Comparative Accuracy of In Vitro Rumen Fermentation and Enzymatic Methodologies for Determination of Undigested Neutral Detergent Fiber in Forages and Development of Predictive Equations Using NIRS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Compositional Analysis
2.3. In Vitro Rumen Incubation
2.4. Multi-Step Enzymatic Method
2.5. Spectra Acquisition and Calibration Development
2.6. Computations and Data Analysis
3. Results and Discussion
3.1. Experiment 1
3.2. Experiment 2
3.2.1. Relationship between ADL and uNDF
3.2.2. Prediction of uNDF Using NIRS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Raffrenato, E.; Van Amburgh, M.E. Development of a mathematical model to predict sizes and rates of digestion of a fast and slow degrading pool and the indigestible NDF fraction. In Proceedings of the 2010 Cornell Nutrition Conference for Feed Manufacturers, Ithaca, NY, USA, 19–21 October 2010; pp. 52–65. [Google Scholar]
- Mertens, D.R. Indigestible Versus Undigested: The Distinction; Fiber Group Mtg.: Syracuse, NY, USA, 2013. [Google Scholar]
- Krizsan, S.; Rinne, M.; Nyholm, L.; Huhtanen, P. New recommendations for the ruminal in situ determination of indigestible neutral detergent fibre. Anim. Feed Sci. Technol. 2015, 205, 31–41. [Google Scholar] [CrossRef]
- Brogna, N.; Palmonari, A.; Canestrari, G.; Mammi, L.; Prà, A.D.; Formigoni, A. Technical note: Near infrared reflectance spectroscopy to predict fecal indigestible neutral detergent fiber for dairy cows. J. Dairy Sci. 2018, 101, 1234–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raffrenato, E.; Nicholson, C.; Van Amburgh, M. Development of a mathematical model to predict pool sizes and rates of digestion of 2 pools of digestible neutral detergent fiber and an undigested neutral detergent fiber fraction within various forages. J. Dairy Sci. 2019, 102, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Hristov, A. Evaluation of acid-insoluble ash and indigestible neutral detergent fiber as total-tract digestibility markers in dairy cows fed corn silage-based diets. J. Dairy Sci. 2013, 96, 5295–5299. [Google Scholar] [CrossRef] [Green Version]
- Mertens, D.R. Using uNDF to predict dairy cow performance and design rations. In Proceedings of the Four-State Dairy Nutrition and Management Conference, Dubuque, IA, USA, 15–16 June 2016; pp. 12–19. [Google Scholar]
- Palmonari, A.; Gallo, A.; Fustini, M.; Canestrari, G.; Masoero, F.; Sniffen, C.J.; Formigoni, A. Estimation of the indigestible fiber in different forage types. J. Anim. Sci. 2016, 94, 248–254. [Google Scholar] [CrossRef]
- Krizsan, S.; Huhtanen, P. Effect of diet composition and incubation time on feed indigestible neutral detergent fiber concentration in dairy cows. J. Dairy Sci. 2013, 96, 1715–1726. [Google Scholar] [CrossRef]
- Van Amburgh, M.; Collao-Saenz, E.; Higgs, R.; Ross, D.; Recktenwald, E.; Raffrenato, E.; Chase, L.; Overton, T.; Mills, J.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef]
- Fustini, M.; Palmonari, A.; Canestrari, G.; Bonfante, E.; Mammi, L.; Pacchioli, M.; Sniffen, G.; Grant, R.; Cotanch, K.; Formigoni, A. Effect of undigested neutral detergent fiber content of alfalfa hay on lactating dairy cows: Feeding behavior, fiber digestibility, and lactation performance. J. Dairy Sci. 2017, 100, 4475–4483. [Google Scholar] [CrossRef] [Green Version]
- Huhtanen, P.; Nousiainen, J.; Rinne, M. Recent developments in forage evaluation with special reference to practical applications. Agric. Food Sci. 2006, 15, 293–323. [Google Scholar] [CrossRef] [Green Version]
- Goeser, J.; Hoffman, P.; Combs, D. Modification of a rumen fluid priming technique for measuring in vitro neutral detergent fiber digestibility. J. Dairy Sci. 2009, 92, 3842–3848. [Google Scholar] [CrossRef]
- Harper, K.J.; McNeill, D.M. The role iNDF in the regulation of feed intake and the importance of its assessment in subtropical ruminant systems (the role of iNDF in the regulation of forage intake). Agriculture 2015, 5, 778–790. [Google Scholar] [CrossRef] [Green Version]
- Bender, R.W.; Cook, D.E.; Combs, D.K. Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 hours to quantify the indigestible neutral detergent fiber fraction of corn silage samples. J. Dairy Sci. 2016, 99, 5394–5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, M.; Bach, A.; Calsamiglia, S. Alternative techniques for measuring nutrient digestion in ruminants. J. Anim. Sci. 1997, 75, 2256–2276. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Giuberti, G.; Bruschi, S.; Fortunati, P.; Masoero, F. Technical note: Relationship between in situ NDF degradability and enzymatic NDF hydrolysis in forages, nonforage fibrous feeds, and crop residues. J. Anim. Sci. 2017, 95, 4172. [Google Scholar] [CrossRef] [PubMed]
- Gallo, A.; Bruschi, S.; Masoero, F. Technical note: Evaluation of a novel enzymatic method to predict in situ undigested neutral detergent fiber of forages and nonforage fibrous feeds. J. Dairy Sci. 2019, 102, 6235–6241. [Google Scholar] [CrossRef]
- Baath, G.S.; Baath, H.K.; Gowda, P.H.; Thomas, J.P.; Northup, B.K.; Rao, S.C.; Singh, H. Predicting forage quality of warm-season legumes by near infrared spectroscopy coupled with machine learning techniques. Sensors 2020, 20, 867. [Google Scholar] [CrossRef] [Green Version]
- Norman, H.C.; Hulm, E.; Humphries, A.W.; Hughes, S.J.; Vercoe, P. Broad near-infrared spectroscopy calibrations can predict the nutritional value of >100 forage species within the Australian feedbase. Anim. Prod. Sci. 2020, 60, 1111–1122. [Google Scholar] [CrossRef]
- Mentink, R.; Hoffman, P.; Bauman, L. Utility of near-infrared reflectance spectroscopy to predict nutrient composition and in vitro digestibility of total mixed rations. J. Dairy Sci. 2006, 89, 2320–2326. [Google Scholar] [CrossRef]
- Ghilardelli, F.; Ferronato, G.; Gallo, A. Near-infrared calibration models for estimating volatile fatty acids and methane production from in vitro rumen fermentation of different total mixed rations. JDS Commun. 2022, 3, 19–25. [Google Scholar] [CrossRef]
- Shenk, J.S.; Westerhaus, M.O. The application of near infrared reflectance spectroscopy (NIRS) to forage analysis. In Forage Quality Evaluation and Utilization; Fahey, G.C., Ed.; American Society of Agronomy: Madison, WI, USA, 1994; pp. 406–449. [Google Scholar]
- Harris, P.A.; Nelson, S.; Carslake, H.B.; Argo, C.M.; Wolf, R.; Fabri, F.B.; Brolsma, K.M.; van Oostrum, M.J.; Ellis, A.D. Comparison of NIRS and wet chemistry methods for the nutritional analysis of haylages for horses. J. Equine Veter. Sci. 2018, 71, 13–20. [Google Scholar] [CrossRef]
- Samadi; Wajizah, S.; Munawar, A.A. Near infrared spectroscopy (NIRS) data analysis for a rapid and simultaneous prediction of feed nutritive parameters. Data Brief 2020, 29, 105211. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC Int.: Arlington, VA, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Ankom Technology. Method 8—Determining Acid Detergent Lignin in Beakers. Available online: https://www.ankom.com/sites/default/files/document-files/Method_8_Lignin_in_beakers.pdf (accessed on 13 March 2022).
- Valentine, M.E.; Karayilanli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in vitro long digestion methods and digestion rates for diverse forages. Crop Sci. 2019, 59, 422–435. [Google Scholar] [CrossRef]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Applications); Agricultural Handbook no. 379; US Department Agriculture-Agricultural Research Service (USDA-ARS): Washington, DC, USA, 1970.
- Cotanch, K.W.; Grant, R.J.; Van Amburgh, M.E.; Zontini, A.; Fustini, M.; Palmonari, A.; Formigoni, A. Applications of uNDF in ration modeling and formulation. In Proceedings of the Cornell Nutrition Conference for Feed Manufacturers, Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA, 2014; pp. 114–131. [Google Scholar]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Coblentz, W.K.; Akins, M.S.; Ogden, R.K.; Bauman, L.M.; Stammer, A.J. Effects of sample size on neutral detergent fiber digestibility of triticale forages using the Ankom DaisyII Incubator system. J. Dairy Sci. 2019, 102, 6987–6999. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- De Marchi, M.; Riovanto, R.; Penasa, M.; Cassandro, M. At-line prediction of fatty acid profile in chicken breast using near infrared reflectance spectroscopy. Meat Sci. 2012, 90, 653–657. [Google Scholar] [CrossRef]
- Simoni, M.; Goi, A.; De Marchi, M.; Righi, F. The use of visible/near-infrared spectroscopy to predict fibre fractions, fibre-bound nitrogen and total-tract apparent nutrients digestibility in beef cattle diets and faeces. Ital. J. Anim. Sci. 2021, 20, 814–825. [Google Scholar] [CrossRef]
- Murphy, D.J.; Brien, B.O.; Donovan, M.O.; Condon, T.; Murphy, M.D. A near infrared spectroscopy calibration for the prediction of fresh grass quality on Irish pastures. Inf. Process. Agric. 2021, 9, 243–253. [Google Scholar] [CrossRef]
- Burns, G.A.; Gilliland, T.J.; Grogan, D.; Watson, S.; O’Kiely, P. Assessment of herbage yield and quality traits of perennial ryegrasses from a national variety evaluation scheme. J. Agric. Sci. 2013, 151, 331–346. [Google Scholar] [CrossRef]
- Bittante, G.; Patel, N.; Cecchinato, A.; Berzaghi, P. Invited review: A comprehensive review of visible and near-infrared spectroscopy for predicting the chemical composition of cheese. J. Dairy Sci. 2022, 105, 1817–1836. [Google Scholar] [CrossRef]
- SAS Institute. SAS User’s Guide; Version 9.1.; SAS Institute Inc.: Cary, NC, USA, 2003. [Google Scholar]
- Levene, H. Robust tests for equality of variances. In Contributions to Probability and Statistics: Essays in Honor of Harold Hotelling; Olkin, I., Ed.; Stanford University Press: Redwood City, CA, USA, 1961; pp. 279–292. [Google Scholar]
- Cattani, M.; Tagliapietra, F.; Maccarana, L.; Hansen, H.H.; Bailoni, L.; Schiavon, S. Technical note: In vitro total gas and methane production measurements from closed or vented rumen batch culture systems. J. Dairy Sci. 2014, 97, 1736–1741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahavi, S.M.H.; Ahmadi, F.; Vahid, A.; Moinoddini, H.; Ghayour, M.; Tagliapietra, F. Technical note: Design, development and validation of an automated gas monitoring equipment for measurement of the dynamics of microbial fermentation. MethodsX 2022, 9, 101641. [Google Scholar] [CrossRef] [PubMed]
- ISO 5725-1; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 1: General Principles and Definitions. ISO: Geneva, Switzerland, 1994.
- ISO 5725-2; Accuracy (Trueness and Precision) of Measurement Methods and Results—Part 2: Basic Method for the Determination of Repeatability and Reproducibility of a Standard Measurement Method. ISO: Geneva, Switzerland, 1994.
- Williams, P.C. Variables affecting near-infrared reflectance spectroscopic analysis. In Near-Infrared Technology in the Agricultural and Food Industries; American Association of Cereal Chemists: St. Paul, MN, USA, 1987; pp. 143–167. [Google Scholar]
- Van Soest, P.J.; Mertens, D.R.; Deinum, B. Preharvest factors influencing quality of conserved forage. J. Anim. Sci. 1978, 47, 712–720. [Google Scholar] [CrossRef]
- Rinne, M.; Olt, A.; Nousiainen, J.; Seppälä, A.; Tuori, M.; Paul, C.; Fraser, M.D.; Huhtanen, P. Prediction of legume silage digestibility from various laboratory methods. Grass Forage Sci. 2006, 61, 354–362. [Google Scholar] [CrossRef]
- Palmonari, A.; Fustini, M.; Canestrari, G.; Grilli, E.; Formigoni, A. Influence of maturity on alfalfa hay nutritional fractions and indigestible fiber content. J. Dairy Sci. 2014, 97, 7729–7734. [Google Scholar] [CrossRef] [Green Version]
- Rymer, C.; Williams, B.A.; Brooks, A.E.; Davies, D.R.; Givens, D.I. Inter-laboratory variation of in vitro cumulative gas production profiles of feeds using manual and automated methods. Anim. Feed Sci. Technol. 2005, 123–124, 225–241. [Google Scholar] [CrossRef]
- Kim, J.D.; Seo, M.; Lee, S.C.; Han, K.-J. Review of the current forage production, supply, and quality measure standard in South Korea. J. Korean Soc. Grassl. Forage Sci. 2020, 40, 149–155. [Google Scholar] [CrossRef]
- Ahmadi, F.; Lee, Y.; Ko, M.; Choi, D.; Kwak, W. In situ ruminal degradation characteristics of dry matter and crude protein of imported hays marketed to the Korean cattle industry: A field study. Food Agric. Environ. 2017, 15, 80–85. [Google Scholar]
- Rohweder, D.A.; Barnes, R.F.; Jorgensen, N. Proposed hay grading standards based on laboratory analyses for evaluating quality. J. Anim. Sci. 1978, 47, 747–759. [Google Scholar] [CrossRef]
- Zhang, G.J.; Wang, Y.; Yan, Y.H.; Hall, M.H.; Undersander, D.J.; Combs, D.K. Comparison of two in situ reference methods to estimate indigestible NDF by near infrared reflectance spectroscopy in alfalfa. Heliyon 2021, 7, e07313. [Google Scholar] [CrossRef]
- Raffrenato, E.; Van Amburgh, M.E. Improved methodology for analyses of acid detergent fiber and acid detergent lignin. J. Dairy Sci. 2011, 94, 3613–3617. [Google Scholar] [CrossRef] [PubMed]
- Akin, D.E. Histological and physical factors affecting digestibility of forages. Agron. J. 1989, 81, 17–25. [Google Scholar] [CrossRef]
- Wilson, J.; Kennedy, P.M. Plant and animal constraints to voluntary feed intake associated with fibre characteristics and particle breakdown and passage in ruminants. Aust. J. Agric. Res. 1996, 47, 199–225. [Google Scholar] [CrossRef]
- Udén, P. Recovery of insoluble fibre fractions by filtration and centrifugation. Anim. Feed Sci. Technol. 2006, 129, 316–328. [Google Scholar] [CrossRef]
- Raffrenato, E.; Ross, D.A.; Van Amburgh, M.E. Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. J. Dairy Sci. 2018, 101, 9888–9900. [Google Scholar] [CrossRef] [PubMed]
- Krämer, M.; Nørgaard, P.; Lund, P.; Weisbjerg, M. Particle size alterations of feedstuffs during in situ neutral detergent fiber incubation. J. Dairy Sci. 2013, 96, 4601–4614. [Google Scholar] [CrossRef] [Green Version]
- Kitessa, S.; Irish, G.G.; Flinn, P.C. Comparison of methods used to predict the in vivo digestibility of feeds in ruminants. Aust. J. Agric. Res. 1999, 50, 825–842. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.; Harper, M.; Roth, G.; Canale, C.; Huhtanen, P.; Richard, T.; DiMarco, K. Effects of ensiling time on corn silage neutral detergent fiber degradability and relationship between laboratory fiber analyses and in vivo digestibility. J. Dairy Sci. 2020, 103, 2333–2346. [Google Scholar] [CrossRef]
- Raffrenato, E.; Lombard, R.; Erasmus, L.; McNeill, D.; Barber, D.; Callow, M.; Poppi, D. Prediction of indigestible NDF in South African and Australian forages from cell wall characteristics. Anim. Feed Sci. Technol. 2018, 246, 104–113. [Google Scholar] [CrossRef]
- Fukushima, R.; Kerley, M.; Ramos, M.; Kallenbach, R. The acetyl bromide lignin method accurately quantitates lignin in forage. Anim. Feed Sci. Technol. 2021, 276, 114883. [Google Scholar] [CrossRef]
- Lowry, J.B.; Conlan, L.L.; Schlink, A.C.; McSweeney, C.S. Acid detergent dispersible lignin in tropical grasses. J. Sci. Food Agric. 1994, 65, 41–49. [Google Scholar] [CrossRef]
- Kondo, T.; Mizuno, K.; Kato, T. Variation in solubilities of lignin in acid detergent and in alkali. J. Jpn. Grassl. Sci. 1987, 33, 296–299. [Google Scholar]
- Weisbjerg, M.R.; Lund, P.; Chrenkova, M.; Larsen, M.K. Estimation of indigestible NDF (iNDF) in forages. In Proceedings of the 3rd EAAP International Symposium on Energy and Protein Metabolism and Nutrition, Parma, Italy, 6–10 September 2010; Wageningen Academic Publishers: Wageningen, The Netherlands, 2010; pp. 721–722. [Google Scholar]
- Van Soest, P.J.; Van Amburgh, M.E.; Robertson, J.B.; Knaus, W.F. Validation of the 2.4 times lignin factor for ultimate extent of NDF digestion, and curve peeling rate of fermentation curves into pools. In Proceedings of the Cornell Nutritional Conference for Feed Manufacturers, Cornell University, Ithaca, NY, USA, 18–20 October 2005; pp. 139–149. [Google Scholar]
- Campbell, M.; Ortuño, J.; Koidis, A.; Theodoridou, K. The use of near-infrared and mid-infrared spectroscopy to rapidly measure the nutrient composition and the in vitro rumen dry matter digestibility of brown seaweeds. Anim. Feed Sci. Technol. 2022, 285, 115239. [Google Scholar] [CrossRef]
- Karoui, R.; Mouazen, A.M.; Dufour, E.; Pillonel, L.; Picque, D.; Bosset, J.-O.; De Baerdemaeker, J. Mid-infrared spectrometry: A tool for the determination of chemical parameters in Emmental cheeses produced during winter. Le Lait 2006, 86, 83–97. [Google Scholar] [CrossRef] [Green Version]
- Albanell, E.; Martínez, M.; De Marchi, M.; Manuelian, C.L. Prediction of bioactive compounds in barley by near-infrared reflectance spectroscopy (NIRS). J. Food Compos. Anal. 2021, 97, 103763. [Google Scholar] [CrossRef]
- Cherney, J.H.; Digman, M.F.; Cherney, D.J. Handheld NIRS for forage evaluation. Comput. Electron. Agric. 2021, 190, 106469. [Google Scholar] [CrossRef]
- Gohain, B.; Kumar, P.; Malhotra, B.; Augustine, R.; Pradhan, A.K.; Bisht, N.C. A comprehensive Vis-NIRS equation for rapid quantification of seed glucosinolate content and composition across diverse Brassica oilseed chemotypes. Food Chem. 2021, 354, 129527. [Google Scholar] [CrossRef]
- Berzaghi, P.; Cozzi, G.; Andrighetto, I. The use of near infrared analysis for in situ studies. J. Dairy Sci. 1997, 80, 3263–3270. [Google Scholar] [CrossRef]
- Nousiainen, J.; Ahvenjärvi, S.; Rinne, M.; Hellämäki, M.; Huhtanen, P. Prediction of indigestible cell wall fraction of grass silage by near infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 2004, 115, 295–311. [Google Scholar] [CrossRef]
Forage Species | Chemical Composition, % of DM | ||||
---|---|---|---|---|---|
DM, % | CP | NDF | ADF | ADL | |
Alfalfa hay | 92.5 | 16.3 | 52.1 | 37.0 | 7.40 |
Timothy hay | 91.1 | 5.73 | 65.8 | 37.8 | 6.08 |
Tall fescue straw | 92.9 | 4.61 | 69.2 | 41.1 | 7.11 |
Sorghum-sudangrass hybrid, whole plant | 93.5 | 5.65 | 68.1 | 40.9 | 4.51 |
Corn silage, whole plant | 91.9 | 6.11 | 51.9 | 26.8 | 3.63 |
Proso millet, whole plant | 93.0 | 6.63 | 62.8 | 35.9 | 4.25 |
Items | Undigested NDFom, % of DM | p Value | |
---|---|---|---|
In Vitro Method | Enzymatic Method | ||
Forage species | |||
Alfalfa hay | 27.1 ± 0.63 | 26.8 ± 1.24 | 0.61 |
Timothy hay | 22.2 ± 3.23 | 33.4 ± 1.83 | <0.01 |
Tall fescue straw | 32.1 ± 0.64 | 37.4 ± 1.22 | <0.01 |
Sudangrass, whole plant | 23.9 ± 0.93 | 33.1 ± 1.54 | <0.01 |
Corn, whole plant | 16.1 ± 0.73 | 22.4 ± 1.07 | <0.01 |
Proso millet, whole plant | 24.0 ± 0.62 | 30.5 ± 1.87 | <0.01 |
Levene’s test 1, % of DM | 3.82 | 4.22 | 0.45 |
Repeatability coefficient, % 2 | 97.4 | 92.3 |
Items | Mean | Minimum | Maximum | SD |
---|---|---|---|---|
Alfalfa hay (n = 88) | ||||
Dry matter, % | 91.7 | 89.6 | 94.4 | 1.08 |
Neutral detergent fiber, % of DM | 50.1 | 39.5 | 61.6 | 3.43 |
Acid detergent fiber, % of DM | 34.8 | 27.2 | 43.7 | 3.41 |
Acid detergent lignin 1, % of DM | 8.91 | 6.09 | 11.6 | 1.24 |
Crude protein, % of DM | 15.8 | 11.1 | 21.2 | 2.31 |
Relative feed value 2 | 116 | 84.2 | 146 | 12.1 |
Timothy hay (n = 88) | ||||
Dry matter, % | 90.2 | 85.9 | 92.0 | 1.16 |
Neutral detergent fiber, % of DM | 67.1 | 63.9 | 70.6 | 1.72 |
Acid detergent fiber, % of DM | 38.1 | 32.9 | 41.9 | 1.99 |
Acid detergent lignin, % of DM | 6.88 | 5.59 | 8.99 | 0.73 |
Crude protein, % of DM | 5.60 | 2.40 | 10.8 | 1.84 |
Relative feed value | 82.2 | 74.7 | 91.5 | 3.90 |
Tall fescue straw (n = 88) | ||||
Dry matter, % | 92.6 | 88.7 | 95.6 | 1.10 |
Neutral detergent fiber, % of DM | 69.3 | 65.1 | 75.7 | 2.25 |
Acid detergent fiber, % of DM | 40.4 | 35.1 | 45.5 | 2.25 |
Acid detergent lignin, % of DM | 7.22 | 5.24 | 9.26 | 0.65 |
Crude protein, % of DM | 4.79 | 3.01 | 7.38 | 0.85 |
Relative feed value | 77.2 | 65.7 | 88.5 | 4.66 |
Statistics | Forage Species | ||
---|---|---|---|
Alfalfa Hay | Timothy Hay | Tall Fescue Straw | |
Minimum | 14.3 | 17.1 | 24.5 |
Maximum | 34.1 | 32.8 | 43.7 |
Range | 19.8 | 15.7 | 19.2 |
Mean | 24.9 | 22.1 | 36.8 |
Standard deviation | 4.10 | 3.27 | 3.42 |
SDr | 0.56 | 1.05 | 0.73 |
Range/SDr | 35.4 | 23.3 | 25.9 |
Statistics | Forage Species | ||
---|---|---|---|
Alfalfa Hay | Timothy Hay | Tall Fescue Straw | |
N 2 | 86 | 83 | 81 |
Outliers | 2 | 5 | 7 |
Mathematical treatment 3 | 4, 16, 16 SNV + detrend | 4, 16, 16 SNV + detrend | 2, 16, 16 SNV + detrend |
PLS factors 4 | 7 | 9 | 4 |
Calibration statistics 5 | |||
Standard deviation | 4.14 | 2.73 | 3.01 |
Mean | 24.9 | 21.9 | 36.9 |
R2C | 0.95 | 0.90 | 0.82 |
SEC | 0.89 | 0.86 | 1.26 |
Cross-validation statistics 6 | |||
R2CrV | 0.92 | 0.80 | 0.79 |
SECrV | 1.16 | 1.31 | 1.38 |
RPD | 3.57 | 2.08 | 2.18 |
RER | 17.1 | 10.4 | 9.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, F.; Li, Y.-F.; Jeong, E.-C.; Wang, L.-L.; Bharanidharan, R.; Kim, J.-G. Comparative Accuracy of In Vitro Rumen Fermentation and Enzymatic Methodologies for Determination of Undigested Neutral Detergent Fiber in Forages and Development of Predictive Equations Using NIRS. Agriculture 2022, 12, 1914. https://doi.org/10.3390/agriculture12111914
Ahmadi F, Li Y-F, Jeong E-C, Wang L-L, Bharanidharan R, Kim J-G. Comparative Accuracy of In Vitro Rumen Fermentation and Enzymatic Methodologies for Determination of Undigested Neutral Detergent Fiber in Forages and Development of Predictive Equations Using NIRS. Agriculture. 2022; 12(11):1914. https://doi.org/10.3390/agriculture12111914
Chicago/Turabian StyleAhmadi, Farhad, Yan-Fen Li, Eun-Chan Jeong, Li-Li Wang, Rajaraman Bharanidharan, and Jong-Geun Kim. 2022. "Comparative Accuracy of In Vitro Rumen Fermentation and Enzymatic Methodologies for Determination of Undigested Neutral Detergent Fiber in Forages and Development of Predictive Equations Using NIRS" Agriculture 12, no. 11: 1914. https://doi.org/10.3390/agriculture12111914
APA StyleAhmadi, F., Li, Y.-F., Jeong, E.-C., Wang, L.-L., Bharanidharan, R., & Kim, J.-G. (2022). Comparative Accuracy of In Vitro Rumen Fermentation and Enzymatic Methodologies for Determination of Undigested Neutral Detergent Fiber in Forages and Development of Predictive Equations Using NIRS. Agriculture, 12(11), 1914. https://doi.org/10.3390/agriculture12111914