Connection between Circadian Rhythm and Rumen Digestibility of Concentrate and Roughage in Sheep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Concentrate
2.2. Roughage
2.3. Animals and Diets
2.4. Experiment Design
2.5. Measurements
2.5.1. Determination of Nutrients
2.5.2. Determination of Rumen Enzyme Activity
2.6. Statistical Analyses
3. Results
3.1. Day and Night Characteristics of Rumen Enzyme Activity
3.2. Rumen Digestibility of the Nutrients in Concentrate and Roughage in 24 h
3.3. Day and Night Degradation Characteristics of Nutrients in Concentrate and Roughage
4. Discussion
4.1. Circadian Rhythm and Rumen Enzyme Activity
4.2. 24-h Digestibility of Nutrients in Concentrate and Roughage
4.3. Circadian Rhythms and Ruminal Degradation
5. Conclusions
- The activities of amylase, lipase, and cellulase in rumen juice during the day (6:00–18:00) were higher than those at night (18:00–6:00) by 4.17%, 3.75%, and 31.07%, respectively.
- The average rumen digestibility of the main organic matter components of the concentrate, such as DM (35.28% vs. 30.70%), CP (29.44% vs. 24.16%), and EE (32.14% vs. 25.18%), was higher during the day than at night. This indicates that daytime and nighttime directly affect rumen nutrient digestibility.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaani, Y.; Zehavi, T.; Eyal, S.; Miron, J.; Mizrahi, I. Microbiome niche modification drives diurnal rumen community assembly, overpowering individual variability and diet effects. ISME J. 2018, 12, 2446–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ulgherait, M.; Chen, A.; McAllister, S.F.; Kim, H.X.; Delventhal, R.; Wayne, C.R.; Garcia, C.J.; Recinos, Y.; Oliva, M.; Canman, J.C.; et al. Circadian regulation of mitochondrial uncoupling and lifespan. Nat. Commun. 2020, 11, 1927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honma, S. The mammalian circadian system: A hierarchical multi-oscillator structure for generating circadian rhythm. J. Physiol. Sci. 2018, 68, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Mariani, S.; Redline, S. Sleep Irregularity and Risk of Cardiovascular Events: The Multi-Ethnic Study of Atherosclerosis. J. Am. Coll. Cardiol. 2020, 75, 991–999. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.T.; Ma, T.; Tu, Y.; Diao, Q.Y. Research progress on regulation of biorhythm on physiological nutrition and substance digestion and utilization in animals. Chin. J. Anim. Sci. 2021, 52, 872–880. [Google Scholar]
- Logan, R.W.; Parekh, P.K.; Kaplan, G.N.; Becker-Krail, D.D.; Williams, W.R.; Yamaguchi, S.; Yoshino, J.; Shelton, M.A.; Zhu, X.; Zhang, H.; et al. NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward. Mol. Psychiatry 2019, 24, 1668–1684. [Google Scholar]
- Hussain, M.M. Regulation of intestinal lipid absorption by clock genes. Annu. Rev. Nutr. 2014, 34, 357–375. [Google Scholar] [CrossRef]
- Tahara, Y.; Shibata, S. Entrainment of the mouse circadian clock: Effects of stress, exercise, and nutrition. Free Radic. Biol. Med. 2018, 119, 129–138. [Google Scholar] [CrossRef]
- Martelli, G.; Nannoni, E.; Grandi, M.; Bonaldo, A.; Zaghini, G.; Vitali, M.; Biagi, G.; Sardi, L. Growth parameters, behavior, and meat and ham quality of heavy pigs subjected to photoperiods of different duration. J. Anim. Sci. 2015, 93, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Xie, C.; Long, C.; Li, J.; Zhou, X.; Fan, Z.; Blachier, F.; Yin, Y. Effects of a daily three-meal pattern with different dietary protein contents on pig growth performance, carcass and muscle quality traits. J. Sci. Food. Agric. 2018, 98, 415–421. [Google Scholar] [CrossRef]
- Andretta, I.; Pomar, C.; Rivest, J.; Pomar, J.; Radunz, J. Precision feeding can significantly reduce lysine intake and nitrogen excretion without compromising the performance of growing pigs. Animal 2016, 10, 1137–1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asher, G.; Schibler, U. Crosstalk between components of circadian and metabolic cycles in mammals. Cell Metab. 2011, 13, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Asher, G.; Sassone-Corsi, P. Time for food: The intimate interplay between nutrition, metabolism, and the circadian clock. Cell 2015, 161, 84–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.T.; Ma, T.; Tu, Y.; Diao, Q.Y. Effects of circadian rhythm and feeding modes on rumen fermentation and microorganisms in Hu Sheep. Microorganisms 2022, 10, 2308. [Google Scholar] [CrossRef]
- Fu, L.X.; Ma, T.; Diao, Q.Y.; Cheng, S.R.; Sun, Z.L.; Li, C. Correlation analysis of rumen degradation characteristics and in vitro intestinal digestibility of rumen undegraded protein of concentrate feed for meat sheep. Chin. J. Anim. Nutr. 2018, 30, 2641–2651. [Google Scholar]
- Feldsine, P.; Abeyta, C.; Andrews, W.H. AOAC International methods committee guidelines for validation of qualitative and quantitative food microbiological official methods of analysis. J. AOAC Int. 2002, 85, 1187–1200. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J. Development of a Comprehensive System of Feed Analyses and its Application to Forages. J. Anim. Sci. 1967, 26, 119–128. [Google Scholar] [CrossRef]
- Hoogerwerf, W.A. Biologic clocks and the gut. Curr. Gastroenterol. Rep. 2006, 8, 353–359. [Google Scholar] [CrossRef]
- Goo, R.H.; Moore, J.G.; Greenberg, E.; Alazraki, N.P. Circadian variation in gastric emptying of meals in humans. Gastroenterology 1987, 93, 515–518. [Google Scholar] [CrossRef]
- Yang, Y.J.; Wang, J.; Yan, T.N.; Ayiguli, E.; Zhang, C.S. Diurnal dynamics of Rumen pH, Digestive Enzyme Activities and Protozoa number in dairy cows. Chin. J. Anim. Nutr. 2021, 33, 1534–1544. [Google Scholar]
- Li, H.Q.; Liu, Q.; Wang, C. Effects of 2-methylbutyric acid on rumen fermentation, enzyme activity and fibrolytic flora of calves before and after weaning. J. Anim. Husb. Vet. Med. 2015, 46, 2218–2226. [Google Scholar]
- Gharechahi, J.; Salekdeh, G.H. A metagenomic analysis of the camel rumen’s microbiome identifies the major microbes responsible for lignocellulose degradation and fermentation. Biotechnol. Biofuels 2018, 11, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, X.; Liu, Y.; Meng, T.; Xie, C.; Wu, X.; Yin, Y. Circadian calcium feeding regime in laying hens related to zinc concentration, gene expression of circadian clock, calcium transporters and oxidative status. J. Trace. Elem. Med. Biol. 2018, 50, 518–526. [Google Scholar] [CrossRef]
- Gordon, J.G.; Mcallister, I.K. The circadian rhythm of rumination. J. Agric. Sci. 1970, 74, 291–297. [Google Scholar] [CrossRef]
- Diao, Q.Y.; Tu, Y. Degradation parameters of common feed Proteins in rumen of dairy cows. Dairy Sci. Technol. 2005, 02, 70–74. [Google Scholar]
- Oh, Y.K.; Park, Y.J.; Baek, Y.C.; Do, Y.J.; Kim, D.H.; Kwak, W.S.; Choi, H. In situ ruminal degradation and intestinal digestion of crude protein and amino acids of three major proteinaceous feeds for Hanwoo steers. Res. Opin. Anim. Vet. Sci. 2015, 5, 395–400. [Google Scholar]
- Gao, L.M.; Xie, C.Y.; Zhang, T.Y.; Wu, X.; Yin, Y.L. Maternal supplementation with calcium varying with feeding time daily during late pregnancy affects lipid metabolism and transport of placenta in pigs. Biochem. Biophys. Res. Commun. 2018, 505, 624–630. [Google Scholar] [CrossRef]
- Romon, M.; Edme, J.L.; Boulenguez, C.; Lescroart, J.L.; Frimat, P. Circadian variation of diet-induced thermogenesis. Am. J. Clin. Nutr. 1993, 57, 476–480. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Sun, H.Z.; Sang, D.; Li, S.L.; Zhang, C.H.; Jin, L.; Si, D.D.B.; Gu, Y. Effects of Rhythmic Diet on Lactation Performance and Blood Indexes of Ordos Fine wool Sheep. J. Livest. Ecol. 2019, 40, 27–33. [Google Scholar]
- Marcheva, B.; Ramsey, K.M.; Buhr, E.D.; Kobayashi, Y.; Su, H.; Ko, C.H.; Ivanova, G.; Omura, C.; Mo, S.; Vitaterna, M.H.; et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 2010, 466, 627–631. [Google Scholar] [CrossRef] [Green Version]
- Diao, Q.Y. Study on the Degradation of Feed Nutrients in Rumen and Small Intestine; Chinese Academy of Agricultural Sciences: Beijing, China, 2000; Volume 89. [Google Scholar]
- Egeria, S.; Sergio, G. Nurtrition, Sleep, Circadian Rhythms, and Health Implications: “Come Together”. Nutrients 2022, 14, 5105. [Google Scholar]
- Byskov, M.V.; Nadeau, E.; Johansson, B.E.O. Variations in automatically recorded rumination time as explained by variations in intake of dietary fractions and milk production, and between-cow variation. J. Dairy Sci. 2015, 98, 3926–3937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, X.; Chen, D.; Wang, Y. Light intensity alters the effects of light-induced circadian disruption on glucose and lipid metabolism in mice. Am. J. Physiol. Endocrinol. Metab. 2022, 322, E1–E9. [Google Scholar] [CrossRef] [PubMed]
Items | Wheat | Barley | Oat | Soybean Meal | Cottonseed Meal | Rapeseed Meal | Flaxseed Meal | Sunflower Meal | DDGS | Corn Husk |
---|---|---|---|---|---|---|---|---|---|---|
DM | 90.18 | 89.40 | 94.60 | 88.74 | 91.40 | 90.30 | 94.49 | 94.64 | 88.02 | 92.01 |
CP | 12.59 | 10.94 | 19.72 | 47.50 | 56.97 | 39.04 | 36.46 | 29.88 | 28.53 | 9.47 |
EE | 1.45 | 4.60 | 9.14 | 3.12 | 1.30 | 2.37 | 5.48 | 8.29 | 7.67 | 2.50 |
NDF | 9.89 | 13.14 | 17.40 | 12.88 | 15.14 | 37.09 | 48.58 | 44.40 | 24.32 | 64.89 |
ADF | 3.34 | 5.62 | 8.75 | 9.11 | 9.30 | 24.78 | 30.62 | 29.65 | 15.40 | 19.30 |
Items | Corn Silage | Oat Grass | Peanut Vine | Alfalfa Hay | Leymus chinensis | Corn Stalk | Soybean Straw | Rice Straw |
---|---|---|---|---|---|---|---|---|
DM | 92.34 | 94.60 | 90.60 | 90.72 | 90.93 | 92.57 | 90.82 | 91.28 |
CP | 11.07 | 7.76 | 9.67 | 13.29 | 6.11 | 4.21 | 3.98 | 3.25 |
EE | 1.79 | 2.99 | 3.21 | 3.19 | 2.93 | 1.62 | 1.79 | 2.47 |
NDF | 45.16 | 49.74 | 42.81 | 53.50 | 65.93 | 64.89 | 64.55 | 69.39 |
ADF | 22.89 | 26.73 | 32.83 | 42.18 | 40.62 | 41.42 | 39.02 | 42.48 |
Items | Ingredients | ||
---|---|---|---|
Concentrate | Leymus chinensis | Diets | |
DM | 94.77 | 90.93 | 93.08 |
OM | 88.93 | 93.26 | 90.84 |
ME | 11.52 | 5.93 | 9.06 |
CP | 19.27 | 7.60 | 14.14 |
EE | 3.43 | 2.45 | 3.00 |
NDF | 18.46 | 65.90 | 39.33 |
ADF | 14.34 | 40.62 | 25.90 |
Ash | 11.07 | 6.74 | 9.16 |
Ca | 0.81 | 0.50 | 0.71 |
P | 0.49 | 0.08 | 0.31 |
Items | Day | Night | SEM | p-Value |
---|---|---|---|---|
Amylase (U/g) | 35.75 | 31.44 | 1.48 | 0.02 |
Lipase (U/g) | 61.42 | 59.20 | 1.57 | 0.19 |
Cellulase (U/mL) | 4.43 | 3.38 | 0.41 | 0.02 |
Items | DM | CP | NDF | ADF | EE |
---|---|---|---|---|---|
Wheat | 88.48 a | 87.30 a | 50.45 a | 60.85 a | 68.83 c |
Barley | 84.67 b | 80.99 b | 35.80 c | 40.14 d | 87.19 a |
Oat | 68.91 c | 68.31 c | 37.09 c | 31.41 e | 74.09 b |
Soybean meal | 55.36 d | 40.67 e | 40.37 b | 41.55 cd | 74.34 b |
Cottonseed meal | 49.59 e | 50.95 d | 32.00 d | 43.77 c | 46.96 d |
Rapeseed meal | 36.30 g | 26.54 g | 40.48 b | 26.56 f | 31.22 f |
Flaxseed meal | 33.50 g | 23.20 h | 49.12 a | 54.26 b | 33.48 ef |
Sunflower meal | 29.83 h | 29.61 f | 16.47 f | 19.82 h | 35.24 e |
DDGS | 40.46 f | 31.36 f | 17.33 f | 27.35 f | 27.88 g |
Corn husk | 24.98 i | 42.95 e | 25.52 e | 22.81 g | 17.19 h |
SEM | 1.45 | 1.39 | 1.28 | 1.44 | 1.38 |
p-value | 0.89 | 0.79 | 0.69 | 0.78 | 0.70 |
Items | DM | CP | NDF | ADF | EE |
---|---|---|---|---|---|
Corn silage | 57.81 a | 75.44 a | 30.86 b | 19.72 bc | 88.88 a |
Oat grass | 44.64 b | 40.71 b | 19.67 c | 16.36 d | 56.84 c |
Peanut vine | 44.60 b | 42.05 b | 48.22 a | 36.51 a | 73.14 b |
Alfalfa hay | 30.11 c | 41.24 b | 19.29 cd | 21.12 b | 74.21 b |
Leymus chinensis | 16.76 d | 17.69 d | 15.94 ef | 15.71 d | 28.46 d |
Corn stalk | 16.58 d | 25.61 c | 16.64 def | 15.47 d | 30.86 d |
Soybean straw | 7.74 e | 24.67 c | 14.16 f | 17.34 cd | 19.99 e |
Rice straw | 7.02 e | 14.42 e | 17.73 cde | 16.28 d | 16.36 f |
SEM | 0.42 | 1.31 | 0.83 | 0.94 | 1.32 |
p-value | 0.40 | 0.69 | 0.77 | 0.32 | 0.78 |
Items | Day | Night | Difference (−,+) | SEM | p-Value | |
---|---|---|---|---|---|---|
Wheat | DM | 83.17 | 76.64 | 6.53 | 2.76 | 0.02 |
CP | 76.55 | 75.98 | 0.57 | 5.9 | 0.93 | |
EE | 38.78 | 52.47 | −13.69 | 8.65 | 0.15 | |
Barley | DM | 64.37 | 59.92 | 4.45 | 2.04 | <0.01 |
CP | 42.74 | 38.72 | 4.02 | 6.36 | 0.54 | |
EE | 70.84 | 75.66 | −4.82 | 2.71 | 0.10 | |
Oat | DM | 57.33 | 54.60 | 2.73 | 4.25 | 0.45 |
CP | 61.60 | 55.81 | 5.79 | 7.97 | 0.48 | |
EE | 65.29 | 65.25 | 0.04 | 6.95 | 1.00 | |
Soybean meal | DM | 47.96 | 40.38 | 7.58 | 3.48 | 0.05 |
CP | 31.82 | 21.76 | 10.06 | 4.76 | 0.06 | |
EE | 63.04 | 56.73 | 6.31 | 2.49 | 0.02 | |
Cottonseed meal | DM | 42.53 | 42.66 | −0.13 | 1.87 | 0.95 |
CP | 43.53 | 43.40 | 0.13 | 1.13 | 0.94 | |
EE | 24.30 | 12.95 | 11.35 | 1.93 | <0.01 | |
Rapeseed meal | DM | 32.60 | 24.83 | 7.77 | 1.16 | <0.01 |
CP | 25.75 | 15.47 | 10.28 | 1.28 | <0.01 | |
EE | 21.95 | 14.92 | 7.03 | 1.89 | 0.06 | |
Flaxseed meal | DM | 26.84 | 23.78 | 3.06 | 4.56 | 0.51 |
CP | 20.71 | 20.48 | 0.23 | 0.23 | 0.97 | |
EE | 22.58 | 15.24 | 7.34 | 4.7 | 0.16 | |
Sunflower meal | DM | 26.46 | 21.84 | 4.62 | 2.06 | 0.04 |
CP | 25.38 | 19.70 | 5.68 | 5.69 | 0.02 | |
EE | 28.82 | 26.08 | 2.74 | 1.59 | 0.11 | |
DDGS | DM | 36.26 | 34.75 | 1.51 | 1.51 | 0.58 |
CP | 22.72 | 21.85 | 0.87 | 3.46 | 0.81 | |
EE | 22.35 | 16.32 | 6.03 | 3.29 | 0.09 | |
Corn husk | DM | 20.20 | 14.48 | 5.72 | 1.85 | 0.07 |
CP | 31.12 | 20.98 | 10.14 | 0.73 | <0.01 | |
EE | 12.07 | 5.78 | 6.29 | 1.03 | <0.01 |
Items | Day | Night | Difference (−,+) | SEM | p-Value | |
---|---|---|---|---|---|---|
Corn silage | DM | 48.28 | 52.55 | −4.27 | 2.05 | 0.06 |
CP | 63.02 | 65.71 | −2.69 | 1.3 | 0.06 | |
NDF | 19.40 | 17.64 | 1.76 | 2.21 | 0.44 | |
ADF | 8.82 | 9.54 | −0.72 | 2.58 | 0.79 | |
EE | 83.64 | 83.96 | −0.32 | 0.72 | 0.67 | |
Oat grass | DM | 39.53 | 40.12 | −0.59 | 1.51 | 0.71 |
CP | 36.58 | 37.96 | −1.38 | 1.2 | 0.27 | |
NDF | 12.84 | 12.66 | 0.18 | 1.88 | 0.93 | |
ADF | 9.87 | 9.51 | 0.36 | 2.56 | 0.89 | |
EE | 53.86 | 43.91 | 9.95 | 1.24 | <0.01 | |
Peanut vine | DM | 35.16 | 27.78 | 7.38 | 7.39 | 0.03 |
CP | 35.92 | 30.78 | 5.14 | 5.15 | 0.29 | |
NDF | 29.37 | 27.10 | 2.27 | 6.51 | 0.75 | |
ADF | 14.69 | 21.72 | −7.03 | 9.59 | 0.52 | |
EE | 69.02 | 64.42 | 4.60 | 1.74 | 0.02 | |
Alfalfa hay | DM | 29.70 | 24.65 | 5.05 | 2.01 | 0.03 |
CP | 40.15 | 34.96 | 5.19 | 1.85 | 0.01 | |
NDF | 16.27 | 8.22 | 8.05 | 4.32 | 0.10 | |
ADF | 16.05 | 8.47 | 7.58 | 2.49 | 0.01 | |
EE | 61.04 | 57.10 | 3.94 | 1.55 | 0.02 | |
Leymus chinensis | DM | 14.28 | 11.98 | 2.30 | 2.3 | 0.06 |
CP | 16.56 | 12.12 | 4.44 | 4.44 | <0.01 | |
NDF | 4.48 | 2.81 | 1.67 | 1.07 | 0.15 | |
ADF | 7.23 | 5.18 | 2.05 | 1.04 | 0.08 | |
Corn stalk | DM | 14.31 | 13.19 | 1.12 | 1.11 | 0.28 |
CP | 24.78 | 21.18 | 3.60 | 0.8 | <0.01 | |
NDF | 12.24 | 7.12 | 5.12 | 1.04 | <0.01 | |
ADF | 8.53 | 6.01 | 2.52 | 0.96 | 0.02 | |
EE | 30.00 | 27.90 | 2.10 | 0.82 | 0.02 | |
Soybean straw | DM | 8.49 | 8.95 | −0.46 | 0.92 | 0.62 |
CP | 19.93 | 18.07 | 1.86 | 0.89 | 0.06 | |
NDF | 11.86 | 8.85 | 3.01 | 1.31 | 0.04 | |
ADF | 11.15 | 7.86 | 3.29 | 1.00 | 0.01 | |
EE | 19.54 | 8.01 | 11.53 | 1.36 | <0.01 | |
Rice straw | DM | 4.19 | 6.26 | −2.07 | 0.91 | 0.04 |
CP | 7.61 | 6.12 | 1.49 | 0.87 | 0.11 | |
NDF | 12.66 | 12.20 | 0.46 | 0.46 | 0.66 | |
ADF | 9.55 | 10.08 | −0.53 | 0.77 | 0.50 | |
EE | 9.81 | 6.85 | 2.96 | 1.07 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Tu, Y.; Ma, T.; Diao, Q. Connection between Circadian Rhythm and Rumen Digestibility of Concentrate and Roughage in Sheep. Agriculture 2022, 12, 2152. https://doi.org/10.3390/agriculture12122152
Zhang C, Tu Y, Ma T, Diao Q. Connection between Circadian Rhythm and Rumen Digestibility of Concentrate and Roughage in Sheep. Agriculture. 2022; 12(12):2152. https://doi.org/10.3390/agriculture12122152
Chicago/Turabian StyleZhang, Chuntao, Yan Tu, Tao Ma, and Qiyu Diao. 2022. "Connection between Circadian Rhythm and Rumen Digestibility of Concentrate and Roughage in Sheep" Agriculture 12, no. 12: 2152. https://doi.org/10.3390/agriculture12122152
APA StyleZhang, C., Tu, Y., Ma, T., & Diao, Q. (2022). Connection between Circadian Rhythm and Rumen Digestibility of Concentrate and Roughage in Sheep. Agriculture, 12(12), 2152. https://doi.org/10.3390/agriculture12122152