The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production
Abstract
:1. Introduction
2. Background
2.1. Nutritional Consideration in Cereal Grains
2.2. The Impact of Climate-Induced Factors on Grain Yield
2.2.1. Wheat and Barley
2.2.2. Maize and Sorghum
3. Impacts of Elevated [CO2], Heat Stress and Drought on Grain Nutritional Value
3.1. Wheat and Barley
3.1.1. Effects of eCO2
3.1.2. Effects of Heat Stress and Drought
3.2. Maize and Sorghum
3.2.1. Effects of eCO2
3.2.2. Effects of Heat Stress and Drought
4. Potential to Minimise the Variation of Grain Quality
4.1. Crop Migration, Sowing Windows and Management Practices
4.2. Plant Breeding
4.3. Feed Processing
4.4. Feed Enzyme Supplementation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, H.; Ewert, F.; Olesen, J.E.; Muller, C.; Fronzek, S.; Ruane, A.C.; Bourgault, M.; Martre, P.; Ababaei, B.; Bindi, M.; et al. Diverging importance of drought stress for maize and winter wheat in Europe. Nat. Commun. 2018, 9, 4249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makowski, D.; Marajo-Petitzon, E.; Durand, J.L.; Ben-Ari, T. Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur. J. Agron. 2020, 115, 126041. [Google Scholar] [CrossRef]
- Mariem, S.; Soba, D.; Zhou, B.; Loladze, I.; Morales, F.; Aranjuelo, I. Climate change, crop yields, and grain quality of C3 cereals: A meta-analysis of [CO2], temperature, and drought effects. Plants 2021, 10, 1052. [Google Scholar] [CrossRef] [PubMed]
- Broberg, M.C.; Högy, P.; Feng, Z.; Pleijel, H. Effects of Elevated CO2 on Wheat Yield: Non-Linear Response and Relation to Site Productivity. Agronomy 2019, 9, 243. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liu, F. Effects of elevated CO2 and heat on wheat grain quality. Plants 2021, 10, 1027. [Google Scholar] [CrossRef]
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of climate change on the livestock food supply chain; A review of the evidence. Glob. Food Secur.-Agric. Policy Econ. Environ. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Reddy, A.R.; Rasineni, G.K.; Raghavendra, A.S. The impact of global elevated CO2 concentration on photosynthesis and plant productivity. Curr. Sci. 2010, 99, 46–57. [Google Scholar]
- Ploschuk, R.A.; Miralles, D.J.; Colmer, T.D.; Ploschuk, E.L.; Striker, G.G. Waterlogging of winter crops at early and late stages: Impacts on leaf physiology, growth and yield. Front. Plant Sci. 2018, 9, 1863. [Google Scholar] [CrossRef] [Green Version]
- Nsafon, B.E.K.; Lee, S.C.; Huh, J.S. Responses of yield and protein composition of wheat to climate change. Agriculture 2020, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Dietterich, L.H.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Fernando, N.; Fitzgerald, G.; Hasegawa, T.; et al. Impacts of elevated atmospheric CO2 on nutrient content of important food crops. Sci. Data 2015, 2, 150036. [Google Scholar] [CrossRef] [PubMed]
- Lamaoui, M.; Jemo, M.; Datla, R.; Bekkaoui, F. Heat and drought stresses in crops and approaches for their mitigation. Front. Chem. 2018, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kirschbaum, M.U.F.; McMillan, A.M.S. Warming and elevated CO2 have opposing influences on transpiration. Which is more important? Curr. For. Rep. 2018, 4, 51–71. [Google Scholar] [CrossRef] [Green Version]
- Weigel, H.J.; Manderscheid, R. Crop growth responses to free air CO2 enrichment and nitrogen fertilization: Rotating barley, ryegrass, sugar beet and wheat. Eur. J. Agron. 2012, 43, 97–107. [Google Scholar] [CrossRef]
- Fischer, S.; Hilger, T.; Piepho, H.P.; Jordan, I.; Cadisch, G. Do we need more drought for better nutrition? The effect of precipitation on nutrient concentration in East African food crops. Sci. Total Environ. 2019, 658, 405–415. [Google Scholar] [CrossRef]
- Thitisaksakul, M.; Jimenez, R.C.; Arias, M.C.; Beckles, D.M. Effects of environmental factors on cereal starch biosynthesis and composition. J. Cereal Sci. 2012, 56, 67–80. [Google Scholar] [CrossRef]
- Barnabas, B.; Jager, K.; Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 2008, 31, 11–38. [Google Scholar] [CrossRef]
- Prasad, P.; Djanaguiraman, M.; Perumal, R.; Ciampitti, I. Impact of high temperature stress on floret fertility and individual grain weight of grain sorghum: Sensitive stages and thresholds for temperature and duration. Front Plant Sci. 2015, 6, 820. [Google Scholar] [CrossRef] [Green Version]
- Loladze, I. Rising atmospheric CO2 and human nutrition: Toward globally imbalanced plant stoichiometry? Trends Ecol. Evol. 2002, 17, 457–461. [Google Scholar] [CrossRef]
- Soares, J.C.; Santos, C.S.; Carvalho, S.M.P.; Pintado, M.M.; Vasconcelos, M.W. Preserving the nutritional quality of crop plants under a changing climate: Importance and strategies. Marschner Rev. 2019, 443, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Broberg, M.C.; Högy, P.; Pleijel, H. CO2-induced changes in wheat grain composition: Meta-analysis and response functions. Agronomy 2017, 7, 32. [Google Scholar] [CrossRef]
- Taub, D.R.; Miller, B.; Allen, H. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Glob. Change Biol. 2008, 14, 565–575. [Google Scholar] [CrossRef]
- Fernando, N.; Panozzo, J.; Tausz, M.; Norton, R.M.; Fitzgerald, G.J.; Myers, S.; Walker, C.; Stangoulis, J.; Seneweera, S. Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system. J. Cereal Sci. 2012, 56, 684–690. [Google Scholar] [CrossRef]
- Myers, S.S.; Zanobetti, A.; Kloog, I.; Huybers, P.; Leakey, A.D.B.; Bloom, A.J.; Carlisle, E.; Dietterich, L.H.; Fitzgerald, G.; Hasegawa, T.; et al. Increasing CO2 threatens human nutrition. Nature 2014, 510, 139–142. [Google Scholar] [CrossRef] [Green Version]
- Högy, P.; Wieser, H.; Kohler, P.; Schwadorf, K.; Breuer, J.; Franzaring, J.; Muntifering, R.; Fangmeier, A. Effects of elevated CO2 on grain yield and quality of wheat: Results from a 3-year free-air CO2 enrichment experiment. Plant Biol. 2009, 11, 60–69. [Google Scholar] [CrossRef]
- Ge, T.; Sui, F.; Nie, S.; Sun, N.; Xiao, H.; Tong, C. Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. J. Plant Nutr. 2010, 33, 1811–1818. [Google Scholar]
- Velu, G.; Guzman, C.; Mondal, S.; Autrique, J.E.; Huerta, J.; Singh, R.P. Effect of drought and elevated temperature on grain zinc and iron concentrations in cimmyt spring wheat. J. Cereal Sci. 2016, 69, 182–186. [Google Scholar] [CrossRef]
- Singh, S.; Gupta, A.K.; Kaur, N. Influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat. Sci. World J. 2012, 2012, 485751. [Google Scholar] [CrossRef] [Green Version]
- De Souza, A.P.; Cocuron, J.C.; Garcia, A.C.; Alonso, A.P.; Buckeridge, M.S. Changes in whole-plant metabolism during the grain-filling stage in sorghum grown under elevated CO2 and drought. Plant Physiol. 2015, 169, 1755–1765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 2014, 3, e02245. [Google Scholar] [CrossRef]
- Skendzic, S.; Zovko, M.; Zivkovic, I.P.; Lesic, V.; Lemic, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Sage, R.; Li, M.; Monson, R. The taxonomic distribution of C4 photosynthesis. In C4 Plant Biology; Sage, R., Monson, R., Eds.; Academic Press: Cambridge, MA, USA, 1999; pp. 551–584. [Google Scholar]
- Lopes, M.S.; Araus, J.L.; van Heerden, P.D.R.; Foyer, C.H. Enhancing drought tolerance in C4 crops. J. Exp. Bot. 2011, 62, 3135–3153. [Google Scholar] [CrossRef] [PubMed]
- Kajala, K.; Covshoff, S.; Karki, S.; Woodfield, H.; Tolley, B.J.; Dionora, M.J.A.; Mogul, R.T.; Mabilangan, A.E.; Danila, F.R.; Hibberd, J.M.; et al. Strategies for engineering a two-celled C-4 photosynthetic pathway into rice. J. Exp. Bot. 2011, 62, 3001–3010. [Google Scholar] [CrossRef]
- da Silva, R.G.; Alves, R.D.; Zingaretti, S.M. Increased CO2 causes changes in physiological and genetic responses in C4 crops: A brief review. Plants 2020, 9, 1567. [Google Scholar] [CrossRef]
- Ghannoum, O.; Von Caemmerer, S.; Ziska, L.H.; Conroy, J.P. The growth response of C4 plants to rising atmospheric CO2 partial pressure: A reassessment. Plant Cell Environ. 2000, 23, 931–942. [Google Scholar] [CrossRef] [Green Version]
- Leakey, A.D.B.; Ainsworth, E.A.; Bernacchi, C.J.; Rogers, A.; Long, S.P.; Ort, D.R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from face. J. Exp. Bot. 2009, 60, 2859–2876. [Google Scholar] [CrossRef] [PubMed]
- Balla, K.; Rakszegi, M.; Li, Z.G.; Bekes, F.; Bencze, S.; Veisz, O. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 2011, 29, 117–128. [Google Scholar] [CrossRef] [Green Version]
- Daryanto, S.; Wang, L.X.; Jacinthe, P.A. Global synthesis of drought effects on maize and wheat production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yasin, M.; Ahmad, A.; Khaliq, T.; Basra, S.M.A. Evaluating the impact of thermal variations due to different sowing dates on yield and quality of spring maize. Int. J. Agric. Biol. 2019, 21, 922–928. [Google Scholar]
- Farooq, M.; Bramley, H.; Palta, J.A.; Siddique, K.H.M. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 2011, 30, 491–507. [Google Scholar] [CrossRef]
- Giuberti, G.; Gallo, A.; Masoero, F.; Ferraretto, L.F.; Hoffman, P.C.; Shaver, R.D. Factors affecting starch utilization in large animal food production system: A review. Starch-Starke 2014, 66, 72–90. [Google Scholar] [CrossRef]
- Maynard, C.W.; Ghanec, A.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Sustaining live performance in broilers offered reduced crude protein diets based on corn and wheat blend. Anim. Feed. Sci. Technol. 2021, 276, 114928. [Google Scholar] [CrossRef]
- Moran, E.T. Starch digestion in fowl. Poult. Sci. 1982, 61, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Cadogan, D.J.; Peron, A.; Truong, H.H.; Selle, P.H. A combination of xylanase, amylase and protease influences growth performance, nutrient utilisation, starch and protein digestive dynamics in broiler chickens offered maize-, sorghum- and wheat-based diets. Anim. Prod. Sci. 2015, 55, 1255–1263. [Google Scholar] [CrossRef]
- Barsby, T.; Donald, A.; Frazier, P. Starch: Advances in Structure and Function; Royal Society of Chemistry: Cambridge, UK, 2001. [Google Scholar]
- Classen, H.L. Cereal grain starch and exogenous enzymes in poultry diets. Anim. Feed. Sci. Technol. 1996, 62, 21–27. [Google Scholar] [CrossRef]
- Liu, S.Y.; Selle, P.H.; Cowieson, A.J. The kinetics of starch and nitrogen digestion regulate growth performance and nutrient utilisation in coarsely-ground, sorghum-based broiler diets. Anim. Prod. Sci. 2013, 53, 1033–1040. [Google Scholar] [CrossRef]
- Selle, P.H.; Moss, A.F.; Khoddami, A.; Chrystal, P.V.; Liu, S.Y. Starch digestion rates in multiple samples of commonly used feed grains in diets for broiler chickens. Anim. Nutr. 2021, 7, 450–459. [Google Scholar] [CrossRef]
- Connor, J.K.; Neill, A.R.; Barram, K.M. Metabolizable energy content for chicken of maize and sorghum grain hydrids grown at several geographical regions. Aust. J. Exp. Agric. 1976, 16, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Cowieson, A.J. Factors that affect the nutritional value of maize for broilers. Anim. Feed. Sci. Technol. 2005, 119, 293–305. [Google Scholar] [CrossRef]
- Mollah, Y.; Bryden, W.L.; Wallis, I.R.; Balnave, D.; Annison, E.F. Studies on low metabolizable energy wheats for poultry using conventional and rapid assay procedures and the effects of processing. Brit. Poult. Sci. 1983, 24, 81–89. [Google Scholar] [CrossRef]
- Rogel, A.M.; Annison, E.F.; Bryden, W.L.; Balnave, D. The digestion of wheat-starch in broiler-chickens. Aust. J. Agric. Res. 1987, 38, 639–649. [Google Scholar] [CrossRef]
- Hughes, R.J.; Choct, M. Chemical and physical characteristics of grains related to variability in energy and amino acid availability in poultry. Aust. J. Agric. Res. 1999, 50, 689–701. [Google Scholar]
- Annison, G. The role of wheat nonstarch polysaccharides in broiler nutrition. Aust. J. Agric. Res. 1993, 44, 405–422. [Google Scholar]
- Cowieson, A.J.; Hruby, M.; Pierson, E.E.M. Evolving enzyme technology: Impact on commercial poultry nutrition. Nutr. Res. Rev. 2006, 19, 90–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choct, M.; Hughes, R.J.; Bedford, M.R. Effects of a xylanase on individual bird variation, starch digestion throughout the intestine, and ileal and caecal volatile fatty acid production in chickens fed wheat. Brit. Poult. Sci. 1999, 40, 419–422. [Google Scholar] [CrossRef]
- Saunders, R.M. Alpha-amylase inhibitors in wheat and other cereals. Cereal Foods World 1975, 20, 282–285. [Google Scholar]
- Svihus, B.; Uhlen, A.K.; Harstad, O.M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed. Sci. Technol. 2005, 122, 303–320. [Google Scholar] [CrossRef]
- Selle, P.H.; Cadogan, D.J.; Li, X.; Bryden, W.L. Implications of sorghum in broiler chicken nutrition. Anim. Feed. Sci. Technol. 2010, 156, 57–74. [Google Scholar] [CrossRef]
- Taylor, J.R.N.; Emmambux, M.N. Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chem. 2010, 87, 263–271. [Google Scholar] [CrossRef]
- Liu, S.Y.; Selle, P.H.; Cowieson, A.J. Strategies to enhance the performance of pigs and poultry on sorghum-based diets. Anim. Feed. Sci. Technol. 2013, 181, 1–14. [Google Scholar] [CrossRef]
- Liu, S.Y.; Fox, G.; Khoddami, A.; Neilson, K.A.; Truong, H.H.; Moss, A.F.; Selle, P.H. Grain sorghum: A conundrum for chicken-meat production. Agriculture 2015, 5, 1224–1251. [Google Scholar] [CrossRef] [Green Version]
- Bach Knudsen, K.E.; Munck, L. Dietary fiber contents and compositions of sorghum and sorghum-based foods. J. Cereal Sci. 1985, 3, 153–164. [Google Scholar] [CrossRef]
- Bedford, M.; Partridge, G. Enzymes in Farm Animal Nutrition; CABI: Oxfordshire, UK, 2010; pp. 12–42. [Google Scholar]
- Giraldo, P.; Benavente, E.; Manzano-Agugliaro, F.; Gimenez, E. Worldwide research trends on wheat and barley: A bibliometric comparative analysis. Agronomy 2019, 9, 352. [Google Scholar] [CrossRef] [Green Version]
- Toghyani, M.; Macelline, S.P.; Greenhalgh, S.; Chrystal, P.V.; Selle, P.H.; Liu, S.Y. Optimum inclusion rate of barley in diets of meat chickens: An incremental and practical program. Anim. Prod. Sci. 2022, 62, 645–660. [Google Scholar] [CrossRef]
- Green, S.; Bertrand, S.L.; Duron, M.J.C.; Maillard, R. Digestibilities of amino-acids in maize, wheat and barley meals, determined with intact and cecectomized cockerels. Brit. Poult. Sci. 1987, 28, 631–641. [Google Scholar] [CrossRef]
- Knudsen, K.E.B. Fiber and nonstarch polysaccharide content and variation in common crops used in broiler diets. Poult. Sci. 2014, 93, 2380–2393. [Google Scholar] [CrossRef] [PubMed]
- Choct, M. Enzymes for the feed industry: Past, present and future. World Poult. Sci. J. 2006, 62, 5–15. [Google Scholar] [CrossRef]
- Jacob, J.P.; Pescatore, A.J. Barley beta-glucan in poultry diets. Ann. Transl. Med. 2014, 2, 20. [Google Scholar] [PubMed]
- White, W.B.; Bird, H.R.; Sunde, M.L.; Marlett, J.A.; Prentice, N.A.; Burger, W.C. Viscosity of beta-d-glucan as a factor in the enzymatic improvement of barley for chicks. Poult. Sci. 1983, 62, 853–862. [Google Scholar] [CrossRef]
- Gohl, B.; Alden, S.; Elwinger, K.; Thomke, S. Influence of beta-glucanase on feeding value of barley for poultry and moisture-content of excreta. Brit. Poult. Sci. 1978, 19, 41–47. [Google Scholar] [CrossRef]
- Salih, M.E.; Classen, H.L.; Campbell, G.L. Response of chickens fed on hull-less barley to dietary beta-glucanase at different ages. Anim. Feed. Sci. Technol. 1991, 33, 139–149. [Google Scholar] [CrossRef]
- Zorb, C.; Ludewig, U.; Hawkesford, M.J. Perspective on wheat yield and quality with reduced nitrogen supply. Trends Plant Sci. 2018, 23, 1029–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, R.; Nakano, H. Barley yield response to nitrogen application under different weather conditions. Sci. Rep. 2019, 9, 8477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LaCanne, C.E.; Lundgren, J.G. Regenerative agriculture: Merging farming and natural resource conservation profitably. PeerJ 2018, 6, e4428. [Google Scholar] [CrossRef] [PubMed]
- Baillot, N.; Girousse, C.; Allard, V.; Piquet-Pissaloux, A.; Gouis, J. Different grain-filling rates explain grain-weight differences along the wheat ear. PLoS ONE 2018, 13, e0209597. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, A.; Visscher, C.; Kaltschmitt, M. Plant-based fructans for increased animal welfare: Provision processes and remaining challenges. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Lu, T.J.; Jane, J.L.; Keeling, P.L.; Singletary, G.W. Maize starch fine structures affected by ear developmental temperature. Carbohydr. Res. 1996, 282, 157–170. [Google Scholar] [CrossRef]
- Pavli, O.I.; Vlachos, C.E.; Kalloniati, C.; Flemetakis, E.; Skaracis, G.N. Metabolite profiling reveals the effect of drought on sorghum (Sorghum bicolor L. Moench) metabolism. Plant Omics 2013, 6, 371–376. [Google Scholar]
- Monjardino, P.; Smith, A.G.; Jones, R.J. Heat stress effects on protein accumulation of maize endosperm. Crop Sci. 2005, 45, 1203–1210. [Google Scholar] [CrossRef]
- Moharramnejad, S.; Sofalian, O.; Valizadeh, M.; Mohammadreza, S. Proline, glycine betaine, total phenolics and pigment contents in response to osmotic stress in maize seedlings. J. Biosci. Biotechnol. 2015, 4, 313–319. [Google Scholar]
- Cai, W.J.; Cowan, T.; Briggs, P.; Raupach, M. Rising temperature depletes soil moisture and exacerbates severe drought conditions across southeast Australia. Geophys. Res. Lett. 2009, 36, L21709. [Google Scholar] [CrossRef]
- Bhargava, S.; Mitra, S. Elevated atmospheric CO2 and the future of crop plants. Plant Breed 2021, 140, 1–11. [Google Scholar] [CrossRef]
- Lilburn, M.S.; Ngidi, E.M.; Ward, N.E.; Llames, C. The influence of severe drought on selected nutritional characteristics of commercial corn hybrids. Poult. Sci. 1991, 70, 2329–2334. [Google Scholar] [CrossRef]
- Efeoğlua, B.; Ekmekçib, Y.; Çiçekb, N. Physiological responses of three maize cultivars to drought stress and recovery. South Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Kruegger, A.B.; Oppenheimer, M. Linkages among climate change, crop yields and Mexico-US cross-border migration. Biol. Sci. 2010, 107, 14257–14262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloat, L.L.; Davis, S.J.; Gerber, J.S.; Moore, F.C.; Ray, D.K.; West, P.C.; Mueller, N.D. Climate adaptation by crop migration. Nat. Commun. 2020, 11, 1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, C.K.; Gupta, V.; Chattopadhyay, U.; Sreeraman, B.A. Migration as adaptation strategy to cope with climate change: A study of farmers’ migration in rural India. Int. J. Clim. Chang. Strateg. Manag. 2018, 10, 121–141. [Google Scholar] [CrossRef]
- Rosa, L. Adapting agriculture to climate change via sustainable irrigation: Biophysical potentials and feedbacks. Environ. Res. Lett. 2022, 17, 063008. [Google Scholar] [CrossRef]
- Han, X.; Dong, L.; Cao, Y.; Lyu, Y.; Shao, X.; Wang, Y.; Wang, L. Adaptation to Climate Change Effects by Cultivar and Sowing Date Selection for Maize in the Northeast China Plain. Agronomy 2022, 12, 984. [Google Scholar] [CrossRef]
- Luo, Q.; Trethowan, R.; Tan, D.K.Y. Managing the risk of extreme climate events in Australian major wheat production systems. Int. J. Biometeorol. 2018, 62, 1685–1694. [Google Scholar] [CrossRef]
- Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res. 2017, 209, 108–119. [Google Scholar] [CrossRef]
- Liu, L. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest. PLoS ONE 2020, 15, e0225433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phogat, M.; Dahiya, R.; Sangwan, P.S.; Goyal, V. Zero tillage and water productivity: A review. Int. J. Chem. Stud. 2020, 8, 2529–2533. [Google Scholar] [CrossRef]
- Hoffman, R.; Wiederkehr, C.; Dimitrova, A.; Hermans, K. Agricultural livelihoods, adaptation, and environmental migration in sub-Saharan drylands: A meta-analytical review. Environ. Res. Lett. 2022, 17, 083003. [Google Scholar] [CrossRef]
- Thistlethwaite, R.J.; Tan, D.K.Y.; Bokshi, A.I.; Ullah, S.; Trethowan, R.M. A phenotyping strategy for evaluating the high-temperature tolerance of wheat. Field Crops Res. 2020, 255, 107905. [Google Scholar] [CrossRef]
- Mallapaty, S. Australian gene-editing rules adopt ‘middle ground’. Nat. Brief. 2019. [Google Scholar] [CrossRef] [PubMed]
- Godwin, I.D. Improving the protein content and digestibility of grain sorghum using gene editing. Proc. Aust. Poult. Sci. Symp. 2022, 33, 11. [Google Scholar]
- Tao, Y.F.; Trusov, Y.; Zhao, X.R.; Wang, X.M.; Cruickshank, A.W.; Hunt, C.; van Oosterom, E.J.; Hathorn, A.; Liu, G.Q.; Godwin, I.D.; et al. Manipulating assimilate availability provides insight into the genes controlling grain size in sorghum. Plant J. 2021, 108, 231–243. [Google Scholar] [CrossRef]
- Scott, T.A.; Swift, M.L.; Bedford, M.R. The influence of feed milling, enzyme supplementation, and nutrient regimen on broiler chick performance. J. Appl. Poult. Res. 1997, 6, 391–398. [Google Scholar] [CrossRef]
- Thomas, M.; van der Poel, A.F.B. Physical quality of pelleted animal feed 1. Criteria for pellet quality. Anim. Feed. Sci. Technol. 1996, 61, 89–112. [Google Scholar] [CrossRef]
- Thomas, M.; van Vliet, T.; van der Poel, A.F.B. Physical quality of pelleted animal feed 3. Contribution of feedstuff components. Anim. Feed. Sci. Technol. 1998, 70, 59–78. [Google Scholar] [CrossRef]
- Amerah, A.M.; Lentle, R.G.; Ravindran, V. Influence of feed form on gizzard morphology and particle size spectra of duodenal digesta in broiler chickens. J. Poult. Sci. 2007, 44, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Mavromichalis, I.; Hancock, J.D.; Senne, B.W.; Gugle, T.L.; Kennedy, G.A.; Hines, R.H.; Wyatt, C.L. Enzyme supplementation and particle size of wheat in diets for nursery and finishing pigs. J. Anim. Sci. 2000, 78, 3086–3095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hastings, W.H. Enzyme supplements to poultry feeds. Poult. Sci. 1946, 25, 584–586. [Google Scholar] [CrossRef]
- Gutierrez-Alamo, A.; De Ayala, P.P.; Verstegen, M.W.A.; Den Hartog, L.A.; Villamide, M.J. Variability in wheat: Factors affecting its nutritional value. World Poult. Sci. J. 2008, 64, 20–39. [Google Scholar] [CrossRef] [Green Version]
- Fry, R.E.; Allred, J.B.; Jensen, L.S.; McGinnis, J. Influence of cereal grain component of the diet on response of chicks and poults to dietary enzyme supplements. Poult. Sci. 1957, 36, 1120. [Google Scholar]
- Bedford, M.R.; Schulze, H. Exogenous enzymes for pigs and poultry. Nutr. Res. Rev. 1998, 11, 91–114. [Google Scholar] [CrossRef]
- Adeola, O.; Cowieson, A.J. Board-invited review: Opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. J. Anim. Sci. 2011, 89, 3189–3218. [Google Scholar] [CrossRef]
- Olukosi, O.A.; Cowieson, A.J.; Adeola, O. Influence of enzyme supplementation of maize-soyabean meal diets on carcase composition, whole-body nutrient accretion and total tract nutrient retention of broilers. Brit. Poult. Sci. 2008, 49, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.A.; Silversides, F.G.; Zijlstra, R.T. Effect of pelleting and enzyme supplementation on variation in feed value of wheat-based diets fed to broiler chicks. Can. J. Anim. Sci. 2003, 83, 257–263. [Google Scholar] [CrossRef]
- McNab, J. Non-starch polysaccharides: Effect on nutritive value. In Poultry Feedstuffs: Supply, Composition and Nutritive Value; McNab, J., Boorman, K., Eds.; CAB International: Oxfordshire, UK, 2002; pp. 221–235. [Google Scholar]
- Pettersson, D.; Graham, H.; Aman, P. Enzyme supplementation of broiler chicken diets based on cereals with endosperm cell-walls rich in arabinoxylans or mixed-linked beta-glucans. Anim. Prod. 1990, 51, 201–207. [Google Scholar]
- Cowieson, A.J.; Bedford, M.R. The effect of phytase and carbohydrase on ileal amino acid digestibility in monogastric diets: Complimentary mode of action? World Poult. Sci. J. 2009, 65, 609–624. [Google Scholar] [CrossRef]
Climate Variable | Effect on Wheat and Barley | References | Effect on Maize and Sorghum | References |
---|---|---|---|---|
eCO2 | ↑ photosynthetic rate ↑ starch synthesis ↑ grain yield | [2,3,4,5,6,23,30] | Insignificant * | [23,30,35,37] |
Heat stress and drought | ↓ photosynthetic rate ↓ starch synthesis ↓ grain yield | [2,3,4,38] | ↓ photosynthetic rate ↓ starch synthesis ↓ grain yield | [39,40] |
Climate Variable | Effect on Wheat and Barley | References | Effect on Maize and Sorghum | References |
---|---|---|---|---|
eCO2 | ↑ [starch] | [2,3,4] | insignificant effect on [starch] | [37] |
↓ [protein], including [gliadin] and [glutenin] | [4,21] | insignificant effect on [protein] 2 | [24] | |
↓ [lipids] ↓ [vitamins] ↓ [minerals] including [Fe], [S], [Zn] and [Mg] | [4,7,19,20] | insignificant effect on [minerals] | [24,30] | |
↓ [phytate] ↑ [fructan] | [23,24,25] | insufficient data to conclude effects | ||
Heat stress and drought | ↓ [starch] ↑ [amylose] ↓ [amylopectin] | [4,41] | ↓ [starch] ↓ [amylose] ↑ [amylopectin] | [16,80] |
↑ [protein] 1 | [4,38] | ↓ [protein], including [zein] in maize | [81,82] | |
↑ [minerals], including [Zn] and [Fe] | [4,27,28] | ↓ [pigments] in maize, including [chlorophyll], [chlorophyll-a], [chlorophyll-b], [carotenoids] and [anthocyanin] | [83] | |
↑ phytic acid | [28] | insufficient data to conclude effects |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ledvinka, H.D.; Toghyani, M.; Tan, D.K.Y.; Khoddami, A.; Godwin, I.D.; Liu, S.Y. The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production. Agriculture 2022, 12, 1913. https://doi.org/10.3390/agriculture12111913
Ledvinka HD, Toghyani M, Tan DKY, Khoddami A, Godwin ID, Liu SY. The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production. Agriculture. 2022; 12(11):1913. https://doi.org/10.3390/agriculture12111913
Chicago/Turabian StyleLedvinka, Harris D., Mehdi Toghyani, Daniel K. Y. Tan, Ali Khoddami, Ian D. Godwin, and Sonia Y. Liu. 2022. "The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production" Agriculture 12, no. 11: 1913. https://doi.org/10.3390/agriculture12111913
APA StyleLedvinka, H. D., Toghyani, M., Tan, D. K. Y., Khoddami, A., Godwin, I. D., & Liu, S. Y. (2022). The Impact of Drought, Heat and Elevated Carbon Dioxide Levels on Feed Grain Quality for Poultry Production. Agriculture, 12(11), 1913. https://doi.org/10.3390/agriculture12111913