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Abstract: In this study, a complete physical–chemical analysis was performed for Fetească neagră
wine, aged with oak staves. Red wine samples were taken from grape varieties grown in Northeast
Romania and produced during 2013 vintage. At the end of the fermentation process, four oak mini
staves (1 cm width × 10 cm length × 1 cm thickness) from heavy toasted French oak were added
to 5 L of red wine. Samples were aged using two time periods, respectively at 1.5 and 3 months,
in a room at 14–16 ◦C. Results showed that the initial content of total phenolic decreased during
ageing, from 931.1 mg catechin/L at 1.5 months to 775.4 mg catechin/L at 3 months. In contrast,
the initial content of total antioxidant activity increased after the same period of ageing to 13.3 mM
Trolox as compared to the aged wines for 1.5 months, at 12.8 mM Trolox. The corregram representing
the relationship between the total phenols, total antioxidant activity (TAA) and their fractions and
CieLab parameters was performed. Thirty-seven minor volatile compounds were quantified by
stir bars sorptive extraction and gas chromatography coupled with mass spectrometry (SBSE-GC-
MS). An increase in odor activity value (OAV) with ageing time was observed, especially for fruity,
fatty and woody series. The oak staves used in ageing processes can contribute positively to the
aromatic profile of wines and could be considered a good choice for producing short-aged wines.

Keywords: red wines; oak staves; phenolic compounds; antioxidant activity; volatile compounds

1. Introduction

Wines are appreciated by consumers due to their characteristics, aroma and health
benefits, and therefore, some studies have already been undertaken to identify the wine
volatiles and phenolic compounds and also to address changes during the ageing time [1].
Phenolic compounds have been widely studied because they have antibacterial [2] and
antioxidant [3] properties, healthy effects on the cardiovascular [4] and nervous systems [5],
and they promote benefits to consumer health associated with regular, moderate red wine
consumption. Red wine antioxidant properties influenced by phenol classes are of great
interest for the winemaking industry [6]. Besides, wine is a complex system where chemical
changes can occur during major winemaking techniques such as ageing.

Nowadays, consumers prefer wines that are young and without a long age, due to their
excellent organoleptic characteristics and plentiful fruitiness [1]. Traditionally, the ageing
of red wines is performed in oak wood barrels during periods of time, dependent on the
beverage to be aged and the intended final product [7]. Due to some disadvantages, such as
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limited lifecycle, and the expensive cost for the storage, handling, cleaning and sanitation,
oenologists are looking for alternative new products.

In the wine industry, alternative winemaking inputs are available on the market that
can be used in the ageing process. These products may differ in sizes and can be found as
powders, chips, staves, and other forms [8]. Oak chips (and oak barrels) contain phenolic
acids, flavonols, flavanols, anthocyanins and furanic compounds which can be extracted
into wine [9]. These compounds are known to express specific flavors such as vanilla,
chocolate, roasted almond, spices and smoky and also influence the formation of flavano-
ellagitannins, stabilize the color, or influence the bitterness and astringency levels [10].
Generally, volatile compounds are extracted from oak wood, depending on the available
compound quantity, contact interval among wine-oak wood, levels of toasting and type
of oak wood used. All these characteristics of oak wood directly impact the final wine
aroma typicity. Additionally, a key factor in defining the final characteristics of wines is
the size of the wood product. Del Alamo et al. [11] affirm that the smaller the piece of
wood, the better the evolution undergone by wine. Alternative oak products are obtained
from wood that are seasoned and toasted in function to its size and shape. The common
seasoning used takes place under natural conditions in open air for 18–36 months [12].
In this period of time, the wood matures, changes in its chemical composition (increasing
aromatic properties) and reduces the bitterness and astringency. The toasting process is the
most important stage in the wood chemical composition due to the heat which provokes
various chemical transformations and the degradation of wood. This process conducts a
significant increase in aromatic compounds and a decrease in astringency. The consumer
buying decision, overall estimation of wine quality and price are all based on the wine
aroma profile [1].

Romania is an important European wine producer, with a strong history of wine-
making and an increasing interest in autochthonous wines. Fetească neagră appeared
through popular selection made in time, from the wild forest vine (Vitis silvestris) which
was cultivated by the Dacian peoples, in an area between the Carpathians and the Nistru
River. The Fetească neagră variety is an old Romanian–Moldavian dark-skinned grape
variety developed in Uricani, Iasi, a winemaking region. Fetească neagră has been culti-
vated in Romania for over 2000 years but is less known in other viticultural countries [13].
Fetească neagră aged wine is considered one of the best red wines due to its smoky, plum,
black currant, and chocolate characters.

The aim of this paper is to characterize one of the autochthonous red wines (Fetească
neagră) aged with oak staves during two ageing periods, which includes the phenolic com-
pounds, total antioxidant activity and their fractions (phenolic acids, flavanols, flavonols and
anthocyanins), color properties and last but not least, the minor volatile compounds.

2. Materials and Methods
2.1. Winemaking and Ageing Conditions

Red wine used for the trials was from grape varieties grown in Northeast Romania
and produced during 2013 vintage. The maceration–fermentation process at 10–12 ◦C
followed the crushing stage and lasted for 7 days. After maceration, the marc was pressed,
and the wines produced were conveyed into fermentation tanks for completing the al-
coholic/malolactic fermentation. Daily pumping overs were carried out to optimize the
extraction of color, phenolics and aroma compounds and their respective flavors. At the
end of the fermentation processes, 4 oak mini staves were added to 5 L of red wine. The di-
mensions in centimeters for the mini staves was 1 × 10 × 1 (width × length × thickness)
and was obtained from heavy toasted French oak (Quercus petraea). The wines were aged for
two time periods, respectively at 1.5 and 3 months, in a room at 14–16 ◦C. The experiment
was performed in three replicates.
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2.2. Analytical Parameters

The enological parameters include alcohol content, titratable acidity (expressed as
tartaric acid) and volatile acidity (as acetic acid), pH, total and free SO2 for red wines.
These parameters were measured according to the International Vine and Wine Organiza-
tion (OIV) International Oenological Codex [14]. CieLab parameters (L*, a*, b*, C*, H* and
I*) were measured in a Perkin Elmer Lambda 25 spectrophotometer. Initially, samples were
filtered through a HA-0.45 µm paper (Millipore, Milford, MA, USA).

2.3. Fractionation of Phenolic Compounds and Total Phenoloc Content

In the first step, ethanol was removed, and distilled water was added until the sam-
ple reached the initial volume. The fractionation of phenolic compounds was analyzed
according to the protocol described by Dae-Ok and Chang [15] and was realized by using
tC-18 SepPak columns. In the second step, the activation of columns was carried out
with 5 mL of methanol and washed with 5 mL of ultra-pure water. The columns were
set up with 5 mL of water at pH 7, and 1 mL of sample adjusted to pH 7 was supplied.
In the third step, phenolic acids and their respective esters (fraction 1) were eluted with
5 mL of water at pH 7. The elution of flavanols (fraction 2) was carried out with 5 mL
of 16% acetonitrile at pH 2. Finally, flavonols (fraction 3) and anthocyanins, tannins and
other polymeric pigments (fraction 4) were eluted with 5 mL of ethyl acetate and 5 mL of
methanol, respectively.

The total phenolic content of the samples was investigated, and the phenolic fractions
were obtained according to the method described by Stevanato et al. [16].

2.4. Total Antioxidant Activity

The chromophore ABTS+ method was used to determine the antioxidant activity
of samples, according the Re et al. [17]. The oxidation of 7 mM of ABTS with 2.45 mM
of potassium persulphate only in state of darkness for 12–16 h produced the ABTS+.
The obtained ABTS+ solution was diluted in 20 mM of phosphate buffer at pH 7.4 to
obtain an absorbance at 734 nm of 0.7. A 100 µL wine sample, previously filtered with
HA-0.45 µm papers (Millipore, Milford, MA, USA) was reacted with 900 µL of this test
mixture. After 6 min, the absorbance at 734 nm of the reaction mixture was determined.
The antioxidant activity was calculated and the percentage of inhibition must be in the
interval of 20%–80%.

2.5. Minor Aroma Compounds

Minor aroma compounds extraction was performed according to the method described
by Lopez de Lerma et al. [18]. Samples were diluted in a proportion 1:10 with a hydro-
ethanolic solution (12% ethanol v/v) and pH was adjusted to 3.5. The stir bars were placed
in a 10 mL glass container. Each container had 10 mL of the diluted sample and 0.1 mL
of a solution of ethyl nonanoate (0.4464 mg/L) as internal standard. The stirring of the
containers was performed at 1500 rpm, 25 ◦C for 100 min. After this, wine was removed
from the container and the stir bar was gently dried and prepared for gas chromatography
mass spectrometry (GC-MS) analysis.

The glass thermal desorption tubes were placed into a GC-MS equipped with a Gerstel
TDS 2 thermodesorption system. The stir bars were heated to release and transfer the
extracts into a cooled injection system/programmed temperature vaporizer (CIS 4 PTV)
containing a tenax adsorption tube. The GC-MS equipment was set as the following: ther-
mal desorption at 35 ◦C, ramped at 120 ◦C min−1 to 280 ◦C for 10 min; helium flow rate was
set at 3 mL/min; CIS injector at 25 ◦C for the total desorption time, followed by 12 ◦C s−1

in splitless mode to 280 ◦C for 7 min. The GC was fitted with an Agilent-19091S capillary
column 30 m × 0.25 mm i.d., 0.25 mm film thickness. Helium was used as the carrier gas
with a column flow rate of 1 mL min−1. Retention times, spectral libraries supplied by
Wiley (version 7 N) and for the identification, confirmation and preparation of standard
solutions of the volatile compounds, pure chemical compounds were used, which were
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obtained from Merck, Sigma Aldrich, Riedel de Haen and Fluka. The calibration curve was
obtained by using standard solutions of known concentrations previously subjected to the
same treatment as the samples in conjunction with the target and qualifier ions selected for
each compound by the Hewlette Packard Chemstation (Palo Alto, CA, USA).

2.6. Aromatic Series and the Odorant Activity Value

The volatile compound contribution to the wine samples’ aroma characteristics could
be investigated both qualitativly or quantitativly, using the aroma descriptor or the odorant
activity value (OAV). The OAV can be used as a measure of the influence of specific aroma
compounds to the overall aroma profile of a sample. Mathematicaly, the OAV represents
the ratio between the concentration of an individual aroma compound and the perception
threshold of that compunds, as found in the literature [19]. Afterwords, the sum of all
compounds’ OAV in a given series is used to identify the total intensity of a specific
aromatic series.

2.7. Statistical Analysis

Statistical significance was determined using an analysis of variance (ANOVA) of
the experimental data. Analyses were performed by using Statgraphics Centurion XVI of
StatPoint Technologies Inc. (Warrenton, VA, USA). A correlation matrix using corrgram
was conducted; therefore, Pearson’s correlation was performed using phenolic compounds,
antioxidant activity, and, respectively, their fractions and color parameters. The correlation
analysis was performed by using the R package “corrgram”.

3. Results
3.1. Enological Parameters

After 1.5 months of ageing, all important red wine chemical characteristics were
analyzed and the following values were obtained: alcohol content 14.9 % (v/v), pH 3.65,
titratable acidity 5.67 g/L, volatile acidity 0.53 g/L (as acetic acid), total SO2 138 mg/L and
free SO2 41 mg/L. After 3 months of ageing, the same major chemical compounds showed:
alcohol content 14.9 % (v/v), pH 3.69, titratable acidity 5.40 g/L, volatile acidity 0.56 g/L,
total SO2 115 mg/L and free SO2 37 mg/L.

3.2. Total Phenolic Content and Total Antioxidant Activity

During the ageing process, various reactions involving co-pigmentation, condensation
and polymerization take place between its phenolic compounds. Therefore, these reactions
certainly influence its structure and undoubtedly, its antioxidant activity [20].

With the exception of flavanols (F2) of total phenols and initial, phenolic acid (F1),
flavanols (F2) and anthocyanins (F4) of total antioxidant activity, all the compounds exhib-
ited significant differences when 1.5 months and 3 months were compared by analysis of
variance. Phenolics acids and esters changed their concentrations significantly (p ≤ 0.01);
all the other compounds changed their concentrations with p ≤ 0.001 (Table 1).

The initial content of total phenols decreased after 3 months of ageing (775.4 mg
catechin/L) as compared to a 1.5-month ageing time (931.1 mg catechin/L). This decrease
in total phenolic content is especially due to their participation in numerous condensation
reactions, as well as in hydrolytic and other degradation reactions. Additionally, dur-
ing ageing, proanthocyanidins suffer a spontaneous cleavage and polymerization with
anthocyanins, as well as precipitation of large insoluble polymers formed [21]. In con-
trast, the initial content of total antioxidant activity increased after the same ageing period
(13.3 mM Trolox) as compared to aged wines of 1.5 months (12.8 mM Trolox) (Table 1).
The results presented in previous published articles dealing with the antioxidant activity
during wine ageing are until now too antithetical. Burin et al. [22] and Alén-Ruiz et al. [23]
showed a significant increase as compared to the respective wines. In a different study,
Rivero-Pérez et al. [20] affirmed that antioxidant activity decreases over time during ageing.
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Table 1. Chemical parameters of red wines aged with oak staves for 1.5 and 3 months.

Parameters Fractions 1.5 Months 3 Months p Value Sign.

Total phenolic
(TP) content mg

catechin/L

Initial 931.1 ± 19.0 b 775.4 ± 21.4 a 0.0007 ***
Phenolic acids
and esters (F1) 120.0 ± 4.3 a 147.0 ± 4.4 b 0.0016 **

Flavanols (F2) 141.9 ± 10.5 a 141.6 ± 4.3 a 0.9699 ns
Flavonols (F3) 333.1 ± 9.3 b 225.9 ± 6.8 a 0.0001 ***
Anthocyanins
and polymeric

compounds
(F4)

282.4 ± 0.5 b 216.2 ± 6.5 a 0.0001 ***

Total
antioxidant

activity (TAA)
mM Trolox

Initial 12.8 ± 0.7 a 13.3 ± 0.3 a 0.2455 ns
Phenolic acids
and esters (F1) 1.6 ± 0.05 b 1.5 ± 0.04 a 0.0136 ns

Flavanols (F2) 2.1 ± 0.06 a 2.3 ± 0.07 b 0.0212 ns
Flavonols (F3) 1.1 ± 0.03 a 1.9 ± 0.06 b 0.0000 ***
Anthocyanins
and polymeric

compounds
(F4)

6.6 ± 0.2 a 6.9 ± 0.2 a 0.2204 ns

CieLab
parameters

L* 31.95 ± 0.96 a 31.48 ± 0.94 a 0.5732 ns
a* 56.52 ± 1.7 a 58.10 ± 1.74 a 0.3223 ns
b* 34.40 ± 1.03 a 37.24 ± 1.12 b 0.0317 ns
H 31.33 ± 0.94 a 32.66 ± 0.98 a 0.1640 ns
C 66.16 ± 1.98 a 69.01 ± 2.07 a 0.1603 ns
I 4.81 ± 0.14 a 5.07 ± 0.15 a 0.1038 ns

The values are mean ± standard deviation of three independent experiments. Different letters indicate significant differences at p < 0.05
level according to the Fisher’s Least Significant Difference (LSD) test. The alphabetical order indicates an increasing content. Signs:
*, **, *** and ns indicate significance at p < 0.05, p < 0.01, p < 0.001 and not significant, respectively. CieLab parameters: L* (lightness),
a* (red-greenness component), b* (yellow-blueness component), H (Hue), C (Chroma), I (Intensity).

Oak wood used in winemaking has a complex phenolic composition that includes
phenolic acids, flavanols, cumarins, gallic and ellagic tannins [24]. The high solubility of
these compounds in hydroalcoholic solution makes them desirable during winemaking as
they influence the overall composition of the phenolic families. In our study, the flavanols,
flavonols and anthocyanins (fraction 2, 3, 4) content of total phenolic decreased with
ageing time, probably due to the polymerization reactions that occurred. The results are in
agreement with a previous study that used wines obtained from Cabernet Sauvignon [25].
The loss of proanthocyanidins may have been caused by the classical acid-catalyzed C–C
bond-breaking [26] or by the precipitation of high molecular weight polymers [27]. On the
other hand, only an increase in phenolic acid and esters (fraction 1) content of total phenolic
was observed, as a consequence of the extraction of phenolic compounds from wood.
Cadahía et al. [28] reported that ageing using French oak for a period of 12 months causes
increased values of hydroxybenzoic acids and their derivatives in wine samples. Moreover,
the accumulation of hydroxybenzoic acids during the ageing process may also be caused by
hydrolysis of gallic tannins [29].

In Table 1, the result of a fraction of the total antioxidant activity can be noticed,
which consist of increases in all values after 3 months of ageing. Anthocyanins have been
confirmed to contribute significantly to the wine color attributes [30]. Additionally, antho-
cyanins and flavonols polymerization can cause deposits during the ageing process [31,32].

3.3. Color Parameters

Wine color was investigated at pilot scale by measuring the chromatic L* (lightness),
a* (red-greenness component), b*(yellow-blueness component), H (hue angle), C (chroma)
and I (intensity) (Table 1). The lightness (L*) slightly decreased after 3 months of ageing,
in accordance with results described by Schwarz et al. [33] in Sherry wines. Additionally,
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ageing may stimulate the formation of reddish-brown polymers during the winemaking
process [34]. The parameters a*, b*, H, C and I increased after 3 months of ageing. The co-
ordinate b* and H increased slightly in red wines with ageing time due to the formation of
yellow–orange pigments during wine ageing [35]. In contrast, Chaves et al. [34] noticed
a decrease in coordinate b* and H in wines produced from the Pedro Ximenez variety.
Additionally, higher a* values could be linked to the formation of anthocyanin-derived
compounds [36]. Chroma (C*) and hue angle (H*) are the corresponding angular coor-
dinates derived from the Cartesian coordinates a* and b*, but they are better related to
the human sensory perception of color. The vividness of color (C*) shown by aged wines
increased for 3-month wines ageing as compared to 1.5-month wines ageing. Moreover,
these results obviously indicate that aged red wines exposed a yellow–red tonality [37].
In the ageing, substantial modification of the color of red wines takes place, from red/violet
in young wine to red/orange in aged ones due to oxidation, reduction and polymerization
of anthocyanins. Anthocyanins can react with catechin monomers and condensed tannins
through aldehydes, and the formation of new pigments, such as anthocyanin-alkyl-catechin,
can cause bathochromic shifts (bluish red hues). Thus, a formation pyrano-anthocyanin-
catechin compounds takes place, that causes a hypsochromic shift (orange hues). [38].

3.4. Correlation between Total Phenolic Content, Total Antioxidant Activity and Color Parameters

Polyphenol compounds are known due to their own antioxidant properties that gener-
ally are presumed to be linked to human health benefits [39]. Therefore, a correlation matrix
using correlogram was conducted; Pearson’s correlation was carried out using phenolic
compounds and antioxidant activity, and their fractions and color parameters, respectively.

This statement is supported by the significant high positive correlations found between
total phenols and F3-total phenolic (TP) (r = 0.98) as well as F4-TP (r = 0.97) and F1-total
antioxidant activity (TAA) (r = 0.91). Additionally, significant negative correlations were
observed between total phenols and F1-TP (r = −0.96), F2-TAA (r = −0.83) and F3-TAA
(r = −0.97). F1-TP has a significant positive correlation with F3-TAA (r = 0.97), F2-TAA
(r = 0.86) and a significant negative correlation with F3-TP (r = −0.96), F4-TP (r = −0.94) and
F1-TAA (r = −0.88). F3-TP presented a significant positive correlation with F4-TP (r = 0.99)
and F1-TAA (r = 0.95) and a significant negative correlation with F2-TAA (r = −0.81) and F3-
TAA (r = −0.98). F4-TP revealed a significant positive correlation with F1-TAA (r = 0.93) and
significant negative correlation with F2-TAA (r = −0.84) and F3-TAA (r = −0.98) (Figure 1).

No statistically significant correlation (p < 0.05) was observed for TP and TAA in the
wines (Figure 1). F1-TAA is significantly negatively correlated with F3-TAA (r = −0.86).
F2-TAA presented a significant positive correlation with F3-TAA (r = 0.92) and F3-TAA
(r = 0.90). Arnous et al. [40] demonstrated that there is a weak correlation among the
principal polyphenols and the antioxidant parameters.

The L* color parameter showed a significant positive correlation with F2-TP (r = 0.89).
L* values were related to the involvement of F2-TP in the formation of yellow pigments,
which made it seem more opaque. Anthocyanins have been related to the red color of
wine, whereas flavonols and flavan-3-ols may improve the red color of young wine by the
co-pigmentation process [33]. Therefore, a* was significantly positively correlated with
F2-TAA (r = 0.85) and F4-TAA (r = 0.99), while, b* was significantly positively correlated
with F1-TP (r = 0.83), F2-TAA (r = 1), F3-TAA (r = 0.89), F4-TAA (r = 0.92) and a* (r = 0.88).
However, a* and b* provide both quantitative and qualitative chromatic information and
can be linked with the visual human color recognition [41]. Hence, changes of the color
components of aged wines with oak staves led to significant modifications in C* and H*.
C* is significantly positively correlated with F2-TAA (r = 0.94), F4-TAA (r = 1), a* (r = 0.98),
and b* (r = 0.95), which are typical for the red color as mentioned before. H* presented
a significant positive correlation with F2-TAA (r = 0.93), F4-TAA (r = 1), a* (r = 0.98) and
b*(r = 0.95). Moreover, C* was strongly positively correlated with H* (r = 1). This aspect
highlighted the decrease in the co-pigmentation effect and the presence of polymeric
pigments during ageing [37]. The I* color indicator was significantly affected by the
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aged wines. Thus, the justification of the significant correlations found between F2-TAA
(r = 0.97), F4-TAA (r = 0.98), a* (r = 0.96), b* (r = 0.98), H* (r = 0.99) and C* (r = 1) with I* is
presented in Figure 1.
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Blue circles correspond to significant positive correlations and red circles to significant
negative correlations. The size of the circle reflects the magnitude of the Pearson correlation
coefficient. These correlation coefficients range between −1 and +1 and measure the
strength of the association between the variables.

3.5. Volatile Compounds
3.5.1. Chemical Families

Thirty-seven minor volatile compounds were identified and quantified, and then
were grouped into alcohols (five), carbonyls (five), carboxylic acids (four), esters (14),
lactones (four), terpenes (one), volatile phenols (2two) and oak compounds (two).

In Figure 2, the concentration of the chemical families for aged wines with oak staves
at 1.5 and 3 months is represented. Wines aged for 1.5 months with oak staves present
the highest concentration of carboxylic acids, esters, followed by alcohols and the lowest
amount of terpenes. After 3 months of ageing, wines present similar behaviors, but with
concentrations much higher than at 1.5 months. Additionally, all chemical families were
characterized by the increases of concentrations at 3 months. Esters are generally produced
during the alcoholic fermentation by the activity of yeasts and are known to influence
on fruity and floral aromas in wines [42]. One more chemical family with a positive
impact on the red wines were the oak compounds, due to these compounds being directly
extracted from wood. Coconut, vanilla, and woody-like are the main characteristics for
whiskey lactone [43].
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3.5.2. Volatile Compounds Identified and Quantified in Wines Aged with Oak Staves

With the exception of furfuryl alcohol, heptanal, octanal, butanoic acid, hexanoic acid,
ethyl vanillate, decalactone, all the compounds exhibited significant differences when
1.5 months and 3 months ageing time were compared by analysis of variance. E-2-hexenol,
phenylethyl acetate, ethyl decanoate, ethyl hexadecanoate, butyrolactone, limonene modi-
fied their concentrations significantly (p ≤ 0.01); all the others compounds changed their
concentrations significantly (p ≤ 0.001).

The concentration of minor alcohols for samples with oak staves increased with the
ageing time. These results are comparable to those obtained by Petropulos et al. [44].
Hexanol was the main minor alcohol, with a higher concentration in wines aged for
3 months (2387.37 µg/L) than in wines aged for 1.5 months (1349.47 µg/L) (Table 2). This is
associated with the grape variety [45] and should be considered as positive for the wines,
as the presence of high values of this compound can give herbaceous odor nuances [46].

Furfural and 5-methylfurfural increased considerably with ageing time. These com-
pounds are obtained by the degradation of carbohydrates during oak staves toasting steps.
Furfural is formed when pentoses are exposed to high heat levels and 5-methyl furfural is
obtained from rhamnose [47]. The concentration of furfural was higher in wines aged for
3 months (1952.61 µg/L) than 1.5 months (696.07 µg/L) and the 5-methylfurfural show
similar behavior, being higher at 3 months (892.98 µg/L) than at 1.5 months (229.67 µg/L).
These changes were similar to those previously reported by Fernández de Simón et al. [48]
in a Spanish artificially aged wine, using chips and staves from oak wood at three toasting
levels, varying from light to heavy, and by Del Álamo et al. [49] in a micro-oxygenation
strategy that investigated oak chips or staves of different sizes and origins during the
ageing process.

Furfural and 5-methylfurfural (sweet caramel-like, nutty, almond odor and flavor),
heptanal (rancid and herbal aroma), octanal (citrus, fresh) and benzaldehyde (bitter almond,
smoked aroma) are described as having the aroma presented by Peinado et al. [50].

A slight decrease was observed in butanoic and hexanoic acid content, and in con-
trast the octanoic and decanoic acid highly increased their contents during wine ageing.
These results are in good agreement with Rodríguez-Bencomo et al. [51] and Petropulos
et al. [44] who reported increased concentrations of octanoic acid when oak chips were
added to the fermentation process of red wines. Even if a direct negative impact of oak
wood compounds on the wines flavor was not reported, sometimes small concentrations
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of carboxylic acids could generate unpleasant odors. Their aroma goes to rancid, cheese,
sweat, fat and sour [52]. These compounds (butanoic, hexanoic, octanoic and decanoic
acids) are the product of a biosynthesis of long-chain fatty acids performed by yeasts [53].

Ethyl propionate, ethyl butanoate, ethyl octanoate, ethyl 2-methyloctanoate, phenylethyl
acetate, isoamyl acetate, ethyl decanoate, ethyl vanillate, ethyl tetradecanoate, ethyl hex-
adecanoate concentrations increased with the ageing time. Isoamyl acetate presents the
highest concentration among other esters and increases from 1177.86 to 2030.80 µg/L
at 3 months (Table 2). Rodrıguez-Bencomo et al. [51] and Ruiz-Moreno et al. [54] also
observed higher concentrations of these compounds in a wine fermented with oak wood
chips. In contrast, decreased values of ethyl isobutanoate, ethyl furoate, ethyl dodecanoate
and hexyl hexanoate may be caused by chemical hydrolysis at low pH values due to the
esterification processes [55].

In general, esters concentration found in wine aged is above the sensory detection
threshold levels of humans. In red wines, ethyl propionate (apple, pineapple, straw-
berry), ethyl isobutanoate (apple, strawberry), ethyl butanoate (pineapple aroma), ethyl 2-
methyloctanoate (fruity), isoamyl acetate (banana-like aroma) ethyl octanoate (pineapple,
cognac, and apricot aroma), ethyl decanoate (pear aroma), ethyl tetradecanoate (tropi-
cal fruit) and hexyl hexanoate (fruity) made a very important contribution to the fruity
character of samples [56] (Table 2).

Guaiacol (from 7.77 to 19.00 µg/L) and 4-vinylguaiacol (from 22.99 to 43.16 µg/L)
increased with time of storage, in a similar way to that observed by Sanchez-Palomo et al. [57].

Trans and cis-whiskey lactone increased during ageing time and play an important part
in the overall sensory character of wines. The cis-isomer threshold limit is around 74 µg/L
and positively influences the specific aroma compounds as woody, vanilla and choco-
late. The concentration of trans-whiskey lactone was higher in wines aged for 3 months
(34.77 µg/L) than for 1.5 months (17.43 µg/L), and the cis-whiskey lactone showed the
same behavior, being higher at 3 months (244.75 µg/L) than at 1.5 months (110.05 µg/L).
Bautista-Ortín et al. [58] showed that higher concentrations were found when cubes or shav-
ings were used, rather than powder. According to this author, trans-oak lactone was found
in lower concentrations than cis-oak lactone, and similarly to the cis isomer, after 3 months
of wood contact time, the maximum concentration had already been reached.

3.5.3. Aromatic Series

A method of assessing the contribution of a compound to wine aroma is by calculating
its odor activity value (OAV). The mathematical formula is the ratio analytical concentration
to odor perception threshold. The compounds with a high OAV can be assumed to
contribute noticeably to the wine aroma. Furthermore, OAVs can be used to set up the
fingerprint of a wine.

The overall wine aroma was estimated using the odor descriptors grouped according
to their aromatic series. In particular cases, a low number of aroma compounds were
included in more aromatic series, as previously described in the literature [50,53].

The aroma fingerprint for the ageing wine can be defined, from a quantitative point
of view, as fruity, fatty, woody, buttery, green, chemistry, toasty, spicy, floral and citric
fruits. A comparison of the OAVs for these series allows for a better understanding of the
contribution levels of specific aroma compounds extracted during wines’ ageing with oak
staves. Additionally, to compare the aroma specificity of wines aged for 1.5 months or
3 months, the OAVs were classified into the ten-aromatic series, describing the representing
aroma of a particular wine. Figure 3 shows the aroma characteristics of the aged wine for
1.5 and 3 months, by arranging the mean values for the first six aromatic series from high
to low. The results exhibit higher OAVs obtained during ageing, and especially for the
fruity, fatty and woody series.
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Table 2. Minor volatile compounds (µg/L) in wines aged with oak staves for 1.5 and 3 months. Variance analysis.

Families/Compounds 1.5 Months 3 Months Sign. Odor
Descriptors

Odor
Threshold Aroma Series

Alcohols 1872.82± 93.57
a 3203.34 ± 150.88 b ***

1 Hexanol 1349.47 ± 74.90
a 2387.37 ± 128.23 b *** Grass, oily,

herb, resin 2500 [59] Green

2 E-3-hexenol 134.00 ± 7.21 a 233.00 ± 10.00 b *** Cut grass 1000 [59] Green

3 E-2-hexenol 308.87 ± 17.71
a 489.42 ± 32.09 b ** Green tomato 400 [59] Green

4 Furfuryl alcohol 67.48 ± 5.76 a 65.88 ± 5.17 b ns Burnt, coffee 8000 [60] Toasty

5 Benzyl alcohol 13.00 ± 0.89 a 27.67 ± 1.58 a ***

Floral, rose,
phenolic,
balsamic,

sweet, fruity

200,000 [61] Floral

Carbonyls 1047.38 ± 51.51
a 2997.72 ± 146.74 b ***

6 Heptanal 65.08 ± 2.67 a 67.33 ± 2.75 a ns Herbal, ozone,
rancid, nut 3 [62] Chemistry,

Green

7 Octanal 25.23 ± 2.66 a 19.98 ± 1.00 b ns Citrus, green,
fresh 2.5 [63] Chemistry,

Citric fruit

8 Furfural 696.07 ± 43.05
a 1952.61 ± 102.03 b ***

Burned
almonds, fusel

alcohol
770 [64] Chemistry,

Toasty

9 Benzaldehyde 31.33 ± 2.52 a 64.82 ± 5.36 b *** Bitter almond,
smoked, cherry 350 [62] Toasty

10 5-methylfurfural 229.67 ± 20.01
a 892.98 ± 44.92 b *** Caramel 1100 [64] Toasty

Carboxylic acids 4225.96 ±
335.98 a 9363.44 ± 147.38 b ***

11 Butanoic acid 35.24 ± 2.29 a 31.33 ± 1.53 a ns Rancid, cheese,
sweat, sour 173 [52] Fatty

12 Octanoic acid 3605.48 ±
295.05 a 8009.06 ± 159.37 b ***

Cheese, fat,
grass, oil,

sweat
500 [52] Fatty

13 Decanoic acid 550.00 ± 40.00
a 1291.71 ± 53.02 b *** Rancid fat,

dust, grass 1000 [52] Fatty

14 Hexanoic acid 35.24 ± 2.29 a 31.33 ± 1.53 a ns Rancid, fatty,
soapy 420 [52] Fatty

Esters 2430.93 ±
124.96 a 4238.81 ± 112.21 b ***

15 Ethyl propionate 271.99 ± 23.65
a 466.70 ± 23.19 b ***

Apple,
pineapple,

rum,
strawberry

45 [65] Fruity

16 Ethyl isobutanoate 15.12 ± 1.07 a 5.67 ± 0.14 b *** Apple,
strawberry 15 [60] Fruity

17 Ethyl butanoate 307.74 ± 11.67
a 446.69 ± 20.81 b ***

Fruity, floral,
apple,

pineapple
20 [66] Fruity, Floral

18 Isoamyl acetate 1177.86 ± 76.01
a 2030.80 ± 62.62 b *** Banana 30 [52] Floral

19 Ethyl furoate 5.43 ± 0.46 a 0.71 ± 0.03 b *** Glue, paint 1000 [61] Floral

20 Ethyl octanoate 346.94 ± 16.48
a 912.57 ± 13.49 b ***

Pineapple,
floral, apricot,

fat
5 [52] Fruity, Floral

21 Ethyl
2-methyloctanoate 12.50 ± 0.90 a 20.50 ± 1.07 b *** Fruity 20 [63] Fruity

22 Phenylethyl acetate 83.42 ± 5.93 a 110.99 ± 6.60 b ** Fruity, floral,
tobacco 250 [66] Floral

23 Ethyl decanoate 92.53 ± 9.25 a 134.62 ± 5.01 b ** Sweet, fruity,
pear 200 [52] Fruity

24 Ethyl vanillate 8.24 ± 0.17 a 9.19 ± 0.46 b ns Smoky, burnt 990 [61] Toasty, Spice

25 Ethyl dodecanoate 64.53 ± 4.84 a 48.43 ± 2.23 b ** Creamy, floral,
fruit, leaf 500 [60] Buttery, Floral

26 Ethyl tetradecanoate 24.09 ± 0.41 a 28.36 ± 0.50 b *** Tropical fruit 4000 [60] Fruity
27 Ethyl hexadecanoate 19.12 ± 0.77 a 23.08 ± 0.87 b ** Caramel 2000 [60] Buttery
28 Hexyl hexanoate 1.42 ± 0.11 a 0.49 ± 0.03 b *** Fruity, green 700 [60] Citric fruit
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Table 2. Cont.

Families/Compounds 1.5 Months 3 Months Sign. Odor
Descriptors

Odor
Threshold Aroma Series

Lactones 614.56 ± 39.23
a 651.98 ± 19.28 a ns

29 γ-Crotonolactone 146.17 ± 7.76 a 317.08 ± 18.48 b *** Toasty, buttery 1000 [64] Buttery, Green

30 γ-Butyrolactone 437.00 ± 38.59
a 286.27 ± 11.51 b ** Sweet, caramel,

roasted nut 1000 [64] Buttery

31 γ-Nonalactone 27.13 ± 2.09 a 44.47 ± 2.37 b ***
Coconut,

creamy, apricot,
peach, sweet

30 [56] Fruity, Buttery

32 γ-Decalactone 4.26 ± 0.21 a 4.17 ± 0.04 a ns Peach, milky,
sweet, fat 47 [65] Fruity, Buttery

Terpenes 6.87 ± 0.44 a 10.62 ± 0.86 b **

33 Limonene 6.87 ± 0.44 a 10.62 ± 0.86 b ** Flowery, green,
citrus 200 [67] Citric fruit

Volatile phenols 30.76 ± 0.83 a 62.16 ± 2.02 b ***

34 Guaiacol 7.77 ± 0.39 a 19.00 ± 1.00 b *** Medicine,
smoke 75 [68] Chemistry,

Toasty

35 4-vinylguaiacol 22.99 ± 1.11 a 43.16 ± 1.61 b *** Clove, woody,
smoke, phenol 40 [69] Spice, Woody

Oak compounds 127.48 ± 12.01
a 279.53 ± 20.53 b ***

36 trans-whiskey lactone 17.43 ± 1.36 a 34.77 ± 2.84 b *** Woody, vanilla 32 [70] Woody

37 cis-whiskey lactone 110.05 ± 12.07
a 244.75 ± 18.00 b *** Woody, vanilla 74 [70] Woody

The values are mean ± standard deviation of three independent experiments. Different letters indicate significant differences at p < 0.05
level according to the LSD test. The alphabetical order indicates an increasing content. Signs: *, **, *** and ns indicate significance at
p < 0.05, p < 0.01, p < 0.001 and not significant, respectively.
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Fruity was an aromatic series that showed very high overall values and mostly contains
seven esters and two lactones, quantified by stir bars sorptive extraction and gas chromatog-
raphy coupled with mass spectrometry (SBSE-GC-MS). Additionally, fatty and woody series
showed increases during ageing (Figure 3), while other aromatic series, such as buttery,
green, and chemistry showed a minor contribution to the wine aroma profiles.
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4. Conclusions

Oak staves used in the Fetească neagră wine ageing processes led to an increase in
volatile compounds amounts with time. Additionally, changes appear in the phenolic con-
tent, total antioxidant activity, their fractions and in the color. Wines aged for 3 months had
higher antioxidant activity levels and higher color properties. The antioxidant activity of
red wines aged with oak staves afforded the higher accumulation of bioactive compounds,
thus increasing the overall red wine quality. Ageing carried with oak staves is characterized
by an increased accumulation of the oak flavor, and wines aged for 3 months have more
complex aroma and flavor, than wines aged for 1.5 months.

OAV results indicate that the use of oak staves during ageing can improve aroma
series such as fruity, fatty and woody notes in wines. Therefore, oak staves can be used
effectively in the ageing process to improve the aroma fingerprint of young red wines,
which may result in a positive impact on the wine mouthfeel and appearance.

Overall, the use of oak staves in winemaking may be an important factor in the
production of specific wine types with a distinctive touch and improved sensory character-
istics. The alternative technology is a favorable choice for the wine industry, together the
encouragement of faster, cheaper and sustainable ageing processes.
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