77.91 ± 10.33 | 0.685 | |
Acetic acid (mmol L−1) | 71.14 ± 3.71 | 71.08 ± 4.32 | 0.658 | |
H4 | Propionic acid (mmol L−1) | 17.45 ± 0.12 | 17.04 ± 0.32 | 0.134 |
Butyric acid (mmol L−1) | 9.82 ± 9.99 | 10.00 ± 0.18 | 0.897 | |
Total volatile fatty acids (mmol L−1) | 98.41 ± 13.82 | 98.12 ± 4.82 | 0.601 | |
Acetic acid/propionic acid | 4.19 ± 0.03 | 4.26 ± 0.03 | 0.141 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guesmi, H.; Darej, C.; Goufo, P.; Ben Youssef, S.; Chakroun, M.; Ben Salem, H.; Trindade, H.; Moujahed, N. Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid. Agriculture 2022, 12, 520. https://doi.org/10.3390/agriculture12040520
Guesmi H, Darej C, Goufo P, Ben Youssef S, Chakroun M, Ben Salem H, Trindade H, Moujahed N. Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid. Agriculture. 2022; 12(4):520. https://doi.org/10.3390/agriculture12040520
Chicago/Turabian StyleGuesmi, Hajer, Cyrine Darej, Piebiep Goufo, Salah Ben Youssef, Mohamed Chakroun, Hichem Ben Salem, Henrique Trindade, and Nizar Moujahed. 2022. "Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid" Agriculture 12, no. 4: 520. https://doi.org/10.3390/agriculture12040520
APA StyleGuesmi, H., Darej, C., Goufo, P., Ben Youssef, S., Chakroun, M., Ben Salem, H., Trindade, H., & Moujahed, N. (2022). Stubble Quality of Wheat Grown under No-Tillage and Conventional Tillage Systems, and Effects of Stubble on the Fermentation Profile of Grazing Ewes’ Ruminal Fluid. Agriculture, 12(4), 520. https://doi.org/10.3390/agriculture12040520