Alternative Winemaking Techniques to Improve the Content of Phenolic and Aromatic Compounds in Wines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Winemaking and Ageing Conditions
2.2. Analytical Parameters
2.3. Fractionation of Phenolic Compounds and Total Phenoloc Content
2.4. Total Antioxidant Activity
2.5. Minor Aroma Compounds
2.6. Aromatic Series and the Odorant Activity Value
2.7. Statistical Analysis
3. Results
3.1. Enological Parameters
3.2. Total Phenolic Content and Total Antioxidant Activity
3.3. Color Parameters
3.4. Correlation between Total Phenolic Content, Total Antioxidant Activity and Color Parameters
3.5. Volatile Compounds
3.5.1. Chemical Families
3.5.2. Volatile Compounds Identified and Quantified in Wines Aged with Oak Staves
Families/Compounds | 1.5 Months | 3 Months | Sign. | Odor Descriptors | Odor Threshold | Aroma Series | |
---|---|---|---|---|---|---|---|
Alcohols | 1872.82± 93.57 a | 3203.34 ± 150.88 b | *** | ||||
1 | Hexanol | 1349.47 ± 74.90 a | 2387.37 ± 128.23 b | *** | Grass, oily, herb, resin | 2500 [59] | Green |
2 | E-3-hexenol | 134.00 ± 7.21 a | 233.00 ± 10.00 b | *** | Cut grass | 1000 [59] | Green |
3 | E-2-hexenol | 308.87 ± 17.71 a | 489.42 ± 32.09 b | ** | Green tomato | 400 [59] | Green |
4 | Furfuryl alcohol | 67.48 ± 5.76 a | 65.88 ± 5.17 b | ns | Burnt, coffee | 8000 [60] | Toasty |
5 | Benzyl alcohol | 13.00 ± 0.89 a | 27.67 ± 1.58 a | *** | Floral, rose, phenolic, balsamic, sweet, fruity | 200,000 [61] | Floral |
Carbonyls | 1047.38 ± 51.51 a | 2997.72 ± 146.74 b | *** | ||||
6 | Heptanal | 65.08 ± 2.67 a | 67.33 ± 2.75 a | ns | Herbal, ozone, rancid, nut | 3 [62] | Chemistry, Green |
7 | Octanal | 25.23 ± 2.66 a | 19.98 ± 1.00 b | ns | Citrus, green, fresh | 2.5 [63] | Chemistry, Citric fruit |
8 | Furfural | 696.07 ± 43.05 a | 1952.61 ± 102.03 b | *** | Burned almonds, fusel alcohol | 770 [64] | Chemistry, Toasty |
9 | Benzaldehyde | 31.33 ± 2.52 a | 64.82 ± 5.36 b | *** | Bitter almond, smoked, cherry | 350 [62] | Toasty |
10 | 5-methylfurfural | 229.67 ± 20.01 a | 892.98 ± 44.92 b | *** | Caramel | 1100 [64] | Toasty |
Carboxylic acids | 4225.96 ± 335.98 a | 9363.44 ± 147.38 b | *** | ||||
11 | Butanoic acid | 35.24 ± 2.29 a | 31.33 ± 1.53 a | ns | Rancid, cheese, sweat, sour | 173 [52] | Fatty |
12 | Octanoic acid | 3605.48 ± 295.05 a | 8009.06 ± 159.37 b | *** | Cheese, fat, grass, oil, sweat | 500 [52] | Fatty |
13 | Decanoic acid | 550.00 ± 40.00 a | 1291.71 ± 53.02 b | *** | Rancid fat, dust, grass | 1000 [52] | Fatty |
14 | Hexanoic acid | 35.24 ± 2.29 a | 31.33 ± 1.53 a | ns | Rancid, fatty, soapy | 420 [52] | Fatty |
Esters | 2430.93 ± 124.96 a | 4238.81 ± 112.21 b | *** | ||||
15 | Ethyl propionate | 271.99 ± 23.65 a | 466.70 ± 23.19 b | *** | Apple, pineapple, rum, strawberry | 45 [65] | Fruity |
16 | Ethyl isobutanoate | 15.12 ± 1.07 a | 5.67 ± 0.14 b | *** | Apple, strawberry | 15 [60] | Fruity |
17 | Ethyl butanoate | 307.74 ± 11.67 a | 446.69 ± 20.81 b | *** | Fruity, floral, apple, pineapple | 20 [66] | Fruity, Floral |
18 | Isoamyl acetate | 1177.86 ± 76.01 a | 2030.80 ± 62.62 b | *** | Banana | 30 [52] | Floral |
19 | Ethyl furoate | 5.43 ± 0.46 a | 0.71 ± 0.03 b | *** | Glue, paint | 1000 [61] | Floral |
20 | Ethyl octanoate | 346.94 ± 16.48 a | 912.57 ± 13.49 b | *** | Pineapple, floral, apricot, fat | 5 [52] | Fruity, Floral |
21 | Ethyl 2-methyloctanoate | 12.50 ± 0.90 a | 20.50 ± 1.07 b | *** | Fruity | 20 [63] | Fruity |
22 | Phenylethyl acetate | 83.42 ± 5.93 a | 110.99 ± 6.60 b | ** | Fruity, floral, tobacco | 250 [66] | Floral |
23 | Ethyl decanoate | 92.53 ± 9.25 a | 134.62 ± 5.01 b | ** | Sweet, fruity, pear | 200 [52] | Fruity |
24 | Ethyl vanillate | 8.24 ± 0.17 a | 9.19 ± 0.46 b | ns | Smoky, burnt | 990 [61] | Toasty, Spice |
25 | Ethyl dodecanoate | 64.53 ± 4.84 a | 48.43 ± 2.23 b | ** | Creamy, floral, fruit, leaf | 500 [60] | Buttery, Floral |
26 | Ethyl tetradecanoate | 24.09 ± 0.41 a | 28.36 ± 0.50 b | *** | Tropical fruit | 4000 [60] | Fruity |
27 | Ethyl hexadecanoate | 19.12 ± 0.77 a | 23.08 ± 0.87 b | ** | Caramel | 2000 [60] | Buttery |
28 | Hexyl hexanoate | 1.42 ± 0.11 a | 0.49 ± 0.03 b | *** | Fruity, green | 700 [60] | Citric fruit |
Lactones | 614.56 ± 39.23 a | 651.98 ± 19.28 a | ns | ||||
29 | γ-Crotonolactone | 146.17 ± 7.76 a | 317.08 ± 18.48 b | *** | Toasty, buttery | 1000 [64] | Buttery, Green |
30 | γ-Butyrolactone | 437.00 ± 38.59 a | 286.27 ± 11.51 b | ** | Sweet, caramel, roasted nut | 1000 [64] | Buttery |
31 | γ-Nonalactone | 27.13 ± 2.09 a | 44.47 ± 2.37 b | *** | Coconut, creamy, apricot, peach, sweet | 30 [56] | Fruity, Buttery |
32 | γ-Decalactone | 4.26 ± 0.21 a | 4.17 ± 0.04 a | ns | Peach, milky, sweet, fat | 47 [65] | Fruity, Buttery |
Terpenes | 6.87 ± 0.44 a | 10.62 ± 0.86 b | ** | ||||
33 | Limonene | 6.87 ± 0.44 a | 10.62 ± 0.86 b | ** | Flowery, green, citrus | 200 [67] | Citric fruit |
Volatile phenols | 30.76 ± 0.83 a | 62.16 ± 2.02 b | *** | ||||
34 | Guaiacol | 7.77 ± 0.39 a | 19.00 ± 1.00 b | *** | Medicine, smoke | 75 [68] | Chemistry, Toasty |
35 | 4-vinylguaiacol | 22.99 ± 1.11 a | 43.16 ± 1.61 b | *** | Clove, woody, smoke, phenol | 40 [69] | Spice, Woody |
Oak compounds | 127.48 ± 12.01 a | 279.53 ± 20.53 b | *** | ||||
36 | trans-whiskey lactone | 17.43 ± 1.36 a | 34.77 ± 2.84 b | *** | Woody, vanilla | 32 [70] | Woody |
37 | cis-whiskey lactone | 110.05 ± 12.07 a | 244.75 ± 18.00 b | *** | Woody, vanilla | 74 [70] | Woody |
3.5.3. Aromatic Series
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lockshin, L.; Corsi, A.M. Consumer behaviour for wine 2.0: A review since 2003 and future directions. Wine Econ. Policy 2012, 1, 2–23. [Google Scholar] [CrossRef] [Green Version]
- Borges, A.; Ferreira, C.; Saavedra, M.J.; Simoes, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19, 256–265. [Google Scholar] [CrossRef]
- Gris, E.F.; Mattivi, F.; Ferreira, E.A.; Vrhovsek, U.; Filho, D.W.; Pedrosav, R.C.; Bordignon-Luiz, M.T. Phenolic profile and effect of regular consumption of Brazilian redwines on in vivo antioxidant activity. J. Food Compos. Anal. 2013, 31, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Walzem, R.L. Wine and health: State of proofs and research needs. Inflammopharmacology 2008, 16, 265–271. [Google Scholar] [CrossRef]
- Basli, A.; Soulet, S.; Chaher, N.; Mérillon, J.M.; Chibane, M.; Monti, J.P. Wine polyphenols: Potential agents in neuroprotection. Oxid. Med. Cell Longev. 2012, 2012, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Kerry, N.L.; Abbey, M. Red wine and fractionated phenolic compounds prepared from red wine inhibit low density lipoprotein oxidation in vitro. Atherosclerosis 1997, 35, 93–102. [Google Scholar] [CrossRef]
- De Beer, D.; Joubert, E.; Marais, J.; Manley, M. Effect of oxygenation during maturation on phenolic composition, total antioxidant capacity, colour and sensory quality of Pinotage wine. S. Afr. J. Enol. 2008, 29, 13–25. [Google Scholar]
- González-Sáiz, J.M.; Esteban-Díez, I.; Rodríguez-Tecedor, S.; Pérez-del Notario, N.; Arenzana-Rámila, I.; Pizarro, C. Modulation of the phenolic composition and colour of red wines subjected to accelerated ageing by controlling process variables. Food Chem. 2014, 165, 271–281. [Google Scholar] [CrossRef]
- Kanakaki, E.; Siderakou, D.; Kallithraka, S.; Kotseridis, Y.; Makris, D.P. Effect of the degree of toasting on the extraction pattern and profile of antioxidant polyphenols leached from oak chips in model wine systems. Eur. Food Res. Technol. 2015, 240, 1065–1074. [Google Scholar] [CrossRef]
- Barrera-Garcia, V.D.; Gougeon, R.D.; Di Majo, D.; De Aguirre, C.; Voilley, A.; Chassagne, D. Different sorption behaviors for wine polyphenols in contact with oak wood. J. Agric. Food Chem. 2007, 55, 7021–7027. [Google Scholar] [CrossRef]
- del Alamo, M.; Nevares, I.; Gallego, L.; Martin, C.; Merino, S. Aging markers from bottled red wine aged with chips, staves and barrels. Anal. Chim. Acta 2008, 621, 86–99. [Google Scholar] [CrossRef]
- Martínez-Gil, A.M.; del Alamo-Sanza, M.; Nevares, I.; Sánchez-Gómez, R.; Gallego, L. Effect of size, seasoning and toasting level of Quercus pyrenaica Willd. Wood on wine phenolic composition during maturation process with micro-oxygenation. Food Res. Int. 2020, 128, 108703. [Google Scholar] [CrossRef] [PubMed]
- Oprea, A.; Indreas, A. Viticultura; Editura Ceres: Bucureşti, Romania, 2000; pp. 117–126. ISBN 973-40-0460-3. [Google Scholar]
- Organisation Internationale de la Vigne et du Vin. 2018. Available online: https://www.oiv.int/en (accessed on 25 January 2019).
- Dae-Ok, K.; Chang, Y.L. Food Analytical Chemistry, 1st ed.; Wiley: London, UK, 2002. [Google Scholar]
- Stevanato, R.; Fabris, S.; Momo, F. New enzymatic method for the determination of total phenolic content in tea and wine. J. Agric. Food Chem. 2004, 52, 6287–6293. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A.; Puig-Pujol, A.; Mauricio, J.C.; Moreno, J.; García-Martínez, T. Influence of two yeast strains in free, bioimmobilized or immobilized with alginate forms on the aromatic profile of long aged sparkling wines. Food Chem. 2018, 250, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Francis, I.L.; Newton, J.L. Determining wine aroma from compositional data. Aust. J. Grape Wine Res. 2005, 11, 114–126. [Google Scholar] [CrossRef]
- Rivero-Pérez, M.D.; Muñiz, P.; González-Sanjosé, M.L. Contribution of anthocyanin fraction to the antioxidant properties of wine. Food Chem. Toxicol. 2008, 46, 2815–2822. [Google Scholar] [CrossRef]
- Fulcrand, H.; Dueñas, M.; Salas, E.; Cheynier, V. Phenolic reactions during winemaking and aging. Am. J. Enol. Vitic. 2006, 57, 289–297. [Google Scholar]
- Burin, V.M.; Costa, L.L.F.; Rosier, J.P.; Bordignon-Luiz, M.T. Cabernet Sauvignon wines from two different clones, characterization and evolution during bottle ageing. LWT-Food Sci. Technol. 2011, 44, 1931–1938. [Google Scholar] [CrossRef]
- Alén-Ruiz, F.; García-Falcón, M.S.; Pérez-Lamela, M.C.; Martínez-Carballo, E.; Simal-Gándara, J. Influence of major polyphenols on antioxidant activity in Mencía and Brancellao red wines. Food Chem. 2009, 113, 53–60. [Google Scholar] [CrossRef]
- Zamora, F. Elaboracion y Criaza del vino Tinto: Aspectos Cientificos y Practices; Madrid Vicente: Madrid, Spain, 2003. [Google Scholar]
- Chira, K.; Jourdes, M.; Teissedre, P.L. Cabernet sauvignon red wine astringency quality control by tannin characterisation and polymerisation during storage. Eur. Food Res. Technol. 2012, 234, 253–261. [Google Scholar] [CrossRef]
- Haslam, E. In vino veritas: Oligomeric procyanidins and the ageing of red wines. Phytochemistry 1980, 19, 2577–2582. [Google Scholar]
- Llaudy, M.D.C.; Canals, R.; González-Manzano, S.; Canals, J.M.; Santos-Buelga, C.; Zamora, F. Influence of micro-oxygenation treatment before oak aging on phenolic compounds composition, astringency, and color of red wine. J. Agric. Food Chem. 2006, 54, 4246–4252. [Google Scholar] [CrossRef]
- Cadahía, E.; Fernández de Simón, B.; Sanz, M.; Poveda, P.; Colio, J. Chemical and chromatic characteristics of Tempranillo, Cabernet Sauvignon and Merlot wines from DO Navarra aged in Spanish and French oak barrels. Food Chem. 2009, 115, 639–649. [Google Scholar] [CrossRef]
- García-Parrilla, M.C.; Heredia, F.J.; Troncoso, A.M. Sherry wine vinegars: Phenolic composition changes during aging. Food Res. Int. 1999, 32, 433–440. [Google Scholar] [CrossRef]
- Lago-Vanzela, S.; Rebello, L.P.G.; Ramos, A.M.; Stringheta, P.C.; Da-Silva, R.; García-Romero, E. Chromatic characteristics and color-related phenolic composition of Brazilian young red wines made from the hybrid grape cultivar BRS Violeta (“BRS Rúbea” × “IAC 1398-21”). Food Res. Int. 2013, 54, 33–43. [Google Scholar] [CrossRef]
- Santos, J.V.; Rangel, W.M.; Guimarães, A.A.; Jaramillo, P.M.D.; Rufini, M.; Marra, L.M.; López, M.V.; Silva, M.A.P.; Soares, C.R.F.S.; Moreira, F.M.S. Soil biological attributes in arsenic-contaminated gold mining sites after revegetation. Ecotoxicology 2013, 22, 1526–1537. [Google Scholar] [CrossRef]
- Dumitriu, G.-D.; de Lerma, N.L.; Cotea, V.V.; Zamfir, C.-I.; Peinado, R.A. Effect of aging time, dosage and toasting level of oak chips on the color parameters, phenolic compounds and antioxidant activity of red wines (var. Fetească neagră). Eur. Food Res. 2016, 242, 2171–2180. [Google Scholar] [CrossRef]
- Schwarz, M.; Rodríguez, M.C.; Guillén, D.A.; Barroso, C.G. Evolution of the colour, antioxidant activity and polyphenols in unusually aged Sherry wines. Food Chem. 2012, 133, 271–276. [Google Scholar] [CrossRef]
- Chaves, M.; Zea, L.; Moyano, L.; Medina, M. Changes in color and odorant compounds during oxidative aging of Pedro Ximenez sweet wines. J. Agric. Food Chem. 2007, 55, 3592–3598. [Google Scholar] [CrossRef]
- Pérez-Magariño, S.; González-San José, M.L. Evolution of flavanols, anthocyanins, and their derivatives during the aging of red wines elaborated from grapes harvested at different stages of ripening. J. Agric. Food Chem. 2004, 52, 1181–1189. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; Freitas, V. Influence of Phenolics on Wine Organoleptic Properties. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Gutierrez, I.H.; Lorenzo, E.S.P.; Espinosa, A.V. Phenolic composition and magnitude of copigmentation in young and shortly aged red wines made from the cultivars, Cabernet Sauvignon, Cencibel, and Syrah. Food Chem. 2005, 92, 269–283. [Google Scholar] [CrossRef]
- Fernandes, A.; Oliveira, J.; Teixeira, N.; Mateus, N.; De Freitas, V. A review of the current knowledge of red wine colour. Oeno One 2017, 51, 1–15. [Google Scholar]
- Van Leeuw, R.; Kevers, C.; Pincemail, J.; Defraigne, J.O.; Dommes, J. Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of Pinot Noir. J. Food Compos. Anal. 2014, 36, 40–50. [Google Scholar] [CrossRef]
- Arnous, A.; Makris, D.P.; Kefalas, P. Effect of principal polyphenolic components in relation to antioxidant characteristics of aged red wines. J. Agric. Food Chem. 2001, 49, 5736–5742. [Google Scholar] [CrossRef]
- Lago-Vanzela, E.S.; Procópio, D.P.; Fontes, E.A.F.; Ramos, A.M.; Stringheta, P.C.; DaSilva, R.; Castillo-Muñoz, N.; Hermosín-Gutiérrez, I. Aging of red wines made from hybrid grape cv. BRS Violeta: Effects of accelerated aging conditions on phenolic composition, color and antioxidant activity. Food Res. Int. 2014, 56, 182–189. [Google Scholar] [CrossRef]
- Mason, A.B.; Dufour, J.J. Alcohol acetyltransferases and the significance of ester synthesis in yeast. Yeast 2000, 16, 1287–1298. [Google Scholar] [CrossRef]
- Dumitriu (Gabur), G.-D.; Peinado, R.A.; Cotea, V.V.; López de Lerma, N. Volatilome fingerprint of red wines aged with chips or staves: Influence of the aging time and toasting degree. Food Chem. 2020, 310, 125801. [Google Scholar] [CrossRef] [PubMed]
- Petropulos, V.I.; Bogeva, E.; Stafilov, T.; Stefova, M.; Siegmund, B.; Pabie, N.; Lankmayr, E. Study of the influence of maceration time and oenological practices on the aroma profile of Vranec wines. Food Chem. 2014, 165, 506–514. [Google Scholar] [CrossRef] [PubMed]
- Falqué, E.; Fernandez, E.; Dubourdieu, D. Differentiation of white wines by their aromatic indeks. Talanta 2001, 54, 271–281. [Google Scholar] [CrossRef]
- López de Lerma, N.; García-Martínez, T.; Moreno, J.; Mauricio, J.C.; Peinado, R.A. Volatile composition of partially fermented wines elaborated from sun dried Pedro Ximénez grapes. Food Chem. 2012, 135, 2445–2452. [Google Scholar] [CrossRef]
- Camara, J.S.; Alves, M.A.; Marques, J.C. Changes in volatile composition of Madeira wines during their oxidative ageing. Anal. Chim. Acta 2006, 563, 188–197. [Google Scholar] [CrossRef] [Green Version]
- Fernández de Simón, B.; Cadahía, E.; del Alamo, M.; Nevares, I. Effect of size, seasoning and toasting in the volatile compounds in toasted oak wood and in a red wine treated with them. Anal. Chim. Acta 2010, 660, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Del Alamo, M.; Nevares, I.; Gallego, L.; Fernández de Simón, B.; Cadahía, E. Micro-oxygenation strategy depends on origin and size of oak chips or staves during accelerated red wine aging. Anal. Chim. Acta 2010, 660, 92–101. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Medina, M.; Mauricio, J.C. Changes in volatile compounds and aromatic series in sherry wine with high gluconic acid levels subjected to aging by submerged flor yeast cultures. Biotechnol. Lett. 2004, 26, 757–762. [Google Scholar] [CrossRef]
- Rodriguez-Bencomo, J.J.; Ortega-Heras, M.; Perez Magarino, S. Effect of alternative techniques to ageing on lees and use of non toasted oak chips in alcoholic fermentation on the aromatic composition of red wines. Eur. Food Res. Technol. 2010, 230, 485–496. [Google Scholar] [CrossRef]
- Gomez-Minguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Lambrechts, M.G.; Pretorius, I.S. Yeast and its importance to wine aroma. S. Afr. J. Enol. Vitic. 2000, 21, 97–129. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Moreno, M.J.; Munos-Redondo, J.M.; Cuevas, F.J.; Marrufo-Curtido, A.; Leon, J.M.; Ramirez, P.; Moreno-Rojas, J.M. The influence of pre-fermentative maceration and ageing factors on ester profile and marker determination of Pedro Ximenez sparkling wines. Food Chem. 2017, 230, 697–704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, E.; Coimbra, M.A.; Nogueira, J.M.; Rocha, S.M. Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Anal. Chim. Acta 2009, 635, 214–221. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Sánchez-Palomo, E.; Trujillo, M.; García Ruiz, A.; González Viñas, M.A. Aroma profile of malbec red wines from La Mancha region: Chemical and sensory characterization. Food Res. Int. 2017, 100, 201–208. [Google Scholar] [CrossRef]
- Bautista-Ortin, A.B.; Lencina, A.G.; Cano-Lopez, M.; Pardo-Minguez, F.; Lopez-Roca, J.M.; Gomez-Plaza, E. The use of oak chips during the ageing of a red wine in stainless steel tanks or used barrels: Effect of the contact time and size of the oak chips on aroma compounds. Aust. J. Grape Wine Res. 2008, 14, 63–70. [Google Scholar] [CrossRef]
- López de Lerma, N.; Peinado, R.A. Use of two osmoethanol tolerant yeast strain to ferment must from Tempranillo dried grapes: Effect on wine composition. Int. J. Food Microbiol. 2011, 145, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J. Influencia del tipo de Envejecimiento Sobre el Perfil Aromático de Vinos Generosos Andaluces. Ph.D. Thesis, University of Córdoba, Córdoba, Spain, 2005. [Google Scholar]
- Etiévant, P.X. Wine. In Volatile Compounds of Food and Beverages; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Buttery, B.G.; Turnbaugh, J.G.; Ling, L.C. Contribution of volatiles to rice aroma. J. Agric. Food Chem. 1988, 36, 1006–1009. [Google Scholar] [CrossRef]
- Cullere, L.; Ferreira, V.; Cacho, J. Analysis, occurrence and potential sensory significance of aliphatic aldehydes in white wine. Food Chem. 2011, 127, 1397–1403. [Google Scholar] [CrossRef]
- López de Lerma, N.; Bellicontro, A.; Mencarelli, F.; Moreno, J.; Peinado, R.A. Use of electronic nose, validated by GC–MS, to establish the optimum off-vine dehydration time of wine grapes. Food Chem. 2012, 130, 447–452. [Google Scholar] [CrossRef]
- Leffingwell and Associates. Odor Properties & Molecular Visualization, Esters Detection Thresholds & Molecular Structures. 2020. Available online: http://www.leffingwell.com/esters.htm (accessed on 22 October 2020).
- Guth, H. Identification of character impact odorants of different white wine varieties. J. Agric. Food Chem. 1997, 45, 3027–3032. [Google Scholar] [CrossRef]
- Bao, J.; Zhenwen, Z. Volatile compounds of young wines from Cabernet Sauvignon, Cabernet Gernischet and Chardonnay varieties grown in the loess plateau region of China. Molecules 2010, 15, 9184–9196. [Google Scholar]
- Rocha, S.M.; Rodrigues, F.; Coutinho, P.; Delgadillo, I.; Coimbra, M.A. Volatile composition of Baga red wine assessment of the identification of the would-be impact odourants. Anal. Chim. Acta 2004, 513, 257–262. [Google Scholar] [CrossRef]
- López, R.; Aznar, M.; Cacho, J.; Ferreira, V. Determination of minor and trace volatile compounds in wine by solid-phase extraction and gas chromatography with mass spectrometric detection. J. Chromatogr. A. 2002, 966, 167–177. [Google Scholar] [CrossRef]
- Brown, R.C.; Sefton, M.A.; Taylor, D.K.; Elsey, G.M. An odour detection threshold determination of all four possible stereoisomers of oak lactone in a white and a red wine. Aust. J. Grape Wine Res. 2006, 12, 115–118. [Google Scholar] [CrossRef]
Parameters | Fractions | 1.5 Months | 3 Months | p Value | Sign. | |
---|---|---|---|---|---|---|
Total phenolic (TP) content mg catechin/L | Initial | 931.1 ± 19.0 b | 775.4 ± 21.4 a | 0.0007 | *** | |
Phenolic acids and esters (F1) | 120.0 ± 4.3 a | 147.0 ± 4.4 b | 0.0016 | ** | ||
Flavanols (F2) | 141.9 ± 10.5 a | 141.6 ± 4.3 a | 0.9699 | ns | ||
Flavonols (F3) | 333.1 ± 9.3 b | 225.9 ± 6.8 a | 0.0001 | *** | ||
Anthocyanins and polymeric compounds (F4) | 282.4 ± 0.5 b | 216.2 ± 6.5 a | 0.0001 | *** | ||
Total antioxidant activity (TAA) mM Trolox | Initial | 12.8 ± 0.7 a | 13.3 ± 0.3 a | 0.2455 | ns | |
Phenolic acids and esters (F1) | 1.6 ± 0.05 b | 1.5 ± 0.04 a | 0.0136 | ns | ||
Flavanols (F2) | 2.1 ± 0.06 a | 2.3 ± 0.07 b | 0.0212 | ns | ||
Flavonols (F3) | 1.1 ± 0.03 a | 1.9 ± 0.06 b | 0.0000 | *** | ||
Anthocyanins and polymeric compounds (F4) | 6.6 ± 0.2 a | 6.9 ± 0.2 a | 0.2204 | ns | ||
CieLab parameters | L* | 31.95 ± 0.96 a | 31.48 ± 0.94 a | 0.5732 | ns | |
a* | 56.52 ± 1.7 a | 58.10 ± 1.74 a | 0.3223 | ns | ||
b* | 34.40 ± 1.03 a | 37.24 ± 1.12 b | 0.0317 | ns | ||
H | 31.33 ± 0.94 a | 32.66 ± 0.98 a | 0.1640 | ns | ||
C | 66.16 ± 1.98 a | 69.01 ± 2.07 a | 0.1603 | ns | ||
I | 4.81 ± 0.14 a | 5.07 ± 0.15 a | 0.1038 | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dumitriu, G.-D.; Teodosiu, C.; Gabur, I.; Cotea, V.V.; Peinado, R.A.; López de Lerma, N. Alternative Winemaking Techniques to Improve the Content of Phenolic and Aromatic Compounds in Wines. Agriculture 2021, 11, 233. https://doi.org/10.3390/agriculture11030233
Dumitriu G-D, Teodosiu C, Gabur I, Cotea VV, Peinado RA, López de Lerma N. Alternative Winemaking Techniques to Improve the Content of Phenolic and Aromatic Compounds in Wines. Agriculture. 2021; 11(3):233. https://doi.org/10.3390/agriculture11030233
Chicago/Turabian StyleDumitriu (Gabur), Georgiana-Diana, Carmen Teodosiu, Iulian Gabur, Valeriu V. Cotea, Rafael A. Peinado, and Nieves López de Lerma. 2021. "Alternative Winemaking Techniques to Improve the Content of Phenolic and Aromatic Compounds in Wines" Agriculture 11, no. 3: 233. https://doi.org/10.3390/agriculture11030233
APA StyleDumitriu, G.-D., Teodosiu, C., Gabur, I., Cotea, V. V., Peinado, R. A., & López de Lerma, N. (2021). Alternative Winemaking Techniques to Improve the Content of Phenolic and Aromatic Compounds in Wines. Agriculture, 11(3), 233. https://doi.org/10.3390/agriculture11030233