Mapping of EU Support for High Nature Value Farmlands, from the Perspective of Natural and Landscape Regions
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. General Characteristics of RDP Support for the Protection of Nature Value Habitats
3.2. Description of Individual Packages
3.3. Breakdown and Significance of Area of Nature Value Habitats Subsidised by RDP 2014–2020
- A: L6—exclusive support for the protection of bird breeding habitats; occurs only in one mesoregion (Bukowe Hills), 0.3% of the country by area;
- B: P1, L5—very high support for bird breeding habitats and very low support for natural habitats; 10 mesoregions, 2.9%;
- C: P2, L4—high support for bird breeding habitats and low support for natural habitats; 20 mesoregions (typically of two sub-provinces: Podlasie-Belarus Heights and Volhyn-Podole Upland), 5.8%;
- D: P3, L3—significant support for bird breeding habitats and equivalent support for natural habitats; 41 mesoregions (typical of Eastern Baltic Coastland sub-province), 11.9%;
- E: P4, L2—low support for bird breeding habitats and high support for natural habitats; 42 mesoregions (typical of four sub-provinces, average relation for Poland), 12.2%;
- F: P5, L1—very low support for bird breeding habitats and very high support for natural habitats; 52 mesoregions (typical of five sub-provinces), 15.1%;
- G: P6—exclusive support for natural habitats; 177 mesoregions (typical of six sub-provinces), 51.5% (Figure 15).
- I—Variably wet Molinion litter meadows—three mesoregions: Głubczyce Plateau, Garwolin Plain, and Liswarta Depression;
- II—Alluvial Cnidion meadows and salt marshes—one mesoregion: Poznań Gap of the Warta River;
- III—Dry grasslands—two mesoregions: Złoczew Heights and Ostrzeszów Hills;
- IV—Semi-natural wet meadows—94 mesoregions, characterised by an average breakdown in three sub-provinces: Eastern Baltic Coastland, Małopolska Upland, and Polesie;
- V—Semi-natural mesic meadows—178 mesoregions, characterised by an average breakdown for Poland, and in eight sub-provinces mainly in north-eastern and south-western Poland as well as in the Carpathians and uplands;
- VI—Peat bogs—do not predominate in any mesoregion;
- VII—Extensive use of grasslands in Special Protection Areas (SPAs)—three mesoregions: Tuchola Forest, Lower Bug River Valley, and Węgrów Depression;
- VIII—Protection of breeding habitats of the black-tailed godwit, common snipe, common redshank, and lapwing—47 mesoregions, characterised by an average breakdown in two sub-provinces: Podlasie-Belarus Heights and Volhyn-Podole Upland;
- IX—Protection of breeding habitats of the aquatic warbler—do not predominate in any region;
- X—Protection of breeding habitats of the great snipe and Eurasian curlew—one mesoregion: Grudziądz Basin;
- XI—Protection of breeding habitats of the corncrake—do not predominate in any mesoregion (Figure 16).
3.4. Comprehensive Assessment of Natural Habitats Covered by RDP 2014–2020 Support
- (1)
- –Number of subsidised habitats in physico-geographical regions (Poland = 11). Significant territorial differentiation was shown at the sub-province level—from 5 (Eastern-Subcarpathians) to 11 (6 sub-provinces), and more so by mesoregions–from 1 or 2 (23 mesoregions, including 11 distinguished by the presence of only one habitat type) to 11 (16 mesoregions included all analysed habitats) (Table 3);
- (2)
- –Percentage share of subsidised habitats in the total farm area (3.2% on average for Poland). Significant territorial differentiation was shown at the sub-province level—from less than 1% (Silesia-Kraków Upland and Lublin-Lviv Upland) to nearly 47% (Outer Eastern Carpathians), and more so by mesoregions—from 0.02% (Strzegom Hills and Racibórz Gate) to 58.3% (Bieszczady Mts) (Table 3, Figure 2);
- (3)
- –Percentage share of subsidised habitats in the total area of permanent grassland (average 11.8% for Poland). Significant territorial differentiation was shown at the sub-province level—from 2.1% (Silesia-Kraków Upland) to 50.5% (Outer Eastern Carpathians), and by mesoregions—from less than 0.1% (Reglowe Tatra Mts and Sub-Tatra Depression) to 72.9% (Toruń-Eberswalde Ice Marginal Valley) (Table 3, Figure 15).
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Diaz, S.; Settele, J.; Brondízio, E.; Ngo, H.; Guèze, M.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.; Butchart, S.; et al. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Paris, France, 2019; p. 56. [Google Scholar] [CrossRef]
- O’Rourke, E.; Kramm, N.; Chisholm, N. The influence of farming styles on the management of the Iveragh uplands, southwest Ireland. Land Use Policy 2012, 29, 805–816. [Google Scholar] [CrossRef]
- Lomba, A.; Moreira, F.; Klimek, S.; Jongman, R.H.; Sullivan, C.; Moran, J.; Poux, X.; Honrado, J.; Pinto-Correia, T.; Plieninger, T.; et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 2019, 18, 36–42. [Google Scholar] [CrossRef]
- Wiśniewski, L.; Rudnicki, R.; Chodkowska-Miszczuk, J. What non-natural factors are behind the underuse of EU CAP funds in areas with valuable habitats? Land Use Policy 2021, 108, 105574. [Google Scholar] [CrossRef]
- Moran, J.; Byrne, D.; Carlier, J.; Dunford, B.; Finn, J.A.; Huallacháin, D.; Sullivan, C.A. Management of high nature value farmland in the Republic of Ireland: 25 years evolving toward locally adapted results-orientated solutions and payments. Ecol. Soc. 2021, 26. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, The European Green Deal, COM (2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- Wolf, S.; Teitge, J.; Mielke, J.; Schütze, F.; Jaeger, C. The European Green Deal—More Than Climate Neutrality. Intereconomics 2021, 56, 99–107. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. EU Biodiversity Strategy for 2030 Bringing Nature Back into Our Lives, COM/2020/380 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Council of the European Union. Conclusions on Biodiversity-The Need for Urgent Action; Council of the European Union: Brussels, Belgium, 2020. [Google Scholar]
- Tengilimoğlu, E. From Farm to Fork: Human Health and Well-Being through Sustainable Agri-Food Systems. J. Life Econ. 2021, 11–27. [Google Scholar] [CrossRef]
- Schebesta, H.; Candel, J.J.L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 2020, 1, 586–588. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. A Farm to Fork Strategy for A Fair, Healthy and Environmentally-Friendly Food System, COM (2020) 381 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Sustainable Europe Investment Plan. European Green Deal Investment Plan, COM (2020) 21 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Heinrich Böll Foundation. The Agriculture Atlas 2019. Facts and Figures on EU Farming Policy; Heinrich Böll Foundation: Berlin, Germany, 2019. [Google Scholar]
- European Commission. 13th Financial Report from the Commission to the European Parliament and the Council on the European Agricultural Found for Rural Development (EAFRD), 2019 Financial Year, COM (2020) 387 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Swinnen, J. The Political Economy of Agricultural and Food Policies; Palgrave Macmillan US: New York, NY, USA, 2018; p. 254. [Google Scholar]
- Swinnen, J.; Vandevelde, S. The Political Economy of Food Security and Sustainability. Encycl. Food Secur. Sustain. 2019, 1, 9–16. [Google Scholar] [CrossRef]
- van der Ploeg, J.D. The political economy of agroecology. J. Peasant. Stud. 2020, 48, 274–297. [Google Scholar] [CrossRef] [Green Version]
- Erjavec, E.; Lovec, M.; Erjavec, K. From ‘Greening’ to ‘Greenwash’: The drivers anddiscourses of CAP 2020 ‘reform’. In The Political Economy of the 2014–2020 Common Agricultural Policy an Imperfect Storm; Swinen, J., Ed.; Rowman & Littlefield International, Ltd.: London, UK, 2015; pp. 215–244. [Google Scholar]
- Mdee, A.; Ofori, A.; Chasukwa, M.; Manda, S. Neither sustainable nor inclusive: A political economy of agricultural policy and livelihoods in Malawi, Tanzania and Zambia. J. Peasant. Stud. 2020, 48, 1260–1283. [Google Scholar] [CrossRef] [Green Version]
- Matin, S.; Sullivan, C.A.; Huallacháin, D.; Meredith, D.; Moran, J.; Finn, J.A.; Green, S. Predicted distribution of High Nature Value farmland in the Republic of Ireland. J. Maps 2016, 12, 373–376. [Google Scholar] [CrossRef]
- Pe’Er, G.; Bonn, A.; Bruelheide, H.; Dieker, P.; Eisenhauer, N.; Feindt, P.H.; Hagedorn, G.; Hansjürgens, B.; Herzon, I.; Lomba, A.; et al. Action needed for the EU Common Agricultural Policy to address sustainability challenges. People Nat. 2020, 2, 305–316. [Google Scholar] [CrossRef]
- Marconi, V.; Raggi, M.; Viaggi, D. Assessing the impact of RDP agri-environment measures on the use of nitrogen-based mineral fertilizers through spatial econometrics: The case study of Emilia-Romagna (Italy). Ecol. Indic. 2015, 59, 27–40. [Google Scholar] [CrossRef]
- Desjeux, Y.; Dupraz, P.; Kuhlman, T.; Paracchini, M.; Michels, R.; Maigné, E.; Reinhard, S. Evaluating the impact of rural development measures on nature value indicators at different spatial levels: Application to France and The Netherlands. Ecol. Indic. 2015, 59, 41–61. [Google Scholar] [CrossRef]
- Früh-Müller, A.; Bach, M.; Breuer, L.; Hotes, S.; Koellner, T.; Krippes, C.; Wolters, V. The use of agri-environmental measures to address environmental pressures in Germany: Spatial mismatches and options for improvement. Land Use Policy 2019, 84, 347–362. [Google Scholar] [CrossRef]
- Solon, J.; Borzyszkowski, J.; Bidłasik, M.; Richling, A.; Badora, K.; Balon, J.; Brzezińska-Wójcik, T.; Chabudziński, Ł.; Dobrowolski, R.; Grzegorczyk, I.; et al. Physico-geographical mesoregions of Poland: Verification and adjustment of boundaries on the basis of contemporary spatial data. Geogr. Pol. 2018, 91, 143–170. [Google Scholar] [CrossRef]
- Majchrowska, A. Wybrane doświadczenia zagraniczne w zakresie regionalizacji fizycznogeograficznej. In Studies on Division of Poland into Physico-Geographical Regions; Kistowski, M., Myga-Piątek, U., Solon, J., Eds.; Stanisław Leszczycki Institute of Geography and Spatial Organization Polish Academy of Sciences: Warsaw, Poland, 2018; pp. 33–42. (In Polish) [Google Scholar]
- Proniewski, M. Cohesion of the European regional space. Eur. XXI 2016, 30, 23–40. [Google Scholar] [CrossRef] [Green Version]
- Biczkowski, M.; Biczkowska, M. Impact of the EU funds on the diversification of economic activity (of farms) and their role in multi-functional development of rural areas. Rural 2016, 43, 23–44. [Google Scholar] [CrossRef] [Green Version]
- Biczkowski, M.; Jezierska-Thöle, A.; Rudnicki, R. The Impact of RDP Measures on the Diversification of Agriculture and Rural Development—Seeking Additional Livelihoods: The Case of Poland. Agriculture 2021, 11, 253. [Google Scholar] [CrossRef]
- Sadowski, A. Reasons for spatial diversification of absorption of selected forms of support from the Rural Development Programme 2007–2013. Issues Agric. Advis. Serv. 2020, 1, 30–47. (In Polish) [Google Scholar]
- Król, M.A. The role of agri-environmental programmes in the protection of high nature value areas. Stud. Law Econ. 2012, 36, 67–91. (In Polish) [Google Scholar]
- European Union. Statistical Regions in the European Union and Partner Countries. NUTS and Statistical Regions, 2021–2020 ed.; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Jezierska-Thöle, A.; Rudnicki, R.; Wiśniewski, L.; Gwiaździńska-Goraj, M.; Biczkowski, M. The Agri-Environment-Climate Measure as an Element of the Bioeconomy in Poland—A Spatial Study. Agriculture 2021, 11, 110. [Google Scholar] [CrossRef]
- Schmidtner, E.; Lippert, C.; Engler, B.; Häring, A.M.; Aurbacher, J.; Dabbert, S. Spatial distribution of organic farming in Germany: Does neighbourhood matter? Eur. Rev. Agric. Econ. 2012, 39, 661–683. [Google Scholar] [CrossRef]
- Raggi, M.; Viaggi, D.; Bartolini, F.; Furlan, A. The role of policy priorities and targeting in the spatial location of participation in Agri-Environmental Schemes in Emilia-Romagna (Italy). Land Use Policy 2015, 47, 78–89. [Google Scholar] [CrossRef]
- Galler, C.; von Haaren, C.; Albert, C. Optimizing environmental measures for landscape multifunctionality: Effectiveness, efficiency and recommendations for agri-environmental programs. J. Environ. Manag. 2015, 151, 243–257. [Google Scholar] [CrossRef] [PubMed]
- Rdzanny, Z. Geographical location and regional diversity of Poland. In Natural Environment of Poland and its Protection in Łódź University Geographical Research; Kobojek, E., Marszał, T., Eds.; Łódź University Press: Łódź, Poland, 2014; pp. 9–41. [Google Scholar]
- Wasielewski, Z. Present status and directions of grassland management according to the requirements of the Common Agricultural Policy. Woda-Sr.-Obsz. Wiej. 2009, 9, 169–184. (In Polish) [Google Scholar]
- Batáry, P.; Dicks, L.; Kleijn, D.; Sutherland, W. The role of agri-environment schemes in conservation and environmental management. Conserv. Biol. 2015, 29, 1006–1016. [Google Scholar] [CrossRef] [Green Version]
- Rudnicki, R.; Dubownik, A.; Biczkowski, M. Diversification of Sources of Income in Agricultural Holdings in the Context of Multi-Functional Development of Rural Areas in Poland. Belgeo 2016, 4. Available online: https://journals.openedition.org/belgeo/19722?lang=de#quotation (accessed on 30 May 2021). [CrossRef] [Green Version]
- Bakos, K.L.; Dobos, A.; Nagy, J. Mapping agricultural performance and environmental parameters aimed at generic regional studies. Acta Agrar. Debreceniensis 2012, 29–34. [Google Scholar] [CrossRef]
- Racine, J.B.; Reymond, H. Quantitative Analysis in Geography; PWN: Warsaw, Poland, 1977; p. 255. (In Polish) [Google Scholar]
- Smith, D. Geography and social indicators. South Afr. Geogr. J. 1972, 54, 43–57. [Google Scholar] [CrossRef]
- Parysek, J.J.; Wojtasiewicz, L. Metody Analizy Regionalnej I Metody Planowania Regionalnego; PWN: Warsaw, Poland, 1979; p. 194. (In Polish) [Google Scholar]
- Kondracki, J. Regional Geography of Poland; PWN: Warsaw, Poland, 2002; p. 441. (In Polish) [Google Scholar]
- Richling, A. Rozwój XIX i XX-wiecznych poglądów na temat regionalizacji fizycznogeograficznej Polski. In Studies on Division of Poland into Physico-Geographical Regions; Kistowski, M., Myga-Piątek, U., Solon, J., Eds.; Stanisław Leszczycki Institute of Geography and Spatial Organization Polish Academy of Sciences: Warsaw, Poland, 2018; pp. 13–31. (In Polish) [Google Scholar]
- Kistowski, M.; Myga-Piątek, U.; Solon, J. (Eds.) Studies on Division of Poland into Physico-Geographical Regions; Stanisław Leszczycki Institute of Geography and Spatial Organization Polish Academy of Sciences: Warsaw, Poland, 2018; p. 278. (In Polish) [Google Scholar]
- Agencja Restrukturyzacji i Modernizacji Rolnictwa (The Agency for Restructuring and Modernisation of Agriculture, ARMA). Sprawozdanie z działalności Agencji Restrukturyzacji i Modernizacji Rolnictwa za 2019 rok; ARMA: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- Ministry of Agriculture and Rural Development. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi z dnia 18 Marca 2015 r. w Sprawie Szczegółowych Warunków i Trybu Przyznawania Pomocy Finansowej w Ramach Działania "Działanie Rolno-Środowiskowo-Klimatyczne" objętego Programem Rozwoju Obszarów Wiejskich na lata 2014–2020; Dziennik UstawRzeczypospolitej Polskiej: Warsaw, Poland, 2015. (In Polish)
- Taylor, K.; Rowland, A.P.; Jones, H.E. Molinia caerulea (L.) Moench. J. Ecol. 2001, 89, 126–144. [Google Scholar] [CrossRef]
- Kazuń, A. Alluvial meadows of Cnidion dubii Bal.-Tul. 1966 in the Middle Oder River Valley (Natura 2000 site “Łęgi Odrzańskie”, SW Poland). Steciana 2014, 18, 49–55. [Google Scholar] [CrossRef]
- Ratyńska, H.; Waldon, B. State of preservation of xerothermic grasslands in Kuyavian-Pomeranian region. Ann. UMCS, Biol. 2011, 66, 63–83. [Google Scholar] [CrossRef] [Green Version]
- Hejduk-Michalska, D.; Kopeć, D. Dynamics of Semi-Natural Vegetation with a Focus on Molinion Meadows after 50 Years of Strict Protection. Pol. J. Environ. Stud. 2012, 21, 1731–1741. [Google Scholar]
- Zajac, M.; Ujházy, K.; Škodová, I.; Kuzemko, A.; Borsukevych, L.; Danylyuk, K.; Duchoň, M.; Figura, T.; Kish, R.; Smatanová, J.; et al. Classification of semi-natural mesic grasslands in the Ukrainian Carpathians. Phytocoenologia 2016, 46, 257–293. [Google Scholar] [CrossRef]
- Veen, P.; Jefferson, R.; de Smidt, J.; van der Straaten, J. Grasslands in Europe of High Nature Value; KNNV Publishing: Zeist, The Netherlands, 2009; p. 320. [Google Scholar]
- Wildi, O. Simulating the development of peat bogs. Vegetatio 1978, 37, 1–17. [Google Scholar]
- European Union. Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds; Official Journal of the European Union: Brussels, Belgium, 2009. [Google Scholar]
- Rudnicki, R.; Jezierska-Thöle, A.; Wiśniewski, Ł.; Jorg, J.; Kozłowski, L. Former political borders and their impact on the evolution of the present-day spatial structure of agriculture in Poland. Stud. Agricult. Econ. 2018, 120, 1–9. [Google Scholar] [CrossRef]
- Wiśniewski, L.; Perdał, R.; Rudnicki, R. Proposed method for delimiting spatial structure on the example of agriculture types in Poland. Bull. Geogr. Socio-Econ. Ser. 2020, 49, 7–18. [Google Scholar] [CrossRef]
- Bański, J. Atlas of Polish Agriculture; Institute of Geography and Spatial Organization Polish Academy of Sciences: Warsaw, Poland, 2010; p. 126. (In Polish) [Google Scholar]
- Jadczyszyn, J.; Zieliński, M. Assessment of Farms from High Nature Value Farmland Areas in Poland. Ann. Pol. Assoc. Agric. Agribus. Econ. 2020, 21, 108–118. [Google Scholar] [CrossRef]
- Mądry, W.; Olik, M.; Roszkowska-Mądra, B.; Studnicki, M.; Gozdowski, D.; Wójcik-Gront, E. Identifying High Nature Value farmlands on a national scale based on multivariate typology at municipality (LAU 2) level. Biom. Lett. 2020, 57, 63–84. [Google Scholar] [CrossRef]
- Rudnicki, R. Spatial Differences in the Use of European Union Funds by Agricultural Holdings in Poland, Bogucki Wyd; Naukowe: Poznań, Poland, 2010; p. 391. (In Polish) [Google Scholar]
- Kołodziejczak, A. Multifunctionality of agriculture as a sustainable development factor of rural areas in Poland. Stud. Obszarów Wiejskich 2015, 37, 131–142. [Google Scholar] [CrossRef]
- Rudnicki, R. Spatial Structure of Polish Agriculture Conditioned by Common Agricultural Policy Instruments, Wyd; Naukowe UMK: Toruń, Poland, 2016; p. 208. (In Polish) [Google Scholar]
- Kozłowska-Burdziak, M. Rola programów rolnośrodowiskowych w kształtowaniu i ochronie krajobrazu rolniczego w województwie podlaskim. In Instytucjonalne i Strukturalne Aspekty Rozwoju Rolnictwa I Obszarów Wiejskich. Księga Poświęcona Pamięci dr hab. Adama Sadowskiego Profesora Uniwersytetu w Białymstoku; Przygodzka, R., Gruszewska, E., Eds.; Wydawnictwo Uniwersytetu w Białymstoku: Białystok, Poland, 2020; pp. 363–382, (In Polish). [Google Scholar] [CrossRef]
- Pavlis, E.S.; Terkenli, T.S.; Kristensen, S.; Busck, A.G.; Cosor, G.L. Patterns of agri-environmental scheme participation in Europe: Indicative trends from selected case studies. Land Use Policy 2016, 57, 800–812. [Google Scholar] [CrossRef]
- Świtek, S.; Sawinska, Z. Farmer rationality and the adoption of greening practices in Poland. Sci. Agricola (Pirolacicaba, Braz.) 2017, 74, 275–284. [Google Scholar] [CrossRef]
- Stupak, N.; Sanders, J.; Heinrich, B. The Role of Farmers’ Understanding of Nature in Shaping their Uptake of Nature Protection Measures. Ecol. Econ. 2019, 157, 301–311. [Google Scholar] [CrossRef]
- Hazeu, G.; Milenov, P.; Pedroli, B.; Samoungi, V.; Van Eupen, M.; Vassilev, V. High Nature Value farmland identification from satellite imagery, a comparison of two methodological approaches. Int. J. Appl. Earth Obs. Geoinform. 2014, 30, 98–112. [Google Scholar] [CrossRef]
- Kikas, T.; Bunce, R.G.; Kull, A.; Sepp, K. New high nature value map of Estonian agricultural land: Application of an expert system to integrate biodiversity, landscape and land use management indicators. Ecol. Indic. 2018, 94, 87–98. [Google Scholar] [CrossRef]
- Mäkeläinen, S.; Harlio, A.; Heikkinen, R.K.; Herzon, I.; Kuussaari, M.; Lepikkö, K.; Maier, A.; Seimola, T.; Tiainen, J.; Arponen, A. Coincidence of High Nature Value farmlands with bird and butterfly diversity. Agric. Ecosyst. Environ. 2019, 269, 224–233. [Google Scholar] [CrossRef]
- Wiśniewski, L.; Biczkowski, M.; Rudnicki, R. Natural potential versus rationality of allocation of Common Agriculture Policy funds dedicated for supporting organic farming development–Assessment of spatial suitability: The case of Poland. Ecol. Indic. 2021, 130, 108039. [Google Scholar] [CrossRef]
- Mura, M.; Longo, M.; Toschi, L.; Zanni, S.; Visani, F.; Bianconcini, S. The role of geographical scales in sustainability transitions: An empirical investigation of the European industrial context. Ecol. Econ. 2021, 183, 106968. [Google Scholar] [CrossRef]
- Arsova, S.; Corpakis, D.; Genovese, A.; Ketikidis, P.H. The EU green deal: Spreading or concentrating prosperity? Resour. Conserv. Recycl. 2021, 171, 105637. [Google Scholar] [CrossRef]
- Chodkowska-Miszczuk, J.; Kola-Bezka, M.; Lewandowska, A.; Martinát, S. Local Communities’ Energy Literacy as a Way to Rural Resilience—An Insight from Inner Peripheries. Energies 2021, 14, 2575. [Google Scholar] [CrossRef]
Breakdown | Packages and Variants | Area Covered by Payment | Amount Paid | ||
---|---|---|---|---|---|
According to Research Scheme Adopted | According to RDP 2014–2020 | ha (Thousands) * | Rate (EUR ha−1) | ||
Habitat total | from I to XI | packages 4 and 5 | 459,500 ha | x | 453,400 EUR |
of which (%) | |||||
Protection of natural habitats (P) | 70.2 | x | 72.5 | ||
Variably wet Molinion litter meadows | I | 4.1. + 5.1. | 2.5 | 1276 | 2.3 |
Alluvial Cnidion meadows and salt marshes | II | 4.2. + 5.2. | 1.1 | 1043 | 0.9 |
Dry grasslands | III | 4.3. + 5.3. | 2.9 | 1900 | 2.7 |
Semi-natural wet meadows | IV | 4.4. + 5.4. | 23.1 | 911 | 22.2 |
Semi-natural mesic meadows | V | 4.5. + 5.5. | 38.5 | 1083 | 42.4 |
Peat bogs | VI | 4.6. + 5.6. | 2.1 | 600/1206 ** | 2.0 |
Protection of breeding habitats of birds (L) | 29.8 | x | 27.5 | ||
Extensive use of grasslands in Special Protection Areas (SPAs) | VII | 4.7. | 5.9 | 600 | 4.1 |
Protection of breeding habitats of black-tailed godwit, common snipe, common redshank, and lapwing | VIII | 4.8. | 18.4 | 890 | 18.0 |
Protection of breeding habitats of aquatic warbler | IX | 4.9. | 1.8 | 1199 | 2.1 |
Protection of breeding habitats of great snipe and eurasian curlew | X | 4.10. | 2.7 | 1070 | 2.6 |
Protection of breeding habitats of corncrake | XI | 4.11. | 1.0 | 642 | 0.7 |
Physico-Geographical Units | Total Area (thousand ha) | Of Which, Area of Arable Land on Farms | Area of Subsidised Nature Value Habitats (thousand ha) | Breakdown According to Successive Quotients Method | ||||
---|---|---|---|---|---|---|---|---|
Province (7 Units) | Sub-Province (18 Units) | (Thousand ha) | (% of Total Area) | Protection of Natural Habitats | Protection of Bird Breeding Habitats | Breakdown Type by Largest Payment | ||
Poland—total | 31,238.3 | 14,402.3 | 46.1 | 459.5 | 4 | 2 | V | |
Central European Lowland | Southern Baltic Coastlands (25) * | 1760.7 ** | 772.0 | 43.8 | 64.0 | 4 | 2 | IV |
Southern Baltic Lake Districts (66) | 7941.5 | 3758.9 | 47.3 | 119.4 | 4 | 2 | IX | |
Saxony-Lusatia Lowlands (7) | 390.8 | 129.4 | 33.1 | 9.2 | 5 | 1 | V | |
Central Poland Lowlands (66) | 8407.2 | 4522.2 | 53.8 | 50.6 | 4 | 2 | IX | |
Czech Massif | Sudety Mts and Sudety Foreland (32) | 943.3 | 432.9 | 45.9 | 21.6 | 6 | 0 | V |
Polish Uplands | Silesia-Kraków Upland (18) | 1094.1 | 351.9 | 32.2 | 2.3 | 6 | 0 | IX |
Małopolska Upland (21) | 1770.2 | 755.5 | 42.7 | 10.5 | 6 | 0 | IV | |
Lublin-Lviv Upland (12) | 953.4 | 554.1 | 58.1 | 4.5 | 4 | 2 | IX | |
Western Carpathians and Western and Northern Subcarpathians | Northern Subcarpathians (20) | 1492.4 | 548.2 | 36.7 | 17.3 | 5 | 1 | V |
Outer Western Carpathians (28) | 1653.8 | 457.1 | 27.6 | 27.7 | 6 | 0 | V | |
Central Western Carpathians (8) | 109.6 | 16.2 | 14.7 | 0.9 | 5 | 1 | V | |
Eastern Carpathians and Eastern Subcarpathians | Eastern Subcarpathians (2) | 8.8 | 3.1 | 34.8 | 0.3 | 6 | 0 | V |
Outer Eastern Carpathians (2) | 221.2 | 27.4 | 12.4 | 12.8 | 6 | 0 | V | |
Eastern Baltic-Belarus Lowland | Eastern Baltic Coastland (3) | 278.9 | 144.7 | 51.9 | 11.8 | 3 | 3 | VIII |
Eastern Baltic Lake District (13) | 1757.3 | 664.2 | 37.8 | 41.4 | 5 | 1 | V | |
Podlasie-Belarus Heights (8) | 1593.2 | 804.5 | 50.5 | 35.3 | 2 | 4 | VIII | |
Polesie (9) | 658.3 | 330.4 | 50.2 | 26.3 | 5 | 1 | IV | |
Ucrainian Uplands | Volhyn-Podole Upland (4) | 203.5 | 129.6 | 63.7 | 3.5 | 2 | 4 | VIII |
Physico-Geographical Units | Average Number of Habitats Subsidised | Area of Nature Value Habitats Subsidised | Synthetic Evaluation Index of EU Support for Protection of Nature Value Habitats on Farms (Normalised Average) | ||
---|---|---|---|---|---|
Province (7 Units) | Sub-Province (18 Units) | % of Agricultural Lands in Farms | % of Total Permanent Grassland by Area | ||
Poland—total | 7.0 | 3.2 | 11.8 | 0.00 | |
Central European Lowland | Southern Baltic Coastlands | 8.2 | 8.3 | 26.6 | 0.77 |
Southern Baltic Lake Districts | 8.3 | 3.2 | 17.1 | 0.31 | |
Saxony-Lusatia Lowlands | 7.9 | 7.1 | 26.1 | 0.66 | |
Central Poland Lowlands | 7.7 | 1.1 | 4.7 | −0.18 | |
Czech Massif | Sudety Mts and Sudety Foreland | 5.6 | 5.0 | 14.2 | −0.03 |
Polish Uplands | Silesia-Kraków Upland | 3.7 | 0.7 | 2.1 | −0.77 |
Małopolska Upland | 6.6 | 1.4 | 5.0 | −0.30 | |
Lublin-Lviv Upland | 6.8 | 0.8 | 6.5 | −0.27 | |
Western Carpathians and Western and Northern Subcarpathians | Northern Subcarpathians | 5.3 | 3.1 | 7.3 | −0.33 |
Outer Western Carpathians | 4.5 | 6.1 | 12.7 | −0.16 | |
Central Western Carpathians | 3.4 | 5.3 | 4.3 | −0.54 | |
Eastern Carpathians and Eastern Subcarpathians | Eastern Subcarpathians | 5.3 | 10.5 | 28.2 | 0.53 |
Outer Eastern Carpathians | 7.0 | 46.7 | 50.5 | 2.99 | |
Eastern Baltic-Belarus Lowland | Eastern Baltic Coastland | 9.0 | 8.1 | 23.8 | 0.79 |
Eastern Baltic Lake District | 8.2 | 6.2 | 14.5 | 0.36 | |
Podlasie-Belarus Heights | 9.5 | 4.4 | 11.0 | 0.36 | |
Polesie | 9.7 | 8.0 | 20.2 | 0.78 | |
Ucrainian Uplands | Volhyn-Podole Upland | 8.3 | 2.7 | 13.9 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiśniewski, P.; Rudnicki, R.; Kistowski, M.; Wiśniewski, Ł.; Chodkowska-Miszczuk, J.; Niecikowski, K. Mapping of EU Support for High Nature Value Farmlands, from the Perspective of Natural and Landscape Regions. Agriculture 2021, 11, 864. https://doi.org/10.3390/agriculture11090864
Wiśniewski P, Rudnicki R, Kistowski M, Wiśniewski Ł, Chodkowska-Miszczuk J, Niecikowski K. Mapping of EU Support for High Nature Value Farmlands, from the Perspective of Natural and Landscape Regions. Agriculture. 2021; 11(9):864. https://doi.org/10.3390/agriculture11090864
Chicago/Turabian StyleWiśniewski, Paweł, Roman Rudnicki, Mariusz Kistowski, Łukasz Wiśniewski, Justyna Chodkowska-Miszczuk, and Kazimierz Niecikowski. 2021. "Mapping of EU Support for High Nature Value Farmlands, from the Perspective of Natural and Landscape Regions" Agriculture 11, no. 9: 864. https://doi.org/10.3390/agriculture11090864
APA StyleWiśniewski, P., Rudnicki, R., Kistowski, M., Wiśniewski, Ł., Chodkowska-Miszczuk, J., & Niecikowski, K. (2021). Mapping of EU Support for High Nature Value Farmlands, from the Perspective of Natural and Landscape Regions. Agriculture, 11(9), 864. https://doi.org/10.3390/agriculture11090864