Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Definition of the Goal and Scope of LCA
- The production of 1 kg of fertilizers: 1 kg of composted pelletized poultry litter (CPPL) and 1 kg of the following chemical fertilizers: ammonium nitrate (AN), calcium ammonium nitrate (CAN), urea, triple superphosphate (TSP), monoammonium phosphate (MAP), and potassium chloride (KCl);
- The production of 1 kg of active substances separately for the N, P2O5, and K2O content of fertilizers to provide comparable inputs to assess fertilizer production per unit of nutrient;
- The nutrient (NPK) supply of a 100 ha field with 1.5 Mg/ha of CPPL (based on Szabó et al.’s [54] method), and with chemical fertilizer combinations with an equivalent NPK supply to analyze the environmental impacts of CPPL as a multi-element fertilizer.
2.2. Life Cycle Inventory Analysis
2.3. The Life Cycle Impact Assessment
- Abiotic depletion potential for elements (kg Sb-eq) (ADPe): The ‘abiotic depletion potential for elements’ refers to the extent of the use of non-renewable sources and minerals. It shows the per capita use of antimony (Sb) and equivalent substances per year.
- Abiotic depletion potential for fossil fuels (MJ) (ADPf): The ‘abiotic depletion potential for fossil fuels’ is shown in megajoules, instead of unit antimony equivalents (kg Sb-eq) of the resource.
- Acidification potential (kg SO2-eq) (AP): The acidification potential refers to compounds that cause acid rain (SO2, NOx, NO, and N2O), usually denoted by the SO2 equivalent.
- Eutrophication potential (kg PO4-eq) (EP): The eutrophication potential refers to the effects of over-fertilization or an excess supply of nutrients on terrestrial and aquatic environments, with a focus on the two most important nutrients, nitrogen (N) and phosphorus (P). Eutrophication is indicated as the PO4 equivalent.
- Global warming potential (kg CO2-eq) (GWP): The global warming potential is an index improved by the impact of the comparison of different gases on the atmosphere. A higher value of the GWP means a more negative impact on the environment. The basis of the GWP is usually a period of 100 years as the CO2 equivalent by its measurement.
- Ozone layer depletion potential (kg CFC-11-eq) (ODP): To determine the ozone depleting potential, the CFC-11 equivalent is used to describe the emissions of all ozone-depleting substances.
- Photochemical oxidation potential (kg C2H4-eq) (POP): The photochemical oxidation potential describes the ethylene equivalent emissions from photochemical oxidation due to a high NOx concentration.
- Fresh water aquatic ecotoxicity potential (kg 1.4-DB-eq) (FAETP): This indicates the amount of contaminants in freshwater that have an impact on aquatic life pollution.
- Human toxicity potential (kg 1.4-DB-eq) (HTP): The maximum concentration of compounds that are hazardous to humans.
- Marine aquatic ecotoxicity potential (kg 1.4-DB-eq) (MAETP): The marine aquatic ecotoxicity potential shows the effects of different chlorine compounds in the atmosphere on marine life and aquatic environments.
- Terrestrial ecotoxicity potential (kg 1.4-DB-eq) (TETP): This shows the impact of various chlorine compounds on the environment and on humans.
2.4. Methods for the Interpretation of LCA Results
3. Results
3.1. Environmental Impact by Producing 1 kg of CPPL and Chemical Fertilizers
3.2. Environmental Impact by Producing of 1 kg of Active Substance
3.2.1. Environmental Impact by Producing of 1 kg of the Nitrogen Active Substance
3.2.2. Environmental Impact by Producing of 1 kg of the Phosphate Active Substance
3.2.3. Environmental Impact by Producing 1 kg of Potassium Content
3.3. Environmental Impact of a Medium-Sized Farm’s Nutrient Replenishment
4. Discussion
kg CO2-eq/ kg of Product | Country/Region | Reference | |
---|---|---|---|
Hen carcasses and manure | 0.045–0.082 | China | [67] |
Sludge | 0.089–0.298 | Europe | [68] |
Chicken and cow manure | 0.147 | Egypt | [69] |
Poultry manure | 0.27 | Europe | This study |
Livestock waste | 0.475–2.307 | Europe | [68] |
Chemical Fertilizers | kg CO2-eq/ kg of Active Substance | Country/Region | Reference |
---|---|---|---|
Ammonium nitrate (kg CO2-eq/kg of N) | 4.1 | Europe | This study |
6.2 | Europe | [71] | |
7.2 | United Kingdom | [72] | |
3.5/8/10.3 | Europe/Russia, USA/China | [70] | |
Calcium ammonium nitrate (kg CO2-eq/kg of N) | 3.7/7.7/8.7/10.6 | Europe/Russia/USA/China | [70] |
4.2 | Europe | This study | |
Urea (kg CO2-eq/kg of N) | 1.6 | Europe | [71] |
1.9/2.7/5.5 | Europe/Russia, USA/China | [70] | |
2.4 | Europe | This study | |
3.1 | Southeastern USA | [73] | |
3.5 | United Kingdom | [72] | |
Triple superphosphate (kg CO2-eq/kg of P2O5) | 0.4–0.54 | Russia, USA, China | [70] |
1.2 | United Kingdom | [72] | |
1.43 | Europe | This study | |
1.6 | Europe | [71] | |
Monoammonium phosphate (kg CO2-eq/kg of P2O5) | 1.4/1.7/2.89 | Europe/Russia, USA/China | [70] |
1.6 | Europe | This study | |
6.4 | Southeastern USA | [73] | |
7.8–8.9 | China | [74] | |
Potassium chloride (kg CO2-eq/kg of K2O) | 0.14–0.25 | China | [75] |
0.23 | Europe | [73] | |
0.36 | New Zealand | [76] | |
0.55 | China | [74] | |
0.66 | Europe | this study |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scholl, L.; Nieuwenhuis, R. Soil Fertility Management; Agromisa Foundation: Wageningen, The Netherlands, 2004; pp. 48–55. [Google Scholar]
- Chen, J.-H.; Wu, J.-T.; Young, C. The Combined Use of Chemical and Organic Fertilizers and/or Biofertilizer for Crop Growth and Soil Fertility. Environ. Sci. 2007, 10, 1–12. [Google Scholar]
- Han, S.H.; Young, J.; Hwang, J.; Kima, S.B.; Parka, B. The Effects of Organic Manure and Chemical Fertilizer on the Growth and Nutrient Concentrations of Yellow Poplar (Liriodendron tulipifera Lin.) in a Nursery System. For. Sci. Technol. 2016, 12, 137–143. [Google Scholar]
- Alimi, T.; Ajewole, O.C.; Awosola, O.; Idowu, E.O. Organic and Inorganic Fertilizer for Vegetable Production under Tropical Conditions. J. Agric. Rural. Dev. 2007, 1, 120–136. [Google Scholar]
- Savci, S. Investigation of Effect of Chemical Fertilizers on Environment. APCBEE Procedia 2012, 1, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Adediran, J.A.; Taiwa, L.B.; Akande, M.O.; Sobulo, R.A.; Idown, O.J. Application of Organic and Inorganic Fertilizer for Sustainable Maize and Cowpea Yield in Nigeria. J. Plant Nutr. 2004, 27, 1163–1181. [Google Scholar] [CrossRef]
- Bíró, T.; Tamás, J.; Thyll, S. Risk assessment of nitrate pollution in lower watershed of the Berettyó River. In Soil Water Environment Relationships; Wageningen–Debrecen; Filep, G., Ed.; Wageningen University and Research: Wageningen, The Netherland; University of Debrecen: Debrcen, Hungary, 1998; pp. 239–247. [Google Scholar]
- Dhadli, H.S.; Brar, B.S. Effect of long-term differential application of inorganic fertilizers and manure on soil CO2 emissions. Plant Soil Environ. 2016, 62, 195–201. [Google Scholar]
- Adviento-Borbe, M.A.A.; Kaye, J.P.; Bruns, M.A.; McDaniel, M.D.; McCoy, M.; Harkcom, S. Soil Greenhouse Gas and Ammonia Emissions in Long-Term Maize-Based Cropping Systems. Soil Biol. Biochem. 2010, 74, 1623–1634. [Google Scholar] [CrossRef]
- Mbonimpa, E.G.; Hong, C.O.; Owens, V.N.; Lehman, M.R.; Osborne, S.L.; Schumacher, T.E.; Clay, D.E.; Kumar, S. Nitrogen fertilizer and landscape position impacts on CO2 and CH4 fluxes from a landscape seeded to switchgrass. Glob. Chang. Biol.-Bioenergy 2014, 7, 836–849. [Google Scholar] [CrossRef]
- Dhadli, H.S.; Brar, B.S.; Kingra, P.K. Temporal Variations in N2O Emissions in Maize and Wheat Crop Seasons: Impact of N-Fertilization, Crop Growth, and Weather Variables. J. Crop Improv. 2016, 30, 17–31. [Google Scholar] [CrossRef]
- Peng, Q.; Dong, Y.S.; Qi, Y.C.; Xiao, S.S.; He, Y.T.; Ma, T. Effects of nitrogen fertilization on soil respiration in temper-ate grassland in Inner Mongolia, China. Environ. Earth Sci. 2011, 62, 1163–1171. [Google Scholar] [CrossRef]
- Zhang, J.J.; Li, Y.F.; Jiang, P.K.; Zhou, G.M.; Shen, Z.M.; Liu, J.; Wang, Z.L. Effects of fertilization on soil CO2 flux in Castanea mollissima stand. J. Appl. Ecol. 2013, 24, 2431–2439. [Google Scholar]
- Nyamadzawo, G.; Wuta, M.; Nyamangara, J.; Smith, J.L.; Rees, R.M. Nitrous oxide and methane emissions from cultivated seasonal wetland (dambo) soils with inorganic, organic and integrated nutrient management. Nutr. Cycl. Agroecosystems 2014, 100, 161–175. [Google Scholar] [CrossRef]
- Khan, A.; Tan, D.K.Y.; Munsif, F.; Afridi, M.Z.; Shah, F.; Wei, F.; Fahad, S.; Zhou, R. Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: A review. Environ. Sci. Pollut. Res. 2017, 24, 23471–23487. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Deng, L.; Yang, Q.H.; Shangguan, Z.P. Nitrogen fertilization increase soil carbon dioxide efflux of winter wheat field: A case study in Northwest China. Soil Tillage Res. 2014, 143, 164–171. [Google Scholar] [CrossRef]
- Zamanian, K.; Zarebanadkouki, M.; Kuzyakov, Y. Nitrogen fertilization raises CO2 efflux from inorganic carbon: A global assessment. Glob. Chang. Biol. 2018, 24, 2810–2817. [Google Scholar] [CrossRef]
- Zhang, L.H.; Shao, H.B.; Wang, B.C.; Zhang, L.W.; Qin, X.C. Effects of nitrogen and phosphorus on the production of carbon dioxide and nitrous oxide in salt-affected soils under different vegetation communities. Atmos. Environ. 2019, 204, 78–88. [Google Scholar] [CrossRef]
- Kong, D.L.; Li, S.Q.; Jin, Y.G.; Wu, S.; Chen, J.; Hu, T.; Wang, H.; Liu, S.; Zou, J. Linking methane emissions to methanogenic and methanotrophic communities under different fertilization strategies in rice paddies. Geoderma 2019, 347, 233–243. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, A.; Shen, G.; Shaaban, M.; Ju, W.; Cui, Y.; Duan, C.; Fang, L. Effects of inorganic and organic fertilizers on CO2 and CH4 fluxes from tea plantation soil. Sci. Anthr. 2021, 9, 090. [Google Scholar] [CrossRef]
- COM. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal: Brussels, Belgium, 2019. [Google Scholar]
- Moyo, S.; Swanepoel, F.J.C. Multifunctionality of livestock in developing communities. In The Role of Livestock in Developing Communities: Enhancing Multifunctionality, 1st ed.; Swanepoel, F.J.C., Stroebel, A., Moyo, S., Eds.; University of Free State (UFS) and the technical Centre for Agricultural and Rural Cooperation (CTA): Cape Town, South Africa; Wageningen, The Netherlands, 2010; pp. 1–11. [Google Scholar]
- Mézes, L.; Nagy, A.; Gálya, B.; Tamás, J. Poultry feather wastes recycling possibility as soil nutrient. Eurasian J. Soil Sci. 2015, 4, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Magnusson, U. Sustainable Global Livestock Development for Food Security and Nutrition Including Roles for Sweden; Ministry of Enterprise and Innovation: Stockholm, Sweden; Swedish FAO Committee: Stockholm, Sweden, 2016.
- Gorliczay, E.; Boczonádi, I.; Kiss, N.É.; Tóth, F.A.; Pabar, S.A.; Biró, B.; Kovács, L.R.; Tamás, J. Microbiological Effectivity Evaluation of New Poultry Farming Organic Waste Recycling. Agriculture 2021, 11, 683. [Google Scholar] [CrossRef]
- He, Z. Organic Animal Farming and Comparative Studies of Conventional and Organic Manures. In Animal Manure: Production, Characteristics, Environmental Concerns, and Management, 1st ed.; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; American Society of Agronomy: Madison, WI, USA, 2020; Volume 67, pp. 165–182. [Google Scholar]
- He, Z.; Pagliari, P.H.; Waldrip, H.M. Applied and Environmental Chemistry of Animal Manure: A Review. Pedosphere 2016, 26, 779–816. [Google Scholar] [CrossRef]
- Chia, S.Y.; Tanga, C.M.; van Loon, J.J.; Dicke, M. Insects for sustainable animal feed: Inclusive business models involving smallholder farmers. Curr. Opin. Environ. Sustain. 2019, 41, 23–30. [Google Scholar] [CrossRef]
- Nalunga, A.; Komakech, A.J.; Jjagwe, J.; Magala, H.; Lederer. J. Growth characteristics and meat quality of broiler chickens fed earthworm meal from Eudrilus eugeniae as a protein source. Livest. Sci. 2021, 245, 104394. [Google Scholar] [CrossRef]
- Enahoro, D.; Lannerstad, M.; Pfeifer, C.; Dominguez-Salas, P. Contributions of livestock-derived foods to nutrient supply under changing demand in low- and middle-income countries. Glob. Food Secur. 2018, 19, 1–10. [Google Scholar] [CrossRef]
- Janković, L.J.; Petrujkić, B.; Aleksić, N.; Vučinić, M.; Teodorović, R.; Karabasil, N.; Relić, R.; Drašković, V.; Nenadović, K. Carcass characteristics and meat quality of broilers fed on earthworm (Lumbricus rubellus) meal. J. Hell. Vet. Med Soc. 2020, 71, 2031–2040. [Google Scholar] [CrossRef] [Green Version]
- Kasule, L.; Katongole, C.; Nambi-Kasozi, J.; Lumu, R.; Bareeba, F.; Presto, M.; Ivarsson, E.; Lindberg, J.E. Low nutritive quality of own-mixed chicken rations in Kampala City, Uganda. Agron. Sustain. Dev. 2014, 34, 921–926. [Google Scholar] [CrossRef] [Green Version]
- Van Harn, J.; Dijkslag, M.A.; Van Krimpen, M.M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.M.; Sekar, S.; Muthukrishnan, P. Prospects and potential of poultry manure. Asian J. Plant Sci. 2010, 9, 172–182. [Google Scholar] [CrossRef] [Green Version]
- Garg, S.; Bahla, G.S. Phosphorus availability to maize as influenced by organic manures and fertilizer P associated phosphatase activity in soils. Bioresour. Technol. 2008, 99, 5773–5777. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A.L. Organic carbon effects on available water capacity of three soil textural groups. Soil Sci. Soc. Am. J. 1992, 56, 248–254. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1993, 33, 141–163. [Google Scholar] [CrossRef]
- Mbah, C.N.; Nnej, I.R. Effect of different crop residue management technique on selected soil properties and grain production of maize. Afr. J. Agric. Res. 2011, 6, 4149–4152. [Google Scholar]
- Ojeniyi, S.O.; Amusan, O.A.; Adekiya, A.O. Effect of poultry manure on soil physical properties, nutrient uptake and yield of cocoyam (Xanthosoma saggitifolium) in southwest Nigeria. Am.-Eurasian J. Agric. Environ. Sci. 2013, 13, 121–125. [Google Scholar]
- Modderman, C. Composting with or without Additives. In Animal Manure: Production, Characteristics, Environmental Concerns, and Management; Waldrip, H.M., Pagliari, P.H., He, Z., Eds.; American Society of Agronomy: Madison, WI, USA, 2020; Volume 67, pp. 245–254. [Google Scholar]
- Finstein, M.S. Composting in the context of municipal solid waste management. In Environmental Microbiology; Mitchell, R., Ed.; Wiley-Liss, Inc.: New York, NY, USA, 1992; pp. 355–374. [Google Scholar]
- Kirchmann, H.; Witter, E. Ammonia volatilization during aerobic and anaerobic manure decomposition. Plant Soil 1989, 115, 35–41. [Google Scholar] [CrossRef]
- Martins, O.; Dewes, T. Loss of nitrogenous compounds during composting of animal wastes. Bioresour. Technol. 1992, 42, 103–111. [Google Scholar] [CrossRef]
- Beck-Friis, B.; Smårs, S.; Jönsson, H.; Kirchmann, H. Gaseous emissions of carbon dioxide, ammonia, and nitrous oxide from organic household waste in a compost reactor under different temperature regimes. J. Agric. Eng. Res. 2001, 78, 423–430. [Google Scholar] [CrossRef]
- Zhang, W.; Lau, A. Reducing ammonia emission from poultry manure composting via struvite formation. J. Chem. Technol. Biotechnol. 2007, 82, 598–602. [Google Scholar] [CrossRef]
- Eghball, B.; Power, J.F.; Gilley, J.E.; Doran, J.W. Nutrient, carbon, and mass loss during composting of beef cattle feedlot manure. J. Environ. Qual. 1997, 26, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Eklind, Y.; Kirchmann, H. Composting and storage of organic household waste with different litter amendments. II: Nitrogen turnover and losses. Bioresour. Technol. 2000, 74, 125–133. [Google Scholar] [CrossRef]
- García, A.; Fox, J.G.; Besser, T.E. Zoonotic enterohemorrhagic Escherichia coli: A One Health perspective. ILAR J. 2010, 51, 221–232. [Google Scholar] [CrossRef] [PubMed]
- García-Heredia, A.; Pohane, A.A.; Melzer, E.S.; Carr, C.R.; Fiolek, T.J.; Rundell, S.R.; Lim, H.C.; Wagner, J.C.; Morita, Y.S.; Swarts, B.M.; et al. Peptidoglycan precursor synthesis along the sidewall of pole-growing mycobacteria. eLife 2018, 7, 37243. [Google Scholar] [CrossRef]
- Ke, W.; Chao, H.; Shijie, Y.; Weijie, L.; Wei, W.; Ruijun, Z.; Huanhuan, Q.; Nanqi, R. Transformation of organic matters in animal wastes during composting. J. Hazard. Mater. 2015, 300, 745–753. [Google Scholar]
- Georgakakis, D.; Krintas, T. Optimal use of the Hosoya system composting poultry manure. Bioresour. Technol. 2000, 72, 227–233. [Google Scholar] [CrossRef]
- Hosoya & Co. Hosoya Manure Fermentation, System; Hoyosa & Co.: Kanagawa, Japan, 1996. [Google Scholar]
- ISO. ISO14040 Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization (ISO); Standards Policy and Strategy Committee: London, UK, 2006. [Google Scholar]
- Szabó, A.; Tamás, J.; Nagy, A. Spectral evaluation of the effect of poultry manure pellets on pigment content of maize (Zea mays L.) and wheat (Triticum aestivum L.) seedlings. Nat. Resour. Sustain. Dev. 2019, 9, 70–79. [Google Scholar] [CrossRef]
- OpenLCA Nexus, Databases, Agribalyse. Available online: https://nexus.openlca.org/database/Agribalyse (accessed on 23 April 2021).
- Guinee, J.B.; Gorree, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Sleeswijk, A.W.; Suh, S.; Udo de Haes, H.A.; et al. Handbook on Life Cycle Assessment—Operational Guide to the ISO Standards; Kluwer Academic Publisher: New York, NY, USA; Boston, MA, USA; Dordrecht, The Netherlands; London, UK; Moscow, Russia, 2002. [Google Scholar]
- Gabathuler, H. The CML Story: How Environmental Sciences Entered the Debate on LCA. Int. J. Life Cycle Assess. 2006, 11, 127–132. [Google Scholar] [CrossRef] [Green Version]
- Kabakian, V.; McManus, M.; Harajli, H. Attributional life cycle assessment of mounted 1.8 kWp monocrystalline photovoltaic system with batteries and comparison with fossil energy production system. Appl. Energy 2015, 154, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Lamnatou, C.; Chemisana, D. Evaluation of photovoltaic-green and other roofing systems by means of ReCiPe and multiple life cycle–based environmental indicators. Build. Environ. 2015, 93, 376–384. [Google Scholar] [CrossRef]
- Colomb, V.; Amar, S.A.; Mens, C.B.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; van der Werf, H.M.G. AGRIBALYSE®, the French LCI Database for agricultural products: High quality data for producers and environmental labelling. Oilseeds Fats Crop. Lipids 2015, 22, D104. [Google Scholar] [CrossRef] [Green Version]
- Koch, P.; Salou, T. AGRIBALYSE®: Methodology, Agricultural Stage—Version 3.0; Ed ADAME: Angers, France, 2020. [Google Scholar]
- Asselin-Balençon, A.; Broekema, R.; Teulon, H.; Gastaldi, G.; Houssier, J.; Moutia, A.; Rousseau, V.; Wermeille, A.; Colomb, V. AGRIBALYSE v3.0: The French Agricultural and Food LCI Database. Methodology for the Food Products; ADEME: Angers, France, 2020. [Google Scholar]
- Gaidajis, G.; Kakanis, I. Life Cycle Assessment of Nitrate and Compound Fertilizers Production—A Case Study. Sustainability 2021, 13, 148. [Google Scholar] [CrossRef]
- Baldini, C.; Bava, L.; Zucali, M.; Guarino, M. Milk production Life Cycle Assessment: A comparison between estimated and measured emission inventory for manure handling. Sci. Total Environ. 2018, 625, 209–219. [Google Scholar] [CrossRef]
- Kátai, J. Determination of nitrogen doses (In Hungarian: Nitrogén dózisok megállapítása). In Soil ecology (In Hungarian: Talajökológia), 1st ed.; Kátai, J., Ed.; University Press, University of Debrecen: Debrecen, Hungary; University of West Hungary: Sopron, Hungary; University of Pannonia: Veszprém, Hungary, 2011; pp. 59–61. [Google Scholar]
- de Vries, J.W.; Corré, W.J.; van Dooren, H.J.C. Environmental Assessment of Untreated Manure Use, Manure Digestion and Co-Digestion with Silage Maize; Report 372; Wageningen UR Livestock Research, part of Stichting Dienst Landbouwkundig Onderzoek (DLO Foundation): Wageningen, The Netherlands, 2010. [Google Scholar]
- Zhu, Z.; Dong, H.; Xi, J.; Xin, H. Ammonia and greenhouse gas emissions from co-composting of dead hens with manure as affected by forced aeration rate. Trans. ASABE Am. Soc. Agric. Biol. Eng. 2014, 57, 211–217. [Google Scholar]
- ADEME. Programme de Recherche de l’ADEME sur les Émissions Atmosphériques du Compostage. Connaissances Acquises et Synthèse Bibliographique; Isabelle, D., Ed.; Agence de l’Environnement et de la Maîtrise de l’Energie, Waste Prevention and Management Department—Substainable Consumption and Waste Division: Angers, France, 2012.
- Luske, B. Reduced GHG Emissions due to Compost Production and Compost Use in Egypt. Comparing Two Scenarios; 2010-016 LbD.; Louis Bolk Instituut: Bunnik, The Netherlands, 2010. [Google Scholar]
- Brentrup, F.; Hoxha, A.; Christensen, B. Carbon footprint analysis of mineral fertilizer production in Europe and other world regions. In Proceedings of the 10th International Conference on Life Cycle Assessment of Food (LCA Food 2016), Dublin, Ireland, 19–21 October 2016. [Google Scholar]
- Skowrońska, M.; Filipek, T. Life cycle assessment of fertilizers: A review. Int. Agrophysics 2014, 28, 101–110. [Google Scholar] [CrossRef]
- Williams, A.G.; Audsley, E.; Sandars, D.L. Environmental burdens of producing bread wheat, oilseed rape and potatoes in England and Wales using simulation and system modelling. Int. J. Life Cycle Assess. 2010, 15, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Albaugh, T.J.; Vance, E.D.; Gaudreault, C.; Fox, T.R.; Allen, H.L.; Stape, J.L.; Rubilar, R.A. Carbon Emissions and Sequestration from Fertilization of Pine in the Southeastern United States. For. Sci. 2012, 58, 419–429. [Google Scholar] [CrossRef]
- Zhang, W.-F.; Dou, Z.-X.; He, P.; Ju, X.-T.; Powlson, D.S.; Chadwick, D.R.; Norse, D.; Lu, Y.-L.; Zhang, Y.; Wu, L. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proc. Natl. Acad. Sci. USA 2013, 110, 8375–8380. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Geng, Y.; Hong, J.; Yang, D.; Ma, X. Life cycle assessment of potash fertilizer production in China. Resour. Conserv. Recycl. 2018, 138, 238–245. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Lieffering, M.; Zonderland-Thomassen, M.A.; Boyes, M. Life cycle assessmenta—A tool for evaluating resource and environmental efficiency of agricultural products and systems from pasture to plate. Proc. New Zealand Soc. Anim. Prod. 2011, 71, 139–148. [Google Scholar]
Parameters | Broiler Manure and Litter (53%) | Layer Manure and Litter (27%) |
---|---|---|
N content (w/w%) | 2.75 ± 0.092 | 2.14 ± 0.151 |
P2O5 content (mg/kg) | 9344 ± 63.692 | 20,146 ± 109.672 |
K2O content (mg/kg) | 26,007 ± 125.812 | 27,306 ± 244.178 |
Moisture content (w/w%) | 27.5 ± 2.750 | 25 ± 1.944 |
Organic matter content (w/w%) | 64 ± 1.541 | 56 ± 1.581 |
Calorific value (J/g) | 12,894 ± 73.986 | 10,532 ± 51.088 |
C/N ratio | 25/1 | 25/1 |
Parameters | Parameters | ||
---|---|---|---|
Moisture content (w/w%) | 12 ± 1.189 | B content (mg/kg) | 31.4 ± 1.155 |
Organic matter content (w/w%) | 69 ± 4.785 | Fe content (mg/kg) | 545 ± 13.976 |
Humus content (w/w%) | 51.84 ± 1.378 | Mn content (mg/kg) | 374 ± 14.230 |
N content (w/w%) | 5.5 ± 0.606 | Mo content (mg/kg) | 3.66 ± 0.482 |
P2O5 content (w/w%) | 3 ± 0.707 | Zn content (mg/kg) | 367 ± 39.438 |
K2O content (w/w%) | 2.5 ± 0.408 | Cu content (mg/kg) | 53.3 ± 1.811 |
Ca content (w/w%) | 6 ± 0.770 | pH | 7.2 ± 0.532 |
Mg content (w/w%) | 0.5 ± 0.264 | Calorific value (J/g) | 15,092 ± 151.391 |
S content (w/w%) | 1 ± 0.236 | C/N ratio | 13/1 |
Flow of Inputs | Amount | Unit |
---|---|---|
Poultry manure, fresh | 1.305 | kg |
Sludge, 4–6%DM | 0.033 | kg |
Tap water | 0.067 | kg |
Diesel, burned in building machine | 0.087 | MJ |
Electricity, medium voltage | 180.12 | Wh |
Packaging, solid fertilizers or pesticides | 1.000 | kg |
Active Substance Content (%) | ||
---|---|---|
Fertilizers | Nitrogen content (N%) | Fertilizer (kg) for 1 kg of N |
Composted pelletized poultry litter (CPPL) | 5.5 | 18 |
Ammonium nitrate (AN) | 33.5 | 2.99 |
Calcium ammonium nitrate (CAN) | 27 | 3.7 |
Urea | 46 | 2.17 |
Monoammonium phosphate (MAP) | 12 | 8.33 |
Phosphorus pentoxide content (P2O5%) | Fertilizer (kg) for 1 kg of P2O5 | |
Composted pelletized poultry litter (CPPL) | 3 | 33.33 |
Triple superphosphate (TSP) | 46 | 2.17 |
Monoammonium phosphate (MAP) | 52 | 1.92 |
Potassium chloride content (K2O%) | Fertilizer (kg) for 1 kg of K2O | |
Composted pelletized poultry litter (CPPL) | 2.5 | 40 |
Potassium chloride (KCl) | 60 | 1.66 |
Quantity of Fertilizers (Mg/ha) | Quantity of Fertilizers Per 100 ha (Mg/100 ha) | |
---|---|---|
CPPL | 1.5 | 150 |
AN | 0.246 | 24.6/21.5 * |
CAN | 0.305 | 30.5/26.7 * |
Urea | 0.18 | 18/15.7 * |
TSP | 0.096 | 9.6 |
MAP | 0.086 | 8.6 |
KCl | 0.063 | 6.25 |
Name of Combination | NPK Combination | Mg/100 ha |
---|---|---|
NPK1 | AN + TSP + KCl | 40.45 |
NPK2 | AN + MAP + KCl | 36.35 |
NPK3 | CAN + TSP + KCl | 46.15 |
NPK4 | CAN + MAP + KCl | 41.51 |
NPK5 | Urea + TSP + KCl | 33.85 |
NPK6 | Urea + MAP + KCl | 30.59 |
Impact Categories | CPPL | AN | CAN | Urea | TSP | MAP | KCl |
---|---|---|---|---|---|---|---|
ADPe (kg Sb-eq) | 7.57 × 10−8 | 6.47 × 10−6 | 6.37 × 10−6 | 7.43 × 10−6 | 4.10 × 10−7 | 6.70 × 10−6 | 4.76 × 10−6 |
ADPf (MJ) | 0.269 | 18.338 | 14.941 | 27.107 | 13.987 | 8.898 | 4.121 |
AP (kg SO2-eq) | 0.024 | 0.006 | 0.005 | 0.005 | 0.010 | 0.003 | 0.002 |
EP (kg PO4-eq) | 0.005 | 0.002 | 0.002 | 0.002 | 0.004 | 0.002 | 0.001 |
GWP (kg CO2-eq) | 0.273 | 1.382 | 1.137 | 1.127 | 0.657 | 0.826 | 0.399 |
ODP (kg CFC-11-eq) | 3.48 × 10−8 | 1.50 × 10−7 | 1.23 × 10−7 | 2.25 × 10−7 | 1.01 × 10−7 | 8.54 × 10−8 | 3.73 × 10−8 |
POP (kg C2H4-eq) | 2.87 × 10−5 | 1.35 × 10−4 | 1.17 × 10−4 | 1.95 × 10−4 | 4.29 × 10−4 | 1.32 × 10−4 | 7.97 × 10−5 |
FAETP (kg 1.4-DB-eq) | 0.028 | 0.274 | 0.256 | 0.314 | 0.198 | 0.362 | 0.188 |
HTP (kg 1.4-DB-eq) | 0.032 | 0.449 | 0.429 | 0.534 | 0.172 | 0.502 | 0.334 |
MAETP (kg 1.4-DB-eq) | 47.419 | 663.080 | 616.340 | 790.531 | 523.135 | 833.587 | 504.535 |
TETP (kg 1.4-DB-eq) | 3.14 × 10−4 | 1.51 × 10−3 | 1.46 × 10−3 | 1.82 × 10−3 | 5.08 × 10−3 | 6.48 × 10−3 | 8.61 × 10−4 |
Impact Categories | CPPL (5.5% N) | AN (33.5% N) | CAN (27% N) | Urea (46% N) |
---|---|---|---|---|
ADPe (kg Sb-eq) | 1.38 × 10−6 | 9.06 × 10−6 | 2.36 × 10−5 | 1.61 × 10−5 |
ADPf (MJ) | 4.883 | 54.831 | 55.283 | 58.822 |
AP (kg SO2-eq) | 0.439 | 0.019 | 0.019 | 0.010 |
EP (kg PO4-eq) | 0.099 | 0.007 | 0.007 | 0.004 |
GWP (kg CO2-eq) | 4.955 | 4.133 | 4.208 | 2.445 |
ODP (kg CFC-11-eq) | 6.33 × 10−7 | 4.48 × 10−7 | 4.57 × 10−7 | 4.88 × 10−7 |
POP (kg C2H4-eq) | 5.23 × 10−4 | 4.04 × 10−4 | 4.32 × 10−4 | 4.23 × 10−4 |
FAETP (kg 1.4-DB-eq) | 0.518 | 0.819 | 0.947 | 0.681 |
HTP (kg 1.4-DB-eq) | 0.586 | 1.341 | 1.588 | 1.158 |
MAETP (kg 1.4-DB-eq) | 862.070 | 1982.609 | 2280.459 | 1715.452 |
TETP (kg 1.4-DB-eq) | 0.006 | 0.005 | 0.005 | 0.004 |
Impact Category | CPPL (3% P2O5) | TSP (46% P2O5) | MAP (52% P2O5) |
---|---|---|---|
ADPe (kg Sb-eq) | 2.52 × 10−6 | 8.90 × 10−7 | 1.29 × 10−5 |
ADPf (MJ) | 8.952 | 30.352 | 17.085 |
AP (kg SO2-eq) | 0.804 | 0.022 | 0.007 |
EP (kg PO4-eq) | 0.181 | 0.009 | 0.003 |
GWP (kg CO2-eq) | 9.084 | 1.426 | 1.587 |
ODP (kg CFC-11-eq) | 1.16 × 10−6 | 2.20 × 10−7 | 1.64 × 10−7 |
POP (kg C2H4-eq) | 0.0010 | 0.0009 | 0.0003 |
FAETP (kg 1.4-DB-eq) | 0.949 | 0.429 | 0.694 |
HTP (kg 1.4-DB-eq) | 1.074 | 0.372 | 0.965 |
MAETP (kg 1.4-DB-eq) | 1580.462 | 1135.203 | 1600.487 |
TETP (kg 1.4-DB-eq) | 0.010 | 0.011 | 0.012 |
Impact Category | CPPL (2.5% K2O) | KCl (60% K2O) |
---|---|---|
ADPe (kg Sb-eq) | 3.03 × 10−6 | 7.90 × 10−6 |
ADPf (MJ) | 10.744 | 6.840 |
AP (kg SO2-eq) | 0.965 | 0.003 |
EP (kg PO4-eq) | 0.218 | 0.001 |
GWP (kg CO2-eq) | 10.901 | 0.663 |
ODP (kg CFC-11-eq) | 1.39 × 10−6 | 6.19 × 10−8 |
POP (kg C2H4-eq) | 0.0011 | 0.0001 |
FAETP (kg 1.4-DB-eq) | 1.139 | 0.313 |
HTP (kg 1.4-DB-eq) | 1.289 | 0.554 |
MAETP (kg 1.4-DB-eq) | 1896.744 | 837.528 |
TETP (kg 1.4-DB-eq) | 0.013 | 0.001 |
Impact Category | CPPL | NPK1 | NPK2 | NPK3 | NPK4 | NPK5 | NPK6 |
---|---|---|---|---|---|---|---|
ADPe (kg Sb-eq) | 0.011 | 0.193 | 0.227 | 0.228 | 0.257 | 0.167 | 0.205 |
ADPf (MJ) | 40,290 | 614,640 | 496,928 | 618,834 | 500,097 | 648,453 | 529,320 |
AP (kg SO2-eq) | 3620 | 262.9 | 173.3 | 265.3 | 175.3 | 196.0 | 115.6 |
EP (kg PO4-eq) | 816.1 | 98.7 | 65.8 | 101.0 | 67.7 | 75.8 | 46.1 |
GWP (kg CO2-eq) | 40,880 | 43,005 | 39,357 | 43,654 | 39,886 | 29,113 | 27,372 |
ODP (kg CFC-11-eq) | 0.0052 | 0.0049 | 0.0042 | 0.0050 | 0.0043 | 0.0053 | 0.0045 |
POP (kg C2H4-eq) | 4.31 | 8.02 | 4.54 | 8.25 | 4.74 | 8.18 | 4.71 |
FAETP (kg 1.4-DB-eq) | 4,270 | 9862 | 10,192 | 10,923 | 11,109 | 8731 | 9241 |
HTP (kg 1.4-DB-eq) | 4833 | 14818 | 16,069 | 16,868 | 17,841 | 13,323 | 14,823 |
MAETP (kg 1.4-DB-eq) | 7112,789 | 24607,329 | 24610,646 | 27084,044 | 26749,074 | 22428,863 | 22797,379 |
TETP (kg 1.4-DB-eq) | 47.06 | 92.30 | 93.98 | 99.47 | 100.18 | 87.60 | 90.08 |
Impact Category | CPPL | NPK1 | NPK2 | NPK3 | NPK4 | NPK5 | NPK6 |
---|---|---|---|---|---|---|---|
GWP (kg CO2-eq) | 40,880 | 55,693 | 50,449 | 50,717 | 46,106 | 27,933 | 26,197 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, N.É.; Tamás, J.; Szőllősi, N.; Gorliczay, E.; Nagy, A. Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production. Agriculture 2021, 11, 1130. https://doi.org/10.3390/agriculture11111130
Kiss NÉ, Tamás J, Szőllősi N, Gorliczay E, Nagy A. Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production. Agriculture. 2021; 11(11):1130. https://doi.org/10.3390/agriculture11111130
Chicago/Turabian StyleKiss, Nikolett Éva, János Tamás, Nikolett Szőllősi, Edit Gorliczay, and Attila Nagy. 2021. "Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production" Agriculture 11, no. 11: 1130. https://doi.org/10.3390/agriculture11111130
APA StyleKiss, N. É., Tamás, J., Szőllősi, N., Gorliczay, E., & Nagy, A. (2021). Assessment of Composted Pelletized Poultry Litter as an Alternative to Chemical Fertilizers Based on the Environmental Impact of Their Production. Agriculture, 11(11), 1130. https://doi.org/10.3390/agriculture11111130