Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Set Up
2.3. N2O Sampling and Analysis and Calculation of Flux
2.4. Grass Harvesting
2.5. Statistical Analysis
3. Results
3.1. Nitrous Oxide Emissions
3.2. Cumulative Emissions and Emission Factors
3.3. Grass Dry Matter Yield, N Uptake and Recovery
4. Discussion
4.1. Effect of Fertilizer N Formulation on Annual Emission Factor
4.2. Effect of Fertilizer N on Annual Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ravishankara, A.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Tian, H. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: Shifted hot spots and nutrient imbalance. Earth Syst. Sci. Data 2017, 9, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Winiwarter, W.; Suntharalingam, P.; Davidson, E.A.; Ciais, P.; Jackson, R.B.; Janssens-Maenhout, G. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Mosier, A.; Kroeze, C. Potential impact on the global atmospheric N2O budget of the increased nitrogen input required to meet future global food demands. Chem. Glob. Chang. Sci. 2000, 2, 465–473. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 year trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mullen, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Emmet-Booth, J.P.; Dekker, S.; O’Brien, P. Climate Change Mitigation and the Irish Agriculture and Land Use Sector; Working Paper on Climate Change Advisory Council: Dublin, Ireland, 2019; Available online: https://www.climatecouncil.ie/media/climatechangeadvisorycouncil/Working%20Paper%20on%20Agriculture%20and%20Land%20Use.pdf (accessed on 20 February 2021).
- CSO. Statistical Yearbook of Ireland 2019; Farm Structure Survey–Survey Coverage; Central Statistics Office: Dublin, Ireland, 2020. Available online: https://www.cso.ie/en/releasesandpublications/ep/p-syi/statisticalyearbookofireland2020/ (accessed on 25 March 2021).
- DAFM. How Much and What Fertiliser Was Sold in 2019? Department of Agriculture, Food and the Marine: Dublin, Ireland, 2020. Available online: https://www.agriland.ie/farming-news/how-much-and-what-fertiliser-was-sold-in-2019/ (accessed on 28 September 2020).
- Davidson, E.A.; Swank, W.T. Environmental parameters regulating gaseous nitrogen losses from two forested ecosystems via nitrification and denitrification. Appl. Environ. Microbiol. 1986, 52, 1287–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butterbach-Bahl, K.; Dannenmann, M. Denitrification and associated soil N2O emissions due to agricultural activities in a changing climate. Curr. Opin. Environ. Sustain. 2011, 3, 389–395. [Google Scholar] [CrossRef]
- Cowan, N.; Carnell, E.; Skiba, U.; Dragosits, U.; Drewer, J.; Levy, P. Nitrous oxide emission factors of mineral fertilisers in the UK and Ireland: A Bayesian analysis of 20 years of experimental data. Environ. Int. 2020, 135, 105366. [Google Scholar] [CrossRef] [PubMed]
- Harty, M.A.; Forrestal, P.J.; Watson, C.; McGeough, K.; Carolan, R.; Elliot, C.; Krol, D.; Laughlin, R.J.; Richards, K.G.; Lanigan, G. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci. Total Environ. 2016, 563, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Krol, D.; Forrestal, P.; Wall, D.; Lanigan, G.; Sanz-Gomez, J.; Richards, K. Nitrogen fertilisers with urease inhibitors reduce nitrous oxide and ammonia losses, while retaining yield in temperate grassland. Sci. Total Environ. 2020, 725, 138329. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Richards, K.G.; Harty, M.A.; Watson, C.J.; Carolan, R.; Krol, D.; Lanigan, G.J.; Forrestal, P.J. Differing effects of increasing calcium ammonium nitrate, urea and urea+ NBPT fertiliser rates on nitrous oxide emission factors at six temperate grassland sites in Ireland. Agric. Ecosyst. Environ. 2021, 313, 107382. [Google Scholar] [CrossRef]
- Gebremichael, A.W.; Rahman, N.; Krol, D.J.; Forrestal, P.J.; Lanigan, G.J.; Richards, K.G. Ammonium-Based Compound Fertilisers Mitigate Nitrous Oxide Emissions in Temperate Grassland. Agronomy 2021, 11, 1712. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014. [Google Scholar]
- Rahman, N.; Henke, C.; Forrestal, P.J. Efficacy of the Nitrification Inhibitor 3, 4 Dimethylpyrazol Succinic Acid (DMPSA) when Combined with Calcium Ammonium Nitrate and Ammonium Sulphate—A Soil Incubation Experiment. Agronomy 2021, 11, 1334. [Google Scholar] [CrossRef]
- Rahman, N.; Islam, S.; Magid, J.; Giller, K.; Bruun, T.; de Neergaard, A. Variations in the Diurnal Flux of Greenhouse Gases from Oil Palm Plantation in Indonesia; Conference on International Research on Food Security; Natural Resource Management and Rural Development: Berlin, Germany, 2015. [Google Scholar]
- Smith, K.A.; Cresser, M.S. Measurement of Trace Gases, I: Gas Analysis, Chamber Methods, and Related Procedures. In Soil and Environmental Analysis; CRC Press: London, UK, 2003; pp. 394–433. [Google Scholar]
- Rahman, N.; Bruun, T.B.; Giller, K.E.; Magid, J.; van de Ven, G.W.; de Neergaard, A. Soil greenhouse gas emissions from inorganic fertilizers and recycled oil palm waste products from Indonesian oil palm plantations. Glob. Chang. Biol. Bioenergy 2019, 11, 1056–1074. [Google Scholar] [CrossRef] [Green Version]
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Agriculture, Forestry and Other Land Use; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Prepared by the National Greenhouse Gas Inventories Programme; IGES: Kanagawa, Japan, 2006; Volume 4. [Google Scholar]
- Grundmann, G.; Rolston, D. A water function approximation to degree of anaerobiosis associated with denitrification. Soil Sci. 1987, 144, 437–441. [Google Scholar] [CrossRef]
- Bremer, D.J. Nitrous oxide fluxes in turfgrass: Effects of nitrogen fertilization rates and types. J. Environ. Qual. 2006, 35, 1678–1685. [Google Scholar] [CrossRef] [Green Version]
- Forrestal, P.J.; Harty, M.; Carolan, R.; Lanigan, G.; Watson, C.; Laughlin, R.J.; McNeill, G.; Chambers, B.; Richards, K.G. Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: Insights into loss abatement in temperate grassland. Soil Use Manag. 2016, 32, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Mazzetto, A.M.; Styles, D.; Gibbons, J.; Arndt, C.; Misselbrook, T.; Chadwick, D. Region-specific emission factors for Brazil increase the estimate of nitrous oxide emissions from nitrogen fertiliser application by 21%. Atmos. Environ. 2020, 230, 117506. [Google Scholar] [CrossRef]
- IPCC. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, 4 (Chapter 11). In Agriculture, Forestry and Other Land Use; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Prepared by the National Greenhouse Gas Inventories Programme; IGES: Kanagawa, Japan, 2019; Volume 4. [Google Scholar]
- Soares, J.R.; Cassman, N.A.; Kielak, A.M.; Pijl, A.; Carmo, J.B.; Lourenço, K.S.; Laanbroek, H.J.; Cantarella, H.; Kuramae, E.E. Nitrous oxide emission related to ammonia-oxidizing bacteria and mitigation options from N fertilization in a tropical soil. Sci. Rep. 2016, 6, 1–11. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Scherer, H.W. Fixation and defixation of ammonium in soils: A review. Biol. Fertil. 2011, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Boudsocq, S.; Niboyet, A.; Lata, J.C.; Raynaud, X.; Loeuille, N.; Mathieu, J.; Blouin, M.; Abbadie, L.; Barot, S. Plant preference for ammonium versus nitrate: A neglected determinant of ecosystem functioning? Am. Nat. 2012, 180, 60–69. [Google Scholar] [CrossRef] [Green Version]
- Bouwman, A. Direct emission of nitrous oxide from agricultural soils. Nutr. Cycl. Agroecosyst. 1996, 46, 53–70. [Google Scholar] [CrossRef]
- Zanatta, J.A.; Bayer, C.; Vieira, F.C.; Gomes, J.; Tomazi, M. Nitrous oxide and methane fluxes in South Brazilian Gleysol as affected by nitrogen fertilizers. Rev. Bras. Cienc. Solo 2010, 34, 1653–1665. [Google Scholar] [CrossRef] [Green Version]
- Bergstrom, D.; Tenuta, M.; Beauchamp, E. Nitrous oxide production and flux from soil under sod following application of different nitrogen fertilizers. Commun. Soil Sci. Plant Anal. 2001, 32, 553–570. [Google Scholar] [CrossRef]
- Akiyama, H.; Yan, X.; Yagi, K. Evaluation of effectiveness of enhanced-efficiency fertilizers as mitigation options for N2O and NO emissions from agricultural soils: Meta-analysis. Glob. Chang. Biol. 2010, 16, 1837–1846. [Google Scholar] [CrossRef]
- Bell, M.; Cloy, J.; Topp, C.; Ball, B.; Bagnall, A.; Rees, R.; Chadwick, D. Quantifying N2O emissions from intensive grassland production: The role of synthetic fertilizer type, application rate, timing and nitrification inhibitors. J. Agric. Sci. 2016, 154, 812–827. [Google Scholar] [CrossRef] [Green Version]
- Cardenas, L.; Bhogal, A.; Chadwick, D.; McGeough, K.; Misselbrook, T.; Rees, R.; Thorman, R.; Watson, C.J.; Williams, J.; Smith, K. Nitrogen use efficiency and nitrous oxide emissions from five UK fertilised grasslands. Sci. Total Environ. 2019, 661, 696–710. [Google Scholar] [CrossRef]
- Forrestal, P.J.; Meisinger, J.; Kratochvil, R. Winter wheat starter nitrogen management: A preplant soil nitrate test and site-specific nitrogen loss potential. Soil Sci. Soc. Am. J. 2014, 78, 1021–1034. [Google Scholar] [CrossRef]
- Marschner, H. Marschner’s Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2011. [Google Scholar]
- Salsac, L.; Chaillou, S.; Morot-Gaudry, J.-F.; Lesaint, C.; Jolivet, E. Nitrate and ammonium nutrition in plants. Plant Physiol. Biochem. 1987, 25, 805–812. [Google Scholar]
- Forrestal, P.J.; Harty, M.A.; Carolan, R.; Watson, C.; Lanigan, G.; Wall, D.; Hennessy, D.; Richards, K.G. Can the agronomic performance of urea equal calcium ammonium nitrate across nitrogen rates in temperate grassland? Soil Use Manag. 2017, 33, 243–251. [Google Scholar] [CrossRef]
- Harty, M.A.; Forrestal, P.J.; Carolan, R.; Watson, C.J.; Hennessy, D.; Lanigan, G.; Wall, D.; Richards, K.G. Temperate grassland yields and nitrogen uptake are influenced by fertilizer nitrogen source. Agron. J. 2017, 109, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Eveillard, P.; Lambert, M.; Herve, M.; Bouthier, A.; Champolivier, L.; Marquis, S.; Rocca, C.; Roussel, D. (Eds.) Comparison of Urea and Ammonium Nitrate in Long-Term Trials: Synthesis of Ten Years of Experimentation. In Proceedings of the International Fertiliser Society, Cambridge, UK, 12 December 2014; International Fertiliser Society: Leek, UK, 2014. [Google Scholar]
- Schroder, J.L.; Zhang, H.; Girma, K.; Raun, W.R.; Penn, C.J.; Payton, M.E. Soil acidification from long-term use of nitrogen fertilizers on winter wheat. Soil Sci. Soc. Am. J. 2011, 75, 957–964. [Google Scholar] [CrossRef]
- Stone, D.L.; Whitney, D.; Janssen, K.; Long, J. Soil properties after twenty years of fertilization with different nitrogen sources. Soil Sci. Soc. Am. J. 1991, 55, 1097–1100. [Google Scholar] [CrossRef]
Soil Properties | Values |
---|---|
Sand (%) | 52 |
Silt (%) | 34 |
Clay (%) | 14 |
Textural class | Sandy loam |
Bulk density (g cm−3) | 1.4 |
Soil pH | 6.2 |
Organic matter (%) | 5.97 |
Organic carbon (%) | 2.1 |
Total N (mg kg−1) | 48 |
NH4+-N (mg kg−1) | 4.6 |
NO3−-N (mg kg−1) | 11 |
Morgan’s P (mg/L) | 7.37 |
Morgan’s K (mg/L) | 118 |
Morgan’s Mg (mg/L) | 97 |
SO42− (mg/L) | 1.2 |
Treatments | Total Cumulative (kg ha−1) | Emission Factor (%) |
---|---|---|
Control | 0.29 ± 0.12 c | |
Ammonium Sulfate | 1.07 ± 0.12 b | 0.35 |
Calcium Nitrate | 2.54 ± 0.15 a | 1.02 |
Treatments | Total Dry Matter Yield (kg ha−1 y−1) | N Uptake (kg ha−1 y−1) | Apparent N Recovery (%) |
---|---|---|---|
Control | 6247 ± 464 b | 104 ± 7 b | |
Ammonium sulfate | 12,412 ± 594 a | 208 ± 10 a | 48 |
Calcium nitrate | 12,276 ± 535 a | 207 ± 10 a | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, N.; Forrestal, P.J. Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland. Agriculture 2021, 11, 1141. https://doi.org/10.3390/agriculture11111141
Rahman N, Forrestal PJ. Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland. Agriculture. 2021; 11(11):1141. https://doi.org/10.3390/agriculture11111141
Chicago/Turabian StyleRahman, Niharika, and Patrick J. Forrestal. 2021. "Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland" Agriculture 11, no. 11: 1141. https://doi.org/10.3390/agriculture11111141
APA StyleRahman, N., & Forrestal, P. J. (2021). Ammonium Fertilizer Reduces Nitrous Oxide Emission Compared to Nitrate Fertilizer While Yielding Equally in a Temperate Grassland. Agriculture, 11(11), 1141. https://doi.org/10.3390/agriculture11111141