Study on Plant Growth and Nutrient Uptake under Different Aeration Intensity in Hydroponics with the Application of Particle Image Velocimetry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Measurement
2.2. Data Analysis
2.3. Visualization of the Bubble Flow Field
2.4. Definition of Aeration Intensity in This Study
3. Results
3.1. Effect of Aeration Intensity on Dissolved Oxygen Concentration and Saturation
3.2. Effect of Aeration Intensity on Plant Growth and Root Morphology
3.3. Effect of Aeration Intensity on N Content, N Uptake, and N Use Efficiency in Plants
3.4. Flow Field Visualization of Bubble Flow in Nutrient Solution
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dregne, H.E. Soils of Arid Regions; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Fageria, N.K.; Moreira, A. The role of mineral nutrition on root growth of crop plants. Adv. Agron. 2011, 110, 251–331. [Google Scholar]
- Jensen, M.H. Controlled Environment agriculture in deserts, tropics and temperate regions—A World Review. In Proceedings of the International Symposium on Design and Environmental Control of Tropical and Subtropical Greenhouses, Taichung, Taiwan, 15–18 April 2001; p. 578. [Google Scholar]
- Hussain, A.; Iqbal, K.; Aziem, S.; Mahato, P.; Negi, A.K. A review on the science of growing crops without soil (soilless culture)—A novel alternative for growing crops. Int. J. Agric. Crop Sci. 2014, 7, 833. [Google Scholar]
- Jones, J.B., Jr. Hydroponics: A Practical Guide for the Soilless Grower; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Shavrukov, Y.; Genc, Y.; Hayes, J. The Use of Hydroponics in Abiotic Stress Tolerance Research; InTech: Rijeka, Croatia, 2012; pp. 39–66. [Google Scholar]
- Jackson, M.B. Aeration in the nutrient film technique of glasshouse crop production and the importance of oxygen, ethylene, carbon dioxide. Acta Hortic. 1980, 98, 61–78. [Google Scholar] [CrossRef]
- Masuda, T.; Nonami, H.; Morimoto, T. Oxygen Enrichment in deep hydroponic culture improves growth of spinach. Environ. Control. Biol. 1989, 27, 97–102. [Google Scholar]
- Gislerød, H.R.; Baas, R.; Warmenhoven, M.; van der Berg, D. Effect of aeration on rooting and growth of roses (REFEREED). Acta Hortic. 1997, 450, 113–122. [Google Scholar] [CrossRef]
- Tachibana, S. The influence of withholding oxygen supply to roots by day and night on the blossom-end rot of tomatoes in water culture. Soil. Cult. 1988, 4, 41–50. [Google Scholar]
- Yoshida, S.; Kitano, M.; Eguchi, H. Water uptake and growth of cucumber plants under control of dissolved O2 concentrations in hydroponics. Acta Hortic. 1996, 440, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Goto, E.; Both, A.J.; Albright, L.D.; Langhans, R.W.; Leed, A.R. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hortic. 1996, 440, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Lara, L.J.; Egea-Gilabert, C.; Niñirola, D.; Conesa, E.; Fernández, J.A. Effect of aeration of the nutrient solution on the growth and quality of purslane (Portulaca oleracea). J. Hortic. Sci. Biotechnol. 2011, 86, 603–610. [Google Scholar] [CrossRef]
- Kaburagi, E.; Morikawa, Y.; Yamada, M.; Fujiyama, H. Sodium enhances nitrate uptake in Swiss chard (Beta vulgaris var. cicla L.). Soil Sci. Plant Nutr. 2014, 60, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Shao, Y.; An, P.; Yamamoto, S.; Ibaraki, Y. Effect of Nutrient Solution Flow Rate on Hydroponic Plant Growth and Root Morphology. Plants 2021, 10, 1840. [Google Scholar] [CrossRef] [PubMed]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of the Flow Rate on Plant Growth and Flow Visualization of Nutrient Solution in Hydroponics. Horticulturae 2021, 7, 225. [Google Scholar] [CrossRef]
- Thielicke, W.; Stamhuis, E. PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2014, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Sojka, R.E. Stomatal closure in oxygen-stressed plants. Soil Sci. 1992, 154, 269–280. [Google Scholar] [CrossRef] [Green Version]
- William, M.; Davies, W.; Malone, M.; Jackson, M. A negative hydraulic message from oxygen deficient roots of tomato plants. Plant Physiol. 1995, 109, 1017–1024. [Google Scholar]
- Drew, M.C. Oxygen deficiency and root metabolism: Injury and acclimation under hypoxia and anoxia. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 223–250. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.B.; Blackwell, P.S.; Chrimes, J.R.; Sims, T.V. Poor aeration in NFT and means for its improvement. J. Hortic. Sci. 1984, 59, 439–448. [Google Scholar] [CrossRef]
- Marfà, O.; Cáceres, R.; Guri, S. Oxyfertigation: A new technique for soilless culture under Mediterranean conditions. In Proceedings of the International Symposium on Soilless Culture and Hydroponics, Almería, Spain, 14–19 November 2004; p. 697. [Google Scholar]
- Rivière, L.M.; Charpentier, S.; Jeannin, B.; Kafka, B. Oxygen concentration of nutrient solution in mineral wools. Acta Hortic. 1993, 342, 93–102. [Google Scholar] [CrossRef]
- Schwarz, M. Oxygenation of nutrient solution in normal and stress conditions. Soil. Cult. 1989, 5, 45–53. [Google Scholar]
- Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of Substrate Flow Rate on Nutrient Uptake and Use Efficiency in Hydroponically Grown Swiss Chard (Beta vulgaris L. ssp. cicla ‘Seiyou Shirokuki’). Agronomy 2021, 11, 2050. [Google Scholar] [CrossRef]
Composition | Concentration |
---|---|
Potassium nitrate (KNO3) | 1.600 mM |
Potassium dihydrogen phosphate (KH2PO4) | 0.400 mM |
Calcium nitrate (Ca(NO3)2·4H2O) | 0.900 mM |
Calcium chloride (CaCl2·2H2O) | 0.100 mM |
Magnesium nitrate (Mg(NO3)2·6H2O) | 0.300 mM |
Magnesium sulfate (MgSO4·7H2O) | 1.700 mM |
Ferrous sulfate (FeSO4·7H2O) | 35.800 µM |
Manganese sulfate (MnSO4·5H2O) | 9.000 µM |
Boric acid (B(OH)3) | 18.400 µM |
Zinc sulfate (ZnSO4·7H2O) | 1.500 µM |
Copper sulfate (CuSO4·5H2O) | 0.200 µM |
Ammonium molybdate ((NH4)6Mo7O24·4H2O) | 0.004 µM |
Aeration Rate (L·min−1) | 0.25 | 0.50 | 1.00 | 2.00 | 4.00 | 8.00 |
Aeration Intensity (L·L−1 NS min−1) | 0.07 | 0.15 | 0.29 | 0.59 | 1.18 | 2.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Study on Plant Growth and Nutrient Uptake under Different Aeration Intensity in Hydroponics with the Application of Particle Image Velocimetry. Agriculture 2021, 11, 1140. https://doi.org/10.3390/agriculture11111140
Baiyin B, Tagawa K, Yamada M, Wang X, Yamada S, Yamamoto S, Ibaraki Y. Study on Plant Growth and Nutrient Uptake under Different Aeration Intensity in Hydroponics with the Application of Particle Image Velocimetry. Agriculture. 2021; 11(11):1140. https://doi.org/10.3390/agriculture11111140
Chicago/Turabian StyleBaiyin, Bateer, Kotaro Tagawa, Mina Yamada, Xinyan Wang, Satoshi Yamada, Sadahiro Yamamoto, and Yasuomi Ibaraki. 2021. "Study on Plant Growth and Nutrient Uptake under Different Aeration Intensity in Hydroponics with the Application of Particle Image Velocimetry" Agriculture 11, no. 11: 1140. https://doi.org/10.3390/agriculture11111140
APA StyleBaiyin, B., Tagawa, K., Yamada, M., Wang, X., Yamada, S., Yamamoto, S., & Ibaraki, Y. (2021). Study on Plant Growth and Nutrient Uptake under Different Aeration Intensity in Hydroponics with the Application of Particle Image Velocimetry. Agriculture, 11(11), 1140. https://doi.org/10.3390/agriculture11111140