Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochar, Soil and Fertilisers
2.2. Lysimeter Experiment
2.3. Pot Experiment
2.4. Leachate and Soil Analysis of the Lysimeter Experiment
2.5. Statistical Analysis
3. Results
3.1. pH in Leachates
3.2. Volume of Leachates
3.3. Nutrients in Leachates
3.4. Retention of Nutrients in the Soils after Leaching Events
3.5. Nutrient Uptake and Plant Growth
4. Discussion
4.1. Effect of Fertiliser and Biochar Amendment on pH and Volume of Leachate
4.2. Effect of Fertiliser and Biochar Amendment on Nutrient Leaching
4.3. Effect of Fertiliser and Biochar Amendment on Nutrient Retention in Soils
4.4. Effect of Fertiliser and Biochar Amendment on Shoot Nutrient Uptake and Plant Growth
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, W.M.; Dibb, D.W.; Johnston, A.E.; Smyth, T.J. The contribution of commercial fertilizer nutrients to food production. Agron. J. 2005, 97, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Ju, X.; Kou, C.; Christie, P.; Dou, Z.; Zhang, F. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environ. Pollut. 2007, 145, 497–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sebilo, M.; Mayer, B.; Nicolardot, B.; Pinay, G.; Mariotti, A. Long-term fate of nitrate fertilizer in agricultural soils. Proc. Natl. Acad. Sci. USA 2013, 110, 18185–18189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahvi, A.H.; Nouri, J.; Babaei, A.A.; Nabizadeh, R. Agricultural activities impact on groundwater nitrate pollution. Int. J. Environ. Sci. Technol. 2005, 2, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Bennett, E.M.; Carpenter, S.R.; Caraco, N.F. Human impact on erodable phosphorus and eutrophication: A global perspective increasing accumulation of phosphorus in soil threatens rivers, lakes, and coastal oceans with eutrophication. BioScience 2001, 51, 227–234. [Google Scholar] [CrossRef]
- Hass, A.; Gonzalez, J.M.; Lima, I.M.; Godwin, H.W.; Halvorson, J.J.; Boyer, D.G. Chicken manure biochar as liming and nutrient source for acid appalachian soil. J. Environ. Qual. 2012, 41, 1096–1106. [Google Scholar] [CrossRef] [PubMed]
- Uzoma, K.C.; Inoue, M.; Andry, H.; Fujimaki, H.; Zahoor, A.; Nishihara, E. Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag. 2011, 27, 205–212. [Google Scholar] [CrossRef]
- Jiang, T.-Y.; Jiang, J.; Xu, R.-K.; Li, Z. Adsorption of Pb(II) on variable charge soils amended with rice-straw derived biochar. Chemosphere 2012, 89, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.K.; Strezov, V.; McCormick, L.; Nelson, P.F. Wastewater sludge and sludge biochar addition to soils for biomass production from Hyparrhenia hirta. Ecol. Eng. 2015, 82, 345–348. [Google Scholar] [CrossRef]
- Méndez, A.; Gómez, A.; Paz-Ferreiro, J.; Gascó, G. Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil. Chemosphere 2012, 89, 1354–1359. [Google Scholar] [CrossRef] [PubMed]
- Qambrani, N.A.; Rahman, M.; Won, S.; Shim, S.; Ra, C. Biochar properties and eco-friendly applications for climate change mitigation, waste management, and wastewater treatment: A review. Renew. Sustain. Energy Rev. 2017, 79, 255–273. [Google Scholar] [CrossRef]
- Blackwell, P.; Joseph, S.; Munroe, P.; Anawar, H.M.; Storer, P.; Gilkes, R.; Solaiman, Z.M. Influences of biochar and biochar-mineral complex on mycorrhizal colonisation and nutrition of wheat and sorghum. Pedosphere 2015, 25, 686–695. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Blackwell, P.; Abbott, L.; Storer, P. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat. Soil Res. 2010, 48, 546–554. [Google Scholar] [CrossRef]
- Lehmann, J.; da Silva, J.P.; Steiner, C.; Nehls, T.; Zech, W.; Glaser, B. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: Fertilizer, manure and charcoal amendments. Plant Soil 2003, 249, 343–357. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.-X.; Wu, W.-X.; Shi, D.-Z.; Yang, M.; Zhong, Z.-K. Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water Air Soil Pollut. 2010, 213, 47–55. [Google Scholar] [CrossRef]
- Zhao, X.; Yan, X.; Wang, S.; Xing, G.; Zhou, Y. Effects of the addition of rice-straw-based biochar on leaching and retention of fertilizer N in highly fertilized cropland soils. Soil Sci. Plant Nutr. 2013, 59, 771–782. [Google Scholar] [CrossRef]
- Troy, S.M.; Lawlor, P.G.; Flynn, C.J.O.; Healy, M.G. The impact of biochar addition on nutrient leaching and soil properties from tillage soil amended with pig manure. Water Air Soil Pollut. 2014, 225, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Faloye, O.; Alatise, M.; Ajayi, A.; Ewulo, B. Synergistic effects of biochar and inorganic fertiliser on maize (zea mays) yield in an alfisol under drip irrigation. Soil Tillage Res. 2017, 174, 214–220. [Google Scholar] [CrossRef]
- Iqbal, H.; Garcia-Perez, M.; Flury, M. Effect of biochar on leaching of organic carbon, nitrogen, and phosphorus from compost in bioretention systems. Sci. Total Environ. 2015, 521, 37–45. [Google Scholar] [CrossRef]
- Madiba, O.F.; Solaiman, Z.M.; Carson, J.K.; Murphy, D.V. Biochar increases availability and uptake of phosphorus to wheat under leaching conditions. Biol. Fertil. Soils 2016, 52, 439–446. [Google Scholar] [CrossRef]
- Schulz, H.; Glaser, B. Effects of biochar compared to organic and inorganic fertilizers on soil quality and plant growth in a greenhouse experiment. J. Plant Nutr. Soil Sci. 2012, 175, 410–422. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Solaiman, Z.M.; Murphy, D.; Abbott, L. Biochars influence seed germination and early growth of seedlings. Plant Soil 2012, 353, 273–287. [Google Scholar] [CrossRef]
- Krom, M.D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 1980, 105, 305–316. [Google Scholar] [CrossRef]
- Kamphake, L.; Hannah, S.; Cohen, J. Automated analysis for nitrate by hydrazine reduction. Water Res. 1967, 1, 205–216. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Hati, K.M.; Swarup, A.; Mishra, B.; Manna, M.; Wanjari, R.; Mandal, K.; Misra, A. Impact of long-term application of fertilizer, manure and lime under intensive cropping on physical properties and organic carbon content of an Alfisol. Geoderma 2008, 148, 173–179. [Google Scholar] [CrossRef]
- Heinze, S.; Raupp, J.; Joergensen, R.G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 2010, 328, 203–215. [Google Scholar] [CrossRef]
- Liu, E.; Yan, C.; Mei, X.; He, W.; Bing, S.H.; Ding, L.; Liu, Q.; Liu, S.; Fan, T. Long-term effect of chemical fertilizer, straw, and manure on soil chemical and biological properties in northwest China. Geoderma 2010, 158, 173–180. [Google Scholar] [CrossRef]
- Magdoff, F.; Lanyon, L.; Liebhardt, B. Nutrient cycling, transformations, and flows: Implications for a more sustainable agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1997; pp. 1–73. [Google Scholar]
- Xu, N.; Tan, G.; Wang, H.; Gai, X. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil Biol. 2016, 74, 1–8. [Google Scholar] [CrossRef]
- Sun, H.; Lu, H.; Chu, L.; Shao, H.; Shi, W. Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. Sci. Total Environ. 2017, 575, 820–825. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, C.J.; Fitzgerald, J.D.; Hipps, N.A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: A review. Plant. Soil 2010, 337, 1–18. [Google Scholar] [CrossRef]
- Madsen, H.B.; Platou, S.W. Land use planning in Denmark. Hydrol. Res. 1983, 14, 267–276. [Google Scholar] [CrossRef]
- Major, J.; Steiner, C.; Downie, A.; Lehmann, J. Biochar Effects on Nutrient Leaching. Biochar for Environmental Management. Sci. Technol. 2009, 271–282. Available online: https://www.researchgate.net/publication/221899780_Biochar_effects_on_nutrient_leaching (accessed on 7 November 2021).
- Williams, P.; Reed, A. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste. Biomass Bioenergy 2006, 30, 144–152. [Google Scholar] [CrossRef]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Zimmerman, A. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193, 122–130. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M. Biochar and the nitrogen cycle: Introduction. J. Environ. Qual. 2010, 39, 1218–1223. [Google Scholar] [CrossRef] [PubMed]
- Taghizadeh-Toosi, A.; Clough, T.J.; Sherlock, R.R.; Condron, L.M. Biochar adsorbed ammonia is bioavailable. Plant Soil 2012, 350, 57–69. [Google Scholar] [CrossRef]
- Pratiwi, E.P.A.; Hillary, A.K.; Fukuda, T.; Shinogi, Y. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil. Geoderma 2016, 277, 61–68. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Bass, A.; Nelson, P.; Muirhead, B.; Wright, G.; Bird, M. Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia. Agric. Ecosyst. Environ. 2015, 213, 72–85. [Google Scholar] [CrossRef]
- Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 2012, 89, 1467–1471. [Google Scholar] [CrossRef]
- Chintala, R.; Schumacher, T.E.; McDonald, L.M.; Clay, D.E.; Malo, D.D.; Papiernik, S.K.; Clay, S.A.; Julson, J.L. Phosphorus sorption and availability from biochars and soil/biochar mixtures. CLEAN Soil Air Water 2014, 42, 626–634. [Google Scholar] [CrossRef]
- Li, R.; Wang, J.J.; Zhou, B.; Awasthi, M.K.; Ali, A.; Zhang, Z.; Lahori, A.H.; Mahar, A. Recovery of phosphate from aqueous solution by magnesium oxide decorated magnetic biochar and its potential as phosphate-based fertilizer substitute. Bioresour. Technol. 2016, 215, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Gao, B.; Chen, J.; Yang, L. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slow-release fertilizer. Environ. Sci. Technol. 2013, 47, 8700–8708. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, D.; Shen, F.; Li, T. Phosphate adsorption on lanthanum loaded biochar. Chemosphere 2016, 150, 1–7. [Google Scholar] [CrossRef]
- Clough, T.J.; Condron, L.M.; Kammann, C.; Muller, C.W. A review of biochar and soil nitrogen dynamics. Agronomy 2013, 3, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Camps-Arbestain, M.; Hedley, M. The fate of phosphorus of ash-rich biochars in a soil-plant system. Plant Soil 2014, 375, 61–74. [Google Scholar] [CrossRef]
- Altland, J.E.; Locke, J.C. Effect of biochar type on macronutrient retention and release from soilless substrate. HortScience 2013, 48, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Sänger, A.; Rebensburg, P.; Lentzsch, P.; Wirth, S.; Kaupenjohann, M.; Meyer-Aurich, A. Contrasting effects of biochar on N2O emission and N uptake at different N fertilizer levels on a temperate sandy loam. Sci. Total Environ. 2017, 578, 557–565. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.; Rao, B.K.R. Biochars influence sweet-potato yield and nutrient uptake in tropical Papua New Guinea. J. Plant. Nutr. Soil Sci. 2015, 178, 393–400. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Insight into biochar properties and its cost analysis. Biomass Bioenergy 2016, 84, 76–86. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, Y.; Liu, S.; Li, Z.; Tan, X.; Huang, X.; Zeng, G.; Zhou, L.; Zheng, B. Biochar to improve soil fertility. A review. Agron. Sustain. Dev. 2016, 36, 36. [Google Scholar] [CrossRef] [Green Version]
- Alburquerque, J.A.; Calero, J.M.; Barrón, V.; Torrent, J.; Del Campillo, M.C.; Gallardo, A.; Villar, R. Effects of biochars produced from different feedstocks on soil properties and sunflower growth. J. Plant Nutr. Soil Sci. 2014, 177, 16–25. [Google Scholar] [CrossRef]
Characteristics | Soil | Characteristics | Soil | Characteristics | CF | MF | Characteristics | WSB |
---|---|---|---|---|---|---|---|---|
Bulk density (g/cm3) | 1.4 | NH4-N (mg/kg) | 5.9 | N (%) | 10.2 | 10.0 | pH (H20) | 9.0 |
Clay (%) | 5.0 | NO3-N (mg/kg) | 27.9 | P (%) | 13.1 | 7.5 | C (%) | 56.6 |
Silt (%) | 2.6 | Colwell P (mg/kg) | 73.8 | K (%) | 12.0 | 4.5 | CEC (me/100 gC) | 30.4 |
Sand (%) | 92.3 | Colwell K (mg/kg) | 58.9 | S (%) | 7.2 | 5.0 | EC (mS/cm) | 7.7 |
pH (H2O) | 5.4 | Cu (%) | 0.07 | 0.04 | Pore volume (m2/g) | 190.1 | ||
EC (mS/m) | 207.2 | Zn (%) | 0.13 | 0.04 | N (%) | 0.8 | ||
C (%) | 1.15 | P (%) | 3.4 | |||||
N (%) | 0.08 | K (%) | 17.8 |
Main and Interaction Effects | NH4 | NO3 | P | K | pH | EC | Leachate Volume |
---|---|---|---|---|---|---|---|
Biochar | 0.050 * | 0.004 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** |
Fertiliser | <0.001 *** | <0.001 *** | <0.001 *** | 0.004 *** | 0.013 *** | 0.850 ns | 0.685 ns |
Biochar × Fertiliser | 0.154 ns | 0.064 ns | 0.245 ns | <0.001 *** | 0.098 ns | <0.001 *** | 0.353 ns |
Treatment | NH4+ | NO3– | Total N | Available P | Total P | Total K |
---|---|---|---|---|---|---|
Control | 4.31 ± 0.97 c | 3.71 ± 0.91 b | 609 ± 35 b | 0.89 ± 0.12 d | 157.0 ± 0.4 c | 246.3 ± 17.8 b |
CF | 10.45 ± 1.70 b | 3.76 ± 0.80 b | 580 ± 13 b | 2.76 ± 0.62 bc | 199.6 ± 9.1 bc | 270.4± 4.6 b |
MF | 11.69 ± 0.29 b | 3.40 ± 0.45 b | 550 ± 32 b | 2.20 ± 0.22 c | 179.3 ± 15.7 c | 282.4 ± 38.0 b |
WSB | 12.01 ± 1.59 b | 4.56 ± 1.63 a | 1060 ± 39 a | 3.79 ± 0.56 b | 271.2 ± 2.6 a | 639.6 ± 23.0 a |
CF + WSB | 11.27 ± 1.05 b | 3.30 ± 0.34 b | 950 ± 83 a | 7.73 ± 0.57 a | 252.2 ± 16.3 ab | 549.9± 7.8 a |
MF + WSB | 17.92 ± 1.61 a | 3.36 ± 1.02 b | 1020 ± 45 a | 6.44 ± 0.65 a | 281.9 ± 33.7 a | 621.5 ± 33.5 a |
Biochar | <0.001 | 0.021 | <0.001 | <0.001 | <0.001 | <0.001 |
Fertiliser | <0.001 | 0.678 ns | 0.059 ns | <0.001 | 0.154 ns | 0.048 |
Biochar × Fertiliser | <0.001 | 0.879 ns | 0.149 ns | <0.001 | 0.225 ns | 0.078 ns |
Treatment | N (mg pot−1) | P (mg pot−1) | K (mg pot−1) |
---|---|---|---|
Control | 9.97 ± 0.79 b | 0.72 ± 0.14 d | 12.77 ± 1.71 d |
CF | 8.26 ± 1.69 bc | 2.46 ± 0.15 b | 18.19 ± 2.93 cd |
MF | 6.97 ± 0.51 c | 1.13 ± 0.17 cd | 11.93 ± 0.22 d |
WSB | 12.37± 0.16 a | 2.60 ± 0.26 ab | 26.07 ± 1.76 ab |
CF + WSB | 11.41 ± 0.13 a | 3.24 ± 0.49 a | 27.87 ± 2.20 a |
MF + WSB | 12.02 ± 1.08 a | 2.94 ± 0.31 ab | 25.74 ± 0.99 ab |
Biochar | <0.001 | <0.001 | <0.001 |
Fertiliser | 0.038 | <0.001 | 0.006 |
Biochar × Fertiliser | 0.061 | 0.016 | 0.566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Sun, X.; Wang, L.; Storer, P.; Siddique, K.H.M.; Solaiman, Z.M. Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type. Agriculture 2021, 11, 1132. https://doi.org/10.3390/agriculture11111132
Huang C, Sun X, Wang L, Storer P, Siddique KHM, Solaiman ZM. Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type. Agriculture. 2021; 11(11):1132. https://doi.org/10.3390/agriculture11111132
Chicago/Turabian StyleHuang, Cheng, Xiuyun Sun, Lianjun Wang, Paul Storer, Kadambot H. M. Siddique, and Zakaria M. Solaiman. 2021. "Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type" Agriculture 11, no. 11: 1132. https://doi.org/10.3390/agriculture11111132
APA StyleHuang, C., Sun, X., Wang, L., Storer, P., Siddique, K. H. M., & Solaiman, Z. M. (2021). Nutrients Leaching from Tillage Soil Amended with Wheat Straw Biochar Influenced by Fertiliser Type. Agriculture, 11(11), 1132. https://doi.org/10.3390/agriculture11111132