Characteristics of Carbon, Nitrogen and Phosphorus Stoichiometry and Nutrient Reabsorption in Alfalfa Leaves with Different Fall-Dormancy Levels in Northern Xinjiang, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials and Experimental Design
2.3. Measurement Indexes and Methods
2.4. Data Analysis
3. Results
3.1. C, N, and P Concentrations in Mature Leaves of Alfalfa with Different Fall-Dormancy Levels
3.2. Stoichiometry Ratios of Elements in Mature Alfalfa Leaves with Different Fall-Dormancy Levels
3.3. C, N, and P Concentrations in Senescent Alfalfa Leaves with Different Fall-Dormancy Levels
3.4. Nutrient Resorption Characteristics of Alfalfa with Different Fall-Dormancy Levels
3.5. Comparison of Survival Rates of Alfalfa Varieties with Different Fall-Dormancy Levels
3.6. Comparison of Dry Matter Yield of Alfalfa with Different Fall-Dormancy Levels
3.7. Relationship among C, N, and P, Elemental Reabsorption, and Dry Matter Yield in Mature Leaves
4. Discussion
4.1. Effect of Fall-Dormancy Level on Stoichiometric Characteristics of Alfalfa
4.2. Effect of Fall-Dormancy Level of Alfalfa on Nutrient Reabsorption Characteristics of Leaves
4.3. Effect of Fall-Dormancy Level on Persistence and Yield of Alfalfa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, Z.Y.; Xu, W.T.; Zhou, G.Y.; Bai, Y.F.; Li, J.X.; Tang, X.L.; Chen, D.M.; Liu, Q.; Ma, W.H.; Xiong, G.M.; et al. Patterns of plant carbon, nitrogen, and phosphorus concentration in relation to productivity in China’s terrestrial ecosystems. Proc. Natl. Acad. Sci. USA 2018, 115, 4033–4038. [Google Scholar] [CrossRef] [PubMed]
- Li, L.J.; Zeng, D.H.; Mao, R.; Yu, Z.Y. Nitrogen and phosphorus resorption of artemisia scoparia, chenopodium acuminatum, cannabis sativa, and phragmites communis under nitrogen and phosphorus additions in a semiarid grassland. Plant Soil Environ. 2012, 58, 446–451. [Google Scholar] [CrossRef]
- Tian, D.; Yan, Z.B.; Niklas, K.; Han, W.X.; Kattge, J.; Reich, P.; Luo, Y.K.; Chen, Y.H.; Tang, Z.Y.; Hu, H.F.; et al. Global leaf nitrogen and phosphorus stoichiometry and their scaling exponent. Natl. Sci. Rev. 2018, 5, 728–739. [Google Scholar] [CrossRef]
- Ågren, G.I.; Wetterstedt, M.; Billberger, M. Nutrient limitation on terrestrial plant growth-modeling the interaction between nitrogen and phosphorus. New Phytol. 2012, 194, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Ågren, G.I. Stoichiometry and nutrition of plant growth in natural communities. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 153–170. [Google Scholar] [CrossRef]
- Wang, C.Z.; Ma, B.; Yan, X.B.; Han, J.F.; Guo, Y.X.; Wang, Y.H.; Li, P. Yields of alfalfa varieties with different fall-dormancy levels in a temperate environment. Agron. J. 2009, 101, 1146–1152. [Google Scholar] [CrossRef]
- Leep, R.H.; Andresen, J.A.; Jeranyama, P. Fall dormancy and snow depth effects on winterkill of alfalfa. Agron. J. 2001, 93, 1142–1148. [Google Scholar] [CrossRef]
- Ventroni, L.M.; Volenec, J.J.; Cangiano, C.A. Fall dormancy and cutting frequency impact on alfalfa yield and yield components. Field Crops Res. 2010, 119, 252–259. [Google Scholar] [CrossRef]
- Kobe, R.K.; Lepczyk, C.A.; Iyer, M. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecol. Monogr. 2005, 86, 2780–2792. [Google Scholar] [CrossRef]
- Wang, Z.N.; Lu, J.Y.; Yang, M.; Yang, H.M.; Zhang, Q.P. Stoichiometric characteristics of carbon, citrogen, and phosphorus in leaves of differently aged lucerne (Medicago sativa) stands. Front. Plant Sci. 2015, 6, 1062. [Google Scholar] [CrossRef]
- Vergutz, L.; Manzoni, S.; Porporato, A.; Novais, R.F.; Jackson, R.B. Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol. Monogr. 2012, 82, 205–220. [Google Scholar] [CrossRef]
- Yan, Z.B.; Kim, N.; Han, W.X.; Guo, Y.L.; Han, T.S.; Du, E.Z.; Fang, J.Y. Effects of nitrogen and phosphorus supply on growth rate, leaf stoichiometry, and nutrient resorption of Arabidopsis thaliana. Plant Soil 2014, 388, 147–155. [Google Scholar] [CrossRef]
- Brant, A.N.; Chen, H.Y. Patterns and mechanisms of nutrient resorption in plants. Crit. Rev. Plant Sci. 2015, 34, 471–486. [Google Scholar] [CrossRef]
- Van, H.L.M.; Toet, S.; Aerts, R. Nitrogen and phosphorus resorption efficiency and proficiency in six sub-arctic bog species after 4 years of nitrogen fertilization. J. Ecol. 2003, 91, 1060–1070. [Google Scholar]
- Yuan, Z.Y.; Li, L.H.; Han, X.G.; Huang, J.H.; Jiang, G.M.; Wan, S.; Zhang, W.H.; Chen, Q.S. Nitrogen resorption from senescing leaves in 28 plant species in a semi-arid region of northern China. J. Arid Environ. 2005, 63, 191–202. [Google Scholar] [CrossRef]
- Lü, X.T.; Han, X.G. Nutrient resorption responses to water and nitrogen amendment in semi-arid grassland of Inner Mongolia, China. Plant Soil 2010, 327, 481–491. [Google Scholar] [CrossRef]
- Lu, J.Y.; Yang, M.; Liu, M.G.; Wang, Y.Y.; Yang, H.M. Leaf stoichiometry and resorption of N and P in Lucerne at different growth stages under different water supplies. J. Plant Nutr. 2019, 42, 501–511. [Google Scholar] [CrossRef]
- Fang, S.S. Study on Fall Dormancy and Production Performance of Different Alfalfa Cultivars. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2015. Part 3–6 (In Chinese). [Google Scholar]
- Sun, Q.Z.; Wang, Z.L.; Xun, L.J. Alfalfa in Arid Regions; China Social Sciences Press: Beijing, China, 2014; pp. 58–79. (In Chinese) [Google Scholar]
- Rimi, F.; Macolino, S.; Leinauer, B.; Lauriault, L.; Ziliotto, U. Fall dormancy and harvest stage effects on alfalfa nutritive value in a subtropical climate. Agron. J. 2012, 104, 415. [Google Scholar] [CrossRef]
- Yang, M.; Lu, J.Y.; Liu, M.G.; Lu, Y.X.; Yang, H.M. Leaf nutrient resorption in lucerne decreases with relief of relative soil nutrient limitation under phosphorus and potassium fertilization with irrigation. Sci. Rep. 2020, 10, 10525. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A.F.M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- XIE, K.Y.; LI, X.L.; Feng, H.E.; ZHANG, Y.J.; WAN, L.Q.; David, B.H.; Gamal, M.F. Effect of nitrogen fertilization on yield, N content, and nitrogen fixation of alfalfa and smooth bromegrass grown alone or in mixture in greenhouse pots. J. Integr. Agric. 2015, 14, 1864–1876. [Google Scholar] [CrossRef]
- Lu, J.Y. Effect of N and P Fertilizations on Leaf Nutrient Resorption of Alfalfa at Different Growth Stages in the Loess Plateau. Ph.D. Thesis, Lanzhou University, Lanzhou, China, 2019. Part 1–5 (In Chinese). [Google Scholar]
- Lu, J.Y.; Liu, M.G.; Yang, M.; Xie, J.H.; Yang, H.M.; Li, L.L. Leaf resorption and stoichiometry of N and P of 1, 2 and 3 year-old lucerne under one-time P fertilization. Soil Tillage Res. 2020, 197, 104481. [Google Scholar] [CrossRef]
- Yamori, W.; Masumoto, C.; Fukayama, H.; Makino, A. Rubisco activase is a key regulator of non-steady-state photosynthesis at any leaf temperature and, to a lesser extent, of steady-state photosynthesis at high temperature. Plant J. 2012, 71, 871–880. [Google Scholar] [CrossRef] [PubMed]
- Hikosaka, K.; Ishikawa, K.; Borjigidai, A.; Muller, O.; Onoda, Y. Temperature acclimation of photosynthesis: Mechanisms involved in the changes in temperature dependence of photosynthetic rate. J. Exp. Bot. 2006, 57, 291–302. [Google Scholar] [CrossRef]
- Haldimann, P.; Feller, U. Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ. 2005, 28, 302–317. [Google Scholar] [CrossRef]
- Lamm, F.R.; Harmoney, K.R.; Aboukheira, A.A.; Johnson, S.K. Alfalfa production with subsurface drip irrigation in the Central Great Plains. Trans. ASABE 2012, 55, 1203–1212. [Google Scholar] [CrossRef]
- Malinowski, D.; Pinchak, W.; Kramp, B.; Zuo, H.; Butler, T. Supplemental irrigation and fall dormancy effects on alfalfa productivity in a semiarid, subtropical climate with a bimodal precipitation pattern. Agron. J. 2007, 99, 621–629. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, X.; Ma, C.; Zhang, Q. Effects of Nitrogen and Phosphorus Addition on Agronomic Characters, Photosynthetic Performance and Anatomical Structure of Alfalfa in Northern Xinjiang, China. Agronomy 2022, 12, 1613. [Google Scholar] [CrossRef]
- Haagenson, D.; Cunningham, S.; Volenec, J. Root physiology of less fall dormant, winter hardy alfalfa selections. Crop Sci. 2003, 43, 1441–1447. [Google Scholar] [CrossRef]
- Wang, Z.N.; Lu, J.Y.; Yang, H.M.; Zhang, X.; Luo, C.L.; Zhao, Y.X. Resorption of nitrogen, phosphorus and potassium from leaves of lucerne stands of different ages. Plant Soil 2014, 383, 301–312. [Google Scholar] [CrossRef]
- Rimi, F.; Macolino, S.; Leinauer, B.; Lauriault, L.; Ziliotto, U. Fall dormancy and harvest stage impact on alfalfa persistence in a subtropical climate. Agron. J. 2014, 106, 1258–1266. [Google Scholar] [CrossRef]
- Bélanger, G.; Kunelius, T.; McKenzie, D.; Papadopoulos, Y.; Thomas, B.; McRae, K.; Fillmore, S.A.E.; Christie, B. Fall cutting management affects yield and persistence of alfalfa in Atlantic Canada. Can. J. Plant Sci. 1999, 79, 57–63. [Google Scholar] [CrossRef]
- Lawati, A.A.; Pierce, C.; Murray, L.; Ray, I. Combining ability and heterosis for forage yield among elite alfalfa core collection accessions with different fall dormancy responses. Crop Sci. 2010, 50, 150–158. [Google Scholar] [CrossRef]
- Cunningham, S.M.; Gana, J.A.; Volenec, J.J. Winter hardiness, root physiology, and gene expression in successive fall dormancy selections. Crop Sci. 2001, 41, 1091–1098. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Si, D.; Sun, X.W.; Mu, L.; Zhao, H.K.; Li, Z.C.; Wei, Z.S. Effect of cutting under high temperature on regrowth and quality of five alfalfa cultivars. Pratacult. Sci. 2017, 34, 1469–1474. (In Chinese) [Google Scholar]
Cultivar | Fall Dormancy Rate | Type Fall Dormancy | Source |
---|---|---|---|
Xinmu NO.1 | level 1 | Extreme fall-dormancy type | Institute of Grassland Research of CAAS |
Gongnong NO.1 | level 1 | Extreme fall-dormancy type | |
Zhaodong | level 1 | Extreme fall-dormancy type | |
Aohan | level 2 | Fall-dormancy type | |
Xinmu NO.2 | level 2 | Fall-dormancy type | |
Zhongmu NO.1 | level 2 | Fall-dormancy type | |
Zhongmu NO.2 | level 3 | Fall-dormancy type | |
Concept | level 3 | Fall-dormancy type | |
Zhongmu NO.3 | level 3 | Fall-dormancy type | |
Adrenalim | level 4 | Moderate fall-dormancy type | |
Xinjiang Daye | level 4 | Moderate fall-dormancy type | |
Victoria | level 6 | Moderate fall-dormancy type | |
Ghillie | level 6 | Moderate fall-dormancy type | |
Yumu NO.1 | level 7 | Non-fall-dormancy type | |
Gannong NO.5 | level 8 | Non-fall-dormancy type | |
Liangmu NO.1 | level 8 | Non-fall-dormancy type | |
WL325HQ | level 4 | Moderate fall-dormancy type | Beijing Zhengdao Ecological Technology Co. |
WL363HQ | level 5 | Moderate fall-dormancy type | |
WL366HQ | level 5 | Moderate fall-dormancy type | |
WL525HQ | level 8 | Non-fall-dormancy type | |
WL903HQ | level 9 | Extreme non-fall-dormancy type | |
WL656HQ | level 9 | Extreme non-fall-dormancy type | |
WL712HQ | level 10 | Extreme non-fall-dormancy type | |
Paola | level 5 | Moderate fall-dormancy type | Tianjin Bailv International Grass Industry Co. |
Sandili | level 6 | Moderate fall-dormancy type | |
Sardi7 | level 7 | Non-fall-dormancy type | |
Blue moon | level 7 | Non-fall-dormancy type | |
Pegasis | level 9 | Extreme non-fall-dormancy type | |
Sardi10 | level 10 | Extreme non-fall-dormancy type | |
UC1887 | level 10 | Extreme non-fall-dormancy type |
Index | Year | Cut | CV (%) | Linear Model | Nonlinear Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Y = ax + b | R2 | F | P | Y = ax2 + bx + c | R2 | F | P | ||||
Green-leaf C | 2020 | 1 | 1.78 | y = −0.884x + 409.460 | 0.139 | 1.286 | 0.290 | y = −0.777x2 + 7.668x + 392.360 | 0.8258 | 16.586 | 0.002 |
2 | 1.79 | y = −1.070x + 372.150 | 0.244 | 2.574 | 0.147 | y = −0.624x2 + 5.795x + 358.430 | 0.774 | 11.991 | 0.006 | ||
3 | 1.48 | y = −0.664x + 359.300 | 0.146 | 1.368 | 0.276 | y = −0.548x2 + 5.361x + 347.250 | 0.783 | 12.593 | 0.005 | ||
2021 | 1 | 1.97 | y = −1.726x + 401.510 | 0.459 | 6.792 | 0.031 | y = −0.603x2 + 4.907x + 388.250 | 0.818 | 15.745 | 0.003 | |
2 | 1.37 | y = −1.091x + 374.190 | 0.426 | 5.949 | 0.041 | y = −0.378x2 + 3.062x + 365.880 | 0.753 | 10.693 | 0.007 | ||
Green-leaf N | 2020 | 1 | 3.67 | y = 0.076x + 35.205 | 0.031 | 0.254 | 0.628 | y = 0.148x2 − 1.548x + 38.452 | 0.778 | 12.239 | 0.005 |
2 | 2.42 | y = 0.093x + 37.320 | 0.094 | 0.826 | 0.390 | y = 0.098x2 − 0.981x + 39.467 | 0.758 | 10.921 | 0.007 | ||
3 | 1.56 | y = 0.152x + 39.411 | 0.533 | 9.141 | 0.017 | y = 0.047x2 − 0.360x + 40.434 | 0.855 | 20.591 | <0.001 | ||
2021 | 1 | 2.66 | y = 0.227x + 35.496 | 0.495 | 7.808 | 0.023 | y = 0.066x2 − 0.502x + 36.954 | 0.765 | 11.387 | 0.006 | |
2 | 1.45 | y = 0.158x + 39.315 | 0.676 | 16.789 | 0.003 | y = 0.028x2 − 0.154x + 39.939 | 0.816 | 15.627 | 0.003 | ||
Green-leaf P | 2020 | 1 | 4.90 | y = 0.011x + 2.504 | 0.076 | 0.611 | 0.457 | y = 0.013x2 − 0.134x + 2.796 | 0.727 | 9.296 | 0.011 |
2 | 4.02 | y = 0.008x + 2.608 | 0.025 | 1.219 | 0.302 | y = 0.015x2 − 0.159x + 2.943 | 0.539 | 12.761 | 0.005 | ||
3 | 1.90 | y = 0.013x + 2.832 | 0.493 | 7.766 | 0.034 | y = 0.004x2 − 0.035x + 2.927 | 0.853 | 20.335 | <0.001 | ||
2021 | 1 | 4.04 | y = 0.022x + 2.496 | 0.380 | 5.008 | 0.056 | y = 0.008x2 − 0.066x + 2.671 | 0.713 | 8.879 | 0.012 | |
2 | 1.88 | y = 0.014x + 2.827 | 0.616 | 13.986 | 0.006 | y = 0.003x2 − 0.021x + 2.898 | 0.820 | 17.086 | 0.002 |
Index | Year | Cut | CV (%) | Linear Model | Non-Linear Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
y = ax + b | R2 | F | P | y = ax2 + bx + c | R2 | F | P | ||||
Senesced- leaf C | 2020 | 1 | 2.39 | y = −1.160x + 378.290 | 0.157 | 1.487 | 0.257 | y = −0.930x2 + 9.065x + 357.840 | 0.801 | 14.047 | 0.004 |
2 | 2.48 | y = −1.241x + 369.160 | 0.175 | 1.694 | 0.229 | y = −0.914x2 + 8.807x + 349.060 | 0.781 | 12.490 | 0.005 | ||
3 | 1.59 | y = −0.676x + 374.300 | 0.121 | 1.103 | 0.324 | y = −0.634x2 + 6.2947x + 360.360 | 0.802 | 14.197 | 0.003 | ||
2021 | 1 | 2.65 | y = −2.257x + 392.850 | 0.461 | 6.840 | 0.031 | y = −0.782x2 + 6.3417x + 375.650 | 0.815 | 15.402 | 0.003 | |
2 | 2.00 | y = −1.784x + 382.920 | 0.521 | 8.718 | 0.018 | y = −0.499x2 + 3.704x + 371.950 | 0.782 | 12.595 | 0.005 | ||
Senesced- leaf N | 2020 | 1 | 7.43 | y = 0.187x + 17.375 | 0.171 | 1.661 | 0.233 | y = 0.139x2 − 1.341x + 20.431 | 0.776 | 12.132 | 0.005 |
2 | 5.43 | y = 0.141x + 19.509 | 0.149 | 1.406 | 0.270 | y = 0.123x2 − 1.212x + 22.214 | 0.880 | 25.511 | <0.001 | ||
3 | 3.08 | y = 0.162x + 21.651 | 0.499 | 7.957 | 0.023 | y = 0.052x2 − 0.413x + 22.802 | 0.831 | 17.261 | 0.002 | ||
2021 | 1 | 5.95 | y = 0.266x + 17.933 | 0.485 | 7.540 | 0.025 | y = 0.084x2 − 0.658x + 19.780 | 0.796 | 13.632 | 0.004 | |
2 | 3.01 | y = 0.170x + 21.772 | 0.570 | 10.533 | 0.012 | y = 0.046x2 − 0.339x + 22.790 | 0.839 | 18.181 | 0.002 | ||
Senesced- leaf P | 2020 | 1 | 7.72 | y = 0.007x + 1.080 | 0.052 | 0.442 | 0.525 | y = 0.009x2 − 0.094x + 1.280 | 0.706 | 8.401 | 0.014 |
2 | 6.40 | y = 0.015x + 1.575 | 0.182 | 1.780 | 0.219 | y = 0.011x2 − 0.105x + 1.816 | 0.807 | 14.596 | 0.003 | ||
3 | 2.46 | y = 0.011x + 1.833 | 0.467 | 6.996 | 0.030 | y = 0.004x2 − 0.032x + 1.919 | 0.876 | 24.819 | <0.001 | ||
2021 | 1 | 5.57 | y = 0.012x + 1.052 | 0.360 | 4.505 | 0.067 | y = 0.005x2 − 0.041x + 1.158 | 0.712 | 8.646 | 0.013 | |
2 | 2.67 | y = 0.013x + 1.845 | 0.570 | 10.605 | 0.012 | y = 0.003x2 − 0.023x + 1.916 | 0.804 | 14.347 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Wang, X.; Ma, C.; Zhang, Q. Characteristics of Carbon, Nitrogen and Phosphorus Stoichiometry and Nutrient Reabsorption in Alfalfa Leaves with Different Fall-Dormancy Levels in Northern Xinjiang, China. Agriculture 2022, 12, 2154. https://doi.org/10.3390/agriculture12122154
Sun Y, Wang X, Ma C, Zhang Q. Characteristics of Carbon, Nitrogen and Phosphorus Stoichiometry and Nutrient Reabsorption in Alfalfa Leaves with Different Fall-Dormancy Levels in Northern Xinjiang, China. Agriculture. 2022; 12(12):2154. https://doi.org/10.3390/agriculture12122154
Chicago/Turabian StyleSun, Yanliang, Xuzhe Wang, Chunhui Ma, and Qianbing Zhang. 2022. "Characteristics of Carbon, Nitrogen and Phosphorus Stoichiometry and Nutrient Reabsorption in Alfalfa Leaves with Different Fall-Dormancy Levels in Northern Xinjiang, China" Agriculture 12, no. 12: 2154. https://doi.org/10.3390/agriculture12122154
APA StyleSun, Y., Wang, X., Ma, C., & Zhang, Q. (2022). Characteristics of Carbon, Nitrogen and Phosphorus Stoichiometry and Nutrient Reabsorption in Alfalfa Leaves with Different Fall-Dormancy Levels in Northern Xinjiang, China. Agriculture, 12(12), 2154. https://doi.org/10.3390/agriculture12122154