Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Soil Properties
2.2. Plant Materials and Treatments
2.3. Preparation of Experimental Plots and Growing Crops
2.4. Harvesting and Data Recording
2.5. Statistical Analysis
3. Results
3.1. Effect of Lime and Organic Manure Amendment on Yield of T. Aman–Mustard–Boro Cropping Pattern in Two Consecutive Years
3.1.1. Grain and Straw Yield of T. Aman
3.1.2. Seed and Stover Yield of Mustard
3.1.3. Grain and Straw Yield of Boro Rice
3.1.4. Total System Productivity of T. Aman–Mustard–Boro Cropping Pattern in Two Consecutive Years
3.2. Effect of Lime and Organic Manure Amendment on Nutrient Uptake of T. Aman–Mustard–Boro Cropping Pattern in Two Consecutive Years
3.2.1. Nutrient Uptake by T. Aman Rice
3.2.2. Nutrient Uptake by Mustard
3.2.3. Nutrient Uptake by Boro Rice
3.3. Effect of Lime and Manure Amendment on Soil Properties under T. Aman–Mustard–Boro Cropping Pattern
3.4. Correlation among Soil Properties and between Soil pH and Crop Yield in T. Aman–Mustard–Boro Cropping Pattern
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, Y.; Dhar, D.; Agarwal, B. Influence of organic nutrient management on Basmati rice (Oryza sativa)–wheat (Triticum aestivum)–green gram (Vigna radiata) cropping system. Indian J. Agron. 2011, 56, 169–175. [Google Scholar]
- Huang, X.; Wei, X.; Sang, T.; Zhao, Q.; Feng, Q.; Zhao, Y.; Li, C.; Zhu, C.; Lu, T.; Zhang, Z.; et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 2010, 42, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization. Production Year Book of 2008; Food and Agriculture Organization (FAO): Rome, Italy, 2008; Volume 67, p. 54. [Google Scholar]
- Bangladesh Bureau of Statistics. Statistical Year Book Bangladesh 2019; Bangladesh Bureau of Statistics: Dhaka, Bangladesh, 2020.
- SRDI. Land and Soil Statistical Appraisal Book of Bangladesh; Soil Resource Develop Institute (SRDI): Dhaka, Bangladesh, 2010. [Google Scholar]
- FRG. Fertilizer Recommendation Guide 2018; Bangladesh Agricultural Research Council (BARC): Dhaka, Bangladesh, 2018.
- Sureshkumar, P.; Geetha, P.; Bhindhu, P.S. Chemistry and fertility-Management of humid tropical soils of Kerala as influenced by topography and climate. Indian J. Fert. 2018, 14, 30–44. [Google Scholar]
- Nair, K.M.; Anilkumar, K.S.; Srinivas, S.; Sujatha, K.; Venkatesh, D.H.; Naidu, L.G.K.; Sarkar, D.; Rajasekharan, P. Agro-Ecology of Kerala; National Bureau of Soil Survey and Land Use Planning: Nagpur, India, 2011; p. 408. [Google Scholar]
- Nair, K.M.; Sureshkumar, P.; Narayanankutty, M.C. Soils of Kerala. In Soil Fertility Assessment and Information Management for Enhancing Crop Productivity in Kerala; Rajasekharan, P., Nair, K.M., Rajasree, G., Sureshkumar, P., Narayanankutty, M.C., Eds.; Kerala State Planning Board: Thiruvananthapuram, India, 2013; pp. 72–92. [Google Scholar]
- Ryan, P.R.; Tyerman, S.D.; Sasaki, T.; Furuichi, T.; Yamamoto, Y.; Zhang, W.H.; Delhaize, E. The identification of aluminium-resistance genes provides opportunities for enhancing crop production on acid soils. J. Exp. Bot. 2011, 62, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Delhi, India, 2016. [Google Scholar]
- Rossel, R.V.; McBratney, A.B. A response-surface calibration model for rapid and versatile site-specific lime-requirement predictions in south-eastern Australia. Soil Res. 2001, 39, 185–201. [Google Scholar] [CrossRef]
- Barrow, N.J. The effects of pH on phosphate uptake from the soil. Plant Soil 2017, 410, 401–410. [Google Scholar] [CrossRef]
- Aye, N.S.; Sale, P.W.G.; Tang, C.X. The impact of long-term liming on soil organic carbon and aggregate stability in low-input acid soils. Biol. Fert. Soils 2016, 52, 697–709. [Google Scholar] [CrossRef]
- Simonsson, M.; Östlund, A.; Renfjäll, L.; Sigtryggsson, C.; Börjesson, G.; Kätterer, T. Pools and solubility of soil phosphorus as affected by liming in long-term agricultural field experiments. Geoderma 2018, 315, 208–219. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Liao, P.; Huang, S.; van Gestel, N.C.; Zeng, Y.J.; Wu, Z.M.; van Groenigen, K.J. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Res. 2018, 216, 217–224. [Google Scholar] [CrossRef]
- Liao, P.; Liu, L.; He, Y.X.; Tang, G.; Zhang, J.; Zeng, Y.J.; Wu, Z.M.; Huang, S. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system. Acta Agron. Sin. 2020, 46, 84–92. (In Chinese) [Google Scholar]
- Rahman, M.A.; Chikushi, J.; Duxbury, J.M.; Meisner, C.A.; Lauren, J.G.; Yasunaga, E. Chemical control of soil environment by lime and nutrients to improve the productivity of acidic alluvial soils under rice-wheat cropping system in Bangladesh. Environ. Control Biol. 2005, 43, 259–266. [Google Scholar] [CrossRef]
- Holland, J.E.; Bennett, A.E.; Newton, A.C.; White, P.J.; McKenzie, B.M.; George, T.S.; Pakeman, R.J.; Bailey, J.S.; Fornara, D.A.; Hayes, R.C. Liming impacts on soils, crops and biodiversity in the UK: A review. Sci. Total Environ. 2018, 610–611, 316–332. [Google Scholar] [CrossRef] [PubMed]
- Jafer, D.G.; Hailu, G. Application of lime for acid soil amelioration and better soybean performance in South Western Ethiopia. J. Biol. Agric. Healthc. 2017, 7, 95–100. [Google Scholar]
- Kunhikrishnan, A.; Thangarajan, R.; Bolan, N.; Xu, Y.; Mandal, S.; Gleeson, D.; Seshadri, B.; Zaman, M.; Barton, L.; Tang, C.; et al. Functional relationships of soil acidification, liming, and greenhouse gas flux. Adv. Agron. 2016, 139, 1–71. [Google Scholar]
- Alam, M.K.; Salahin, N.; Islam, S.; Begum, R.A.; Hasanuzzaman, M.; Islam, M.S.; Rahman, M.M. Patterns of change in soil manure, physical properties and crop productivity under tillage practices and cropping systems in Bangladesh. J. Agric. Sci. 2017, 155, 216–238. [Google Scholar] [CrossRef]
- Liza, M.M.J.; Islam, M.R.; Jahiruddin, M.; Hasan, M.M.; Alam, M.A.; Shamsuzzaman, S.M.; Samsuri, A.W. Residual Effects of Organic Manures with Different Levels of Chemical Fertilizers on Rice. Life Sci. J. 2014, 11, 6–12. [Google Scholar]
- Islam, M.R.; Rashid, M.B.; Siddique, A.B.; Afroz, H. Integrated effects of manures and fertilizers on the yield and nutrient uptake by BRRI dhan49. J. Bangladesh Agric. Univ. 2014, 12, 67–72. [Google Scholar] [CrossRef] [Green Version]
- Kobierski, M.; Bartkowiak, A.; Lemanowicz, J.; Piekarczyk, M. Impact of poultry manure fertilization on chemical and biochemical properties of soils. Plant Soil Environ. 2017, 63, 558–563. [Google Scholar]
- Nweke, I.A.; Nsoanya, L.N. Effect of Cowdung and Urea Fertilization on Soil Properties, Growth, and Yield of Cucumber (Cucumis sativus L). J. Agric. Ecol. Res. Int. 2015, 3, 81–88. [Google Scholar]
- Rahman, M.S.; Islam, M.R.; Naser, H.M.; Hoque, M.M.; Hossain, A. Effects of combined use of manures and fertilizers on the yield and nutrient uptake by BRRI dhan30. J. Bangladesh Soc. Agric. Sci. Technol. 2007, 4, 37–40. [Google Scholar]
- Sultana, B.S.; Mian, M.H.; Jahiruddin, M.; Rahman, M.M.; Siddique, M.N.E.A.; Sultana, J. Liming and Soil Amendments for Acidity Regulation and Nutrients Uptake by Potato-Mungbean-Rice Cropping Pattern in the Old Himalayan Piedmont Plain. Asian J. Agric. Hortic. Res. 2019, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, M.S.; Majumdar, B.; Kumar, K.; Patiram, R.R.N. Effect of Phosphorus, FYM and lime on yield, P uptake by maize and forms of soil acidity in typic hapludalf of Meghalaya. J. Indian Soc. Soil Sci. 2002, 50, 254–258. [Google Scholar]
- FAO. Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2. Agro- Ecological Regions of Bangladesh; United Nations Development Programme, Food and Agriculture Organization: Rome, Italia, 1988; pp. 212–221. [Google Scholar]
- Ghosh, A.B.; Bajaj, J.C.; Hasan, R.; Singh, D. Soil and Water Testing Methods. A Laboratory Manual; IARI: New Delhi, India, 1983; pp. 1–45. [Google Scholar]
- Walkey, A.J.; Black, A.I. Estimation of organic carbon by chromic acid titration method. J. Soil Sci. 1934, 25, 259–260. [Google Scholar]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part-2; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Bray, H.R.; Kurtz, L.T. Determination of total organic and available forms of phosphorus in soil. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973; pp. 69–182. [Google Scholar]
- Chapman, H.D. Cation-exchange capacity. In: Black, C.A. (Ed.), Methods of soil analysis-Chemical and microbiological properties. Agronomy 1965, 9, 891–901. [Google Scholar]
- Olsen, S.R.; Cole, C.U.; Watanable, F.S.; Deun, L.A. Estimation of Available P in Soil Extraction with Sodium Bicarbonate. US Department of Agriculture, Circular No. 939; US Government Print Office: Washington, DC, USA, 1954; Volume 939, p. 19.
- Rani, S.; Sukumari, P. Root Growth, Nutrient Uptake and Yield of Medicinal Rice Njavara under Different Establishment Techniques and Nutrient Sources. Am. J. Plant Sci. 2013, 4, 35343. [Google Scholar] [CrossRef] [Green Version]
- Ozlu, E.; Kumar, S. Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Sci. Total Environ. 2018, 626, 817–825. [Google Scholar] [CrossRef]
- Dong, J.; Yao, L.; Zhang, J.; Feng, J.; Sa, R. Feed Additive Manual; China Agricultural University Press: Beijing, China, 2001; p. 289. (In Chinese) [Google Scholar]
- Hue, N.; Craddock, G.; Adams, F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Am. J. 1986, 50, 28–34. [Google Scholar] [CrossRef]
- Eghball, B. Liming effects of beef cattle feedlot manure or compost. Commun. Soil Sci. Plant Anal. 1999, 30, 2563–2570. [Google Scholar] [CrossRef]
- Islam, M.R.; Akter, A.; Hoque, M.A.; Farzana, S.; Uddin, S.; Talukder, M.M.H.; Alsanie, W.F.; Gaber, A.; Hossain, M.A. Lime and Organic Manure Amendment: A Potential Approach for Sustaining Crop Productivity of the T. Aman-Maize-Fallow Cropping Pattern in Acidic Piedmont Soils. Sustainability 2021, 13, 9808. [Google Scholar] [CrossRef]
- Islam, M.R.; Jahan, R.; Uddin, S.; Harine, I.J.; Hoque, M.A.; Hassan, S.; Hassan, M.M.; Hossain, M.A. Lime and Organic Manure Amendment Enhances Crop Productivity of Wheat–Mungbean–T. Aman Cropping Pattern in Acidic Piedmont Soils. Agronomy 2021, 11, 1595. [Google Scholar] [CrossRef]
- Uddin, U.; Nitu, T.T.; Milu, U.M.; Nasreen, S.S.; Hosenuzzaman, M.; Haque, M.E.; Hossain, B.; Jahiruddin, M.; Bell, R.W.; Müller, C.; et al. Ammonia fluxes and emission factors under an intensively managed wetland rice ecosystem. Environ. Sci. Process. Impacts 2021, 23, 132–143. [Google Scholar] [CrossRef]
- Van Chuong, n. Effect of lime, organic and inorganic fertilizers on soil chemical properties and yield of chilli (Capsicum frutescens L.). AGU Int. J. Sci. 2019, 7, 84–90. [Google Scholar]
- Naher, U.A.; Hashem, M.A.; Mitra, B.K.; Uddin, M.K.; Saleque, M.A. Effect of Rice Straw and Lime on Phosphorus and Potassium Mineralization from Cowdung and Poultry Manure under Covered and Uncovered Conditions in the Tropical Environment. Pak. J. Biol. Sci. 2004, 7, 45–48. [Google Scholar] [CrossRef] [Green Version]
- Mosharrof, M.; Uddin, M.K.; Jusop, S.; Sulaiman, M.F.; Shamsuzzaman, S.M.; Haque, A.N. Changes in Acidic Soil Chemical Properties and Carbon Dioxide Emission Due to Biochar and Lime Treatments. Agriculture 2021, 11, 219. [Google Scholar] [CrossRef]
- Yagi, R.; Ferreira, M.E.; Cruz, M.; Barbosa, J. Organic matter fractions and soil fertility under the influence of liming, vermicompost and cattle manure. Sci. Agric. 2003, 60, 549–557. [Google Scholar] [CrossRef]
- Kisić, I.; Bašić, F.; Mešić, M.; Butorac, A.; Željka, V. The Effect of Fertilization and Limingon Some Soil Chemical Properties of Eutric Gleysol. Agric. Conspec. Sci. 2004, 69, 43–49. [Google Scholar]
- Caires, E.F.; Garhuio, F.J.; Churka, S.; Barth, G.; Correa, J.C.L. Effects of Soil Acidity Amelioration by Surface Liming on No-till corn, soybean and wheat root growth and yield. Eur. J. Agron. 2008, 28, 57–64. [Google Scholar] [CrossRef]
- Ernani, P.R.; Bayer, C.; Maestri, L. Corn yield as affected by liming and tillage system on an acid Brazilian Oxisol. Agron. J. 2002, 94, 305–309. [Google Scholar] [CrossRef]
- Zangani, E.; Afsahi, K.; Shekari, F.; Sweeney, E.M.; Mastinu, A. Nitrogen and Phosphorus Addition to Soil Improves Seed Yield, Foliar Stomatal Conductance, and the Photosynthetic Response of Rapeseed (Brassica napus L.). Agriculture 2021, 11, 483. [Google Scholar] [CrossRef]
- Murphy, P.N.C.; Sims, J.T. Effects of Lime and Phosphorus Application on Phosphorus Runoff Risk. Water Air Soil Pollut. 2012, 2012, 223. [Google Scholar] [CrossRef]
- Tang, C.; Rene, Z.; Diatloff, E.; Gazey, C. Response of wheat and barley to liming on a sandy soil with subsoil acidity. Field Crops Res. 2003, 80, 235–244. [Google Scholar] [CrossRef]
- Tsakelidou, K. Effect of calcium carbonate as determined by lime requirement buffer pH methods on soil characteristics and yield of sorghum plants. Commun. Soil Sci. Plant Anal. 2000, 31, 1249–1260. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C. Ameliorating Soil Acidity of Tropical Oxisols by Liming for Sustainable Crop Production. Adv. Agron. 2008, 99, 345–399. [Google Scholar]
- Asrat, M.; Gebrekidan, H.; Yli–Halla, H.; Bedadi, B.; Negassa, W. Effect of integrated use of lime, manure and mineral P fertilizer on bread wheat (Triticum aestivum) yield, P uptake and status of residual soil P on acidic soils of Gozamin district, North–Western Ethiopia. J. Agric. For. Fish. 2014, 3, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Whalen, J.K.; Chang, C.; Clayton, G.W. Cattle manure and lime amendments to improve crop production of acidic soils in northern Alberta. Can. J. Soil Sci. 2002, 82, 227–238. [Google Scholar] [CrossRef]
- Sukristiyonubowo, S.; Wibowo, H.; Dariah, A. Management of acid newly opened wetland rice fields. Glob. Adv. Res. J. Agric. Sci. 2013, 2, 174–180. [Google Scholar]
- Halim, A.; Siddique, M.N.E.A.; Sarker, B.C.; Islam, M.J.; Hossain, M.F.; Kamaruzzaman, M. Assessment of Nutrient Dynamics Affected by Different Levels of Lime in a Mungbean Field of the Old Himalayan Piedmont Soil in Bangladesh. J. Agric. Vet. Sci. 2014, 7, 101–112. [Google Scholar] [CrossRef]
- Kihanda, F.; Wood, M.; O’Neill, M. Effect of lime, farmyard manure and NP fertilizers on maize yield and soil chemical characteristics in an ando-humic nitosol of Central Kenya. Maize Production Technology for the Future: Challenges and Opportunities. In Proceedings of the Eastern and Southern Africa Regional Maize Conference, Addis Ababa, Ethiopia, 21–25 September 1998; pp. 21–25. [Google Scholar]
- Jahangir, M.M.R.; Islam, S.; Nitu, T.T.; Uddin, S.; Kabir, A.K.M.A.; Meah, M.B.; Islam, R. Bio-Compost-Based Integrated Soil Fertility Management Improves Post-Harvest Soil Structural and Elemental Quality in a Two-Year Conservation Agriculture Practice. Agronomy 2021, 11, 2101. [Google Scholar] [CrossRef]
- Karimmojeni, H.; Rahimian, H.; Alizadeh, H.; Yousefi, A.R.; Gonzalez-Andujar, J.L.; Sweeney, E.M.; Mastinu, A. Competitive Ability Effects of Datura stramonium L. and Xanthium strumarium L. on the Development of Maize (Zea mays) Seeds. Plants 2021, 10, 1922. [Google Scholar] [CrossRef] [PubMed]
Treatment | Description |
---|---|
T1 | Control (no lime and organic amendment) |
T2 | Lime-1 (Dololime 1 t ha−1) |
T3 | Lime-2 (Dololime 2 t ha−1) |
T4 | OM-1 (Cow dung 5 t ha−1) |
T5 | OM-2 (Poultry manure 3 t ha−1) |
T6 | Lime-1 OM-1 (Dololime 1 t ha−1, Cow dung 5 t ha−1) |
T7 | Lime-1 OM-2 (Dololime 1 t ha−1, Poultry manure 3 t ha−1) |
T8 | Lime-2 OM-1 (Dololime 2 t ha−1, Cow dung 5 t ha−1) |
T9 | Lime-2 OM-2 (Dololime 2 t ha−1, Poultry manure 3 t ha−1) |
Manure | Dry Matter Content (%) | C (g kg−1) | N (g kg−1) | P (g kg−1) | S (g kg−1) | Ca (g kg−1) | Mg (g kg−1) | pH (Water) | Source |
---|---|---|---|---|---|---|---|---|---|
Cow dung | 65.3 | 330 | 12.3 | 4.8 | 2.2 | 4.1 | 16.6 | 7.5 | Local household |
Poultry manure | 76.8 | 339 | 30.9 | 23.6 | 5.3 | 6 | 18.9 | 8 | Local poultry farm |
Dololime | - | - | - | - | - | 206 | 109 | 8.2 | Local market |
Grain Yield (t ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|
Treatment | T. Aman | Mustard | Boro | System Productivity (t ha−1) | ||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 5.0 ± 0.29 | 4.2 ± 0.12 c | 1.2 ± 0.07 b | 1.3 ± 0.04 d | 3.9 ± 0.23 b | 4.2 ± 0.12 c | 10.1 ± 0.58 | 9.7 ± 0.28 b |
T2 | 5.1 ± 0.29 | 4.4 ± 0.09 bc | 1.5 ± 0.08 ab | 1.5 ± 0.03 abc | 5.2 ± 0.30 ab | 5.9 ± 0.12 ab | 11.7 ± 0.68 | 11.8 ± 0.24 ab |
T3 | 5.2 ± 0.30 | 4.4 ± 0.14 bc | 1.6 ± 0.09 a | 1.6 ± 0.05 ab | 5.5 ± 0.32 ab | 6.1 ± 0.19 ab | 12.3 ± 0.71 | 12.1 ± 0.39 ab |
T4 | 5.3 ± 0.30 | 4.4 ± 0.18 bc | 1.4 ± 0.08 ab | 1.3 ± 0.05 cd | 4.8 ± 0.27 ab | 5.2 ± 0.21 b | 11.4 ± 0.66 | 11.0 ± 0.44 ab |
T5 | 5.4 ± 0.31 | 4.8 ± 0.14 ab | 1.4 ± 0.08 ab | 1.4 ± 0.04 abcd | 4.8 ± 0.28 ab | 5.4 ± 0.16 ab | 11.6 ± 0.67 | 11.8 ± 0.34 ab |
T6 | 5.1 ± 0.29 | 4.3 ± 0.15 c | 1.6 ± 0.09 a | 1.6 ± 0.06 ab | 5.4 ± 0.31 ab | 5.8 ± 0.20 ab | 12.0 ± 0.69 | 11.7 ± 0.41 ab |
T7 | 5.4 ± 0.31 | 4.9 ± 0.14 a | 1.6 ± 0.09 a | 1.7 ± 0.05 ab | 5.5 ± 0.32 a | 6.1 ± 0.18 ab | 12.6 ± 0.72 | 12.6 ± 0.36 a |
T8 | 5.3 ± 0.30 | 4.8 ± 0.10 ab | 1.6 ± 0.09 a | 1.7 ± 0.03 ab | 5.6 ± 0.33 a | 6.1 ± 0.12 ab | 12.5 ± 0.72 | 12.6 ± 0.26 a |
T9 | 5.2 ± 0.30 | 4.6 ± 0.13 b | 1.7 ± 0.10 a | 1.7 ± 0.05 a | 5.7 ± 0.33 a | 6.2 ± 0.18 a | 12.6 ± 0.73 | 12.6 ± 0.36 a |
p-value | 0.954 | 0.035 | 0.022 | 0 | 0.026 | 0 | 0.351 | 0.001 |
Straw Yield (t ha−1) | ||||||||
Treatment | T. Aman | Mustard | Boro | |||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |||
T1 | 5.1 ± 0.29 | 4.5 ± 0.13 | 2.9 ± 0.17 | 2.6 ± 0.08 d | 4.8 ± 0.27 | 4.5 ± 0.13 c | ||
T2 | 5.2 ± 0.30 | 4.7 ± 0.10 | 3.5 ± 0.20 | 3.4 ± 0.07 abc | 6.2 ± 0.36 | 6.4 ± 0.13 ab | ||
T3 | 5.4 ± 0.31 | 4.6 ± 0.15 | 3.7 ± 0.21 | 3.7 ± 0.12 abc | 6.4 ± 0.37 | 6.7 ± 0.21 ab | ||
T4 | 5.4 ± 0.31 | 4.7 ± 0.19 | 3.2 ± 0.18 | 2.8 ± 0.11 d | 5.5 ± 0.32 | 5.7 ± 0.23 b | ||
T5 | 5.5 ± 0.31 | 4.8 ± 0.14 | 3.4 ± 0.19 | 3.1 ± 0.09 bcd | 5.7 ± 0.33 | 5.9 ± 0.17 ab | ||
T6 | 5.1 ± 0.30 | 4.4 ± 0.15 | 3.7 ± 0.21 | 3.7 ± 0.13 abc | 6.2 ± 0.36 | 6.4 ± 0.22 ab | ||
T7 | 5.5 ± 0.32 | 4.9 ± 0.14 | 3.9 ± 0.22 | 3.8 ± 0.11 a | 6.2 ± 0.36 | 6.6 ± 0.19 ab | ||
T8 | 5.6 ± 0.32 | 4.8 ± 0.10 | 3.9 ± 0.22 | 3.8 ± 0.08 ab | 6.3 ± 0.37 | 6.6 ± 0.13 ab | ||
T9 | 5.3 ± 0.31 | 4.6 ± 0.13 | 3.9 ± 0.23 | 3.9 ± 0.11 a | 6.5 ± 0.37 | 6.8 ± 0.20 a | ||
p-value | 0.904 | 0.256 | 0.051 | 0 | 0.075 | 0 |
T. Aman Rice | ||||||||
---|---|---|---|---|---|---|---|---|
Treatments | Total N Uptake (kg ha−1) | Total P Uptake (kg ha−1) | Total K Uptake (kg ha−1) | Total S Uptake (kg ha−1) | ||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 66.1 ± 3.81 c | 56.7 ± 1.64 d | 16.5 ± 0.95 d | 14.2 ± 0.41 e | 69.5 ± 4.01 b | 61.1 ± 1.76 c | 22.6 ± 1.30 b | 19.5 ± 0.56 d |
T2 | 73.3 ± 4.23 bc | 64.6 ± 1.31 cd | 20.0 ± 1.15 cd | 17.7 ± 0.36 d | 77.3 ± 4.46 ab | 69.4 ± 1.41 b | 25.0 ± 1.45 ab | 22.2 ± 0.45 cd |
T3 | 77.1 ± 4.45 abc | 66.2 ± 2.10 cd | 21.8 ± 1.26 abc | 18.7 ± 0.59 bcd | 81.7 ± 4.72 ab | 69.7 ± 2.22 b | 26.8 ± 1.55 ab | 22.9 ± 0.73 bcd |
T4 | 79.0 ± 4.56 abc | 67.0 ± 2.71 bcd | 20.2 ± 1.17 bcd | 17.2 ± 0.69 d | 79.0 ± 4.56 ab | 67.9 ± 2.75 b | 26.7 ± 1.54 ab | 22.7 ± 0.92 bcd |
T5 | 84.3 ± 4.86 ab | 74.6 ± 2.21 abc | 21.7 ± 1.25 abc | 19.2 ± 0.57 abcd | 82.5 ± 4.76 ab | 72.4 ± 2.15 ab | 28.2 ± 1.63 ab | 24.9 ± 0.74 bc |
T6 | 81.2 ± 4.69 ab | 68.9 ± 2.39 abc | 21.3 ± 1.23 bc | 18.1 ± 0.63 cd | 79.7 ± 4.60 ab | 67.9 ± 2.35 b | 28.5 ± 1.64 ab | 24.2 ± 0.84 bc |
T7 | 87.6 ± 5.06 a | 78.3 ± 2.26 a | 24.6 ± 1.42 a | 21.9 ± 0.63 a | 87.8 ± 5.07 a | 77.8 ± 2.25 a | 32.7 ± 1.89 a | 29.2 ± 0.84 a |
T8 | 86.7 ± 5.00 ab | 78.1 ± 1.58 ab | 23.5 ± 1.36 abc | 20.9 ± 0.42 abc | 88.7 ± 5.12 a | 77.2 ± 1.57 a | 32.0 ± 1.85 a | 28.5 ± 0.58 a |
T9 | 88.3 ± 5.10 a | 77.3 ± 2.24 ab | 24.0 ± 1.38 ab | 20.9 ± 0.61 abc | 86.6 ± 5.00 a | 75.3 ± 2.19 a | 33.2 ± 1.92 a | 29.0 ± 0.84 a |
p-value | 0.042 | 0 | 0.016 | 0 | 0.043 | 0.001 | 0.006 | 0 |
Mustard | ||||||||
Treatments | Total N Uptake (kg ha−1) | Total P Uptake (kg ha−1) | Total K Uptake (kg ha−1) | Total S Uptake (kg ha−1) | ||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 40.2 ± 2.32 c | 40.9 ± 1.18 e | 17.3 ± 1.00 c | 17.0 ± 0.49 e | 44.4 ± 2.57 b | 42.0 ± 1.07 b | 22.7 ± 1.31 b | 23.1 ± 0.67 f |
T2 | 51.8 ± 2.99 abc | 53.1 ± 1.08 cd | 22.7 ± 1.31 abc | 22.9 ± 0.46 cd | 58.3 ± 3.36 ab | 57.7 ± 1.57 ab | 29.4 ± 1.69 ab | 30.1 ± 0.61 bcde |
T3 | 58.8 ± 3.39 b | 58.3 ± 1.85 bc | 25.3 ± 1.46 ab | 25.1 ± 0.80 bc | 63.0 ± 3.64 a | 62.3 ± 1.98 ab | 32.4 ± 1.87 a | 32.2 ± 1.02 abcd |
T4 | 47.6 ± 2.75 bc | 45.3 ± 1.83 de | 20.6 ± 1.19 bc | 19.2 ± 0.78 de | 53.3 ± 3.07 ab | 48.6 ± 1.97 ab | 27.2 ± 1.57 ab | 25.8 ± 1.04 ef |
T5 | 51.1 ± 2.95 abc | 50.3 ± 1.49 cde | 22.3 ± 1.28 abc | 21.5 ± 0.64 cde | 56.2 ± 3.25 ab | 53.1 ± 1.57 ab | 28.4 ± 1.64 ab | 28.0 ± 0.83 de |
T6 | 58.7 ± 3.39 ab | 59.9 ± 2.08 abc | 25.4 ± 1.47 ab | 25.7 ± 0.89 bc | 62.6 ± 3.62 ab | 62.6 ± 2.17 ab | 32.0 ± 1.85 ab | 32.7 ± 1.13 abcd |
T7 | 63.4 ± 3.66 ab | 64.5 ± 1.86 ab | 27.4 ± 1.58 ab | 27.7 ± 0.80 abc | 65.9 ± 3.80 a | 66.0 ± 1.91 a | 33.9 ± 1.96 a | 34.5 ± 1.00 ab |
T8 | 64.8 ± 3.74 ab | 64.8 ± 1.31 ab | 28.4 ± 1.64 a | 28.2 ± 0.57 ab | 66.7 ± 3.85 a | 65.9 ± 1.34 a | 34.3 ± 1.98 a | 34.4 ± 0.70 ab |
T9 | 67.4 ± 3.89 a | 67.9 ± 1.97 a | 29.4 ± 1.70 a | 29.5 ± 0.86 a | 69.3 ± 4.00 a | 69.0 ± 2.00 a | 35.7 ± 2.06 a | 36.0 ± 1.05 a |
p-value | 0.001 | 0 | 0.001 | 0 | 0.006 | 0.007 | 0.004 | 0 |
Boro Rice | ||||||||
Treatments | Total N Uptake (kg ha−1) | Total P Uptake (kg ha−1) | Total K Uptake (kg ha−1) | Total S Uptake (kg ha−1) | ||||
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | 2018 | 2019 | |
T1 | 54.1 ± 3.12 e | 55.5 ± 1.60 e | 13.2 ± 0.76 e | 13.3 ± 0.38 f | 81.9 ± 4.73 d | 78.7 ± 2.27 d | 19.2 ± 1.11 g | 19.3 ± 0.56 g |
T2 | 81.0 ± 4.67 cd | 90.0 ± 1.83 cd | 21.8 ± 1.26 bcd | 23.9 ± 0.48 de | 117.0 ± 6.76 bc | 123.2 ± 2.50 bc | 33.9 ± 1.96 de | 36.9 ± 0.75 d |
T3 | 88.9 ± 5.13 abcd | 97.5 ± 3.10 bcd | 24.6 ± 1.42 abcd | 26.6 ± 0.85 cd | 127.6 ± 7.37 ab | 134.7 ± 4.28 ab | 39.5 ± 2.28 bcd | 42.7 ± 1.36 c |
T4 | 76.4 ± 4.41 d | 82.8 ± 3.35 d | 18.6 ± 1.07 de | 20.0 ± 0.81 e | 103.0 ± 5.95 c | 108.4 ± 4.38 c | 28.0 ± 1.61 f | 30.0 ± 1.21 f |
T5 | 78.0 ± 4.50 d | 86.5 ± 2.56 cd | 20.0 ± 1.15 cde | 21.9 ± 0.65 de | 111.0 ± 6.41 bc | 117.0 ± 3.47 bc | 30.7 ± 1.77 ef | 33.3 ± 0.99 e |
T6 | 89.7 ± 5.18 abcd | 96.2 ± 3.33 bcd | 24.6 ± 1.42 abcd | 26.2 ± 0.91 cd | 120.9 ± 6.98 abc | 126.5 ± 4.38 bc | 36.0 ± 2.08 cde | 38.3 ± 1.33 d |
T7 | 92.5 ± 5.34 abc | 101.1 ± 2.92 abc | 26.9 ± 1.55 abc | 29.1 ± 0.84 abc | 126.2 ± 7.28 ab | 135.1 ± 3.90 ab | 39.6 ± 2.29 abc | 42.9 ± 1.24 c |
T8 | 97.0 ± 5.60 ab | 104.2 ± 2.11 ab | 29.0 ± 1.67 ab | 31.0 ± 0.63 ab | 133.3 ± 7.70 ab | 140.4 ± 2.85 ab | 43.4 ± 2.50 ab | 46.2 ± 0.94 b |
T9 | 101.9 ± 5.88 a | 110.5 ± 3.21 a | 31.2 ± 1.80 a | 33.6 ± 0.97 a | 137.3 ± 7.93 a | 145.4 ± 4.23 a | 45.7 ± 2.64 a | 49.1 ± 1.43 a |
p-value | 0 | 0 | 0 | 0 | 0.002 | 0 | 0 | 0 |
Treatments | SOM Content (%) | Soil TN (%) | Available P (ppm) | Exchangeable Ca (cmolc/kg) | ||||
---|---|---|---|---|---|---|---|---|
Before | After | Before | After | Before | After | Before | After | |
T1 | 1.51 ± 0.13 | 1.28 ± 0.11 e | 0.11 ± 0.01 | 0.09 ± 0.02 d | 6.92 ± 0.19 | 6.65 ± 0.14 i | 5.10 ± 0.12 | 4.60 ± 0.11 h |
T2 | 1.51 ± 0.13 | 1.39 ± 0.12 d | 0.11 ± 0.01 | 0.11 ± 0.02 c | 6.92 ± 0.19 | 8.96 ± 0.12 g | 5.10 ± 0.12 | 5.79 ± 0.12 f |
T3 | 1.51 ± 0.13 | 1.41 ± 0.10 d | 0.11 ± 0.01 | 0.11 ± 0.03 c | 6.92 ± 0.19 | 9.89 ± 0.12 d | 5.10 ± 0.12 | 6.09 ± 0.14 c |
T4 | 1.51 ± 0.13 | 1.47 ± 0.12 c | 0.11 ± 0.01 | 0.15 ± 0.03 | 6.92 ± 0.19 | 8.36 ± 0.21 h | 5.10 ± 0.12 | 5.61 ± 0.13 g |
T5 | 1.51 ± 0.13 | 1.51 ± 0.14 b | 0.12 ± 0.01 | 0.16 ± 0.03 b | 6.92 ± 0.19 | 9.25 ± 0.12 f | 5.10 ± 0.12 | 5.92 ± 0.15 e |
T6 | 1.51 ± 0.13 | 1.49 ± 0.13 bc | 0.11 ± 0.01 | 0.16 ± 0.03 b | 6.92 ± 0.19 | 9.73 ± 0.18 e | 5.10 ± 0.12 | 6.01 ± 0.17 d |
T7 | 1.51 ± 0.13 | 1.54 ± 0.12 a | 0.11 ± 0.01 | 0.18 ± 0.02 a | 6.92 ± 0.19 | 10.23 ± 0.22 c | 5.10 ± 0.12 | 6.05 ± 0.21 cd |
T8 | 1.51 ± 0.13 | 1.48 ± 0.11 c | 0.11 ± 0.01 | 0.16 ± 0.03 b | 6.92 ± 0.19 | 10.79 ± 0.23 b | 5.10 ± 0.12 | 6.28 ± 0.26 b |
T9 | 1.51 ± 0.13 | 1.54 ± 0.11 a | 0.11 ± 0.01 | 0.18 ± 0.03 a | 6.92 ± 0.19 | 11.32 ± 0.32 a | 5.10 ± 0.12 | 6.76 ± 0.33 a |
p-value | - | 0 | - | 0 | - | 0 | - | 0 |
Treatments | Exchangeable Mg (cmolc/kg) | pH | EC (dS/m) | CEC (cmolc/kg) | ||||
Before | After | Before | After | Before | After | Before | After | |
T1 | 1.33 ± 0.12 | 1.19 ± 0.08 h | 4.57 ± 0.15 | 4.02 ± 0.17 g | 0.22 ± 0.05 | 0.22 ± 0.04 g | 34.32 ± 1.89 | 32.52 ± 1.81 d |
T2 | 1.33 ± 0.12 | 1.57 ± 0.10 f | 4.57 ± 0.15 | 5.59 ± 0.21 e | 0.22 ± 0.05 | 0.28 ± 0.05 f | 34.32 ± 1.89 | 38.03 ± 1.53 bc |
T3 | 1.33 ± 0.12 | 1.67 ± 0.10 e | 4.57 ± 0.15 | 5.94 ± 0.17 d | 0.22 ± 0.05 | 0.33 ± 0.06 de | 34.32 ± 1.89 | 39.27 ± 1.16 bc |
T4 | 1.33 ± 0.12 | 1.45 ± 0.11 g | 4.57 ± 0.15 | 5.23 ± 0.21 f | 0.22 ± 0.05 | 0.31 ± 0.05 e | 34.32 ± 1.89 | 36.93 ± 1.27 c |
T5 | 1.33 ± 0.12 | 1.55 ± 0.12 f | 4.57 ± 0.15 | 5.59 ± 0.22 e | 0.22 ± 0.05 | 0.33 ± 0.04 de | 34.32 ± 1.89 | 37.81 ± 1.65 bc |
T6 | 1.33 ± 0.12 | 1.74 ± 0.12 d | 4.57 ± 0.15 | 5.84 ± 0.23 d | 0.22 ± 0.05 | 0.35 ± 0.05 d | 34.32 ± 1.89 | 39.53 ± 1.00 bc |
T7 | 1.33 ± 0.12 | 1.80 ± 0.12 c | 4.57 ± 0.15 | 6.09 ± 0.24 c | 0.22 ± 0.05 | 0.39 ± 0.05 c | 34.32 ± 1.89 | 39.63 ± 1.55 bc |
T8 | 1.33 ± 0.12 | 1.90 ± 0.16 b | 4.57 ± 0.15 | 6.24 ± 0.21 b | 0.22 ± 0.05 | 0.42 ± 0.06 b | 34.32 ± 1.89 | 40.81 ± 1.00 b |
T9 | 1.33 ± 0.12 | 2.07 ± 0.18 a | 4.57 ± 0.15 | 6.57 ± 0.20 a | 0.22 ± 0.05 | 0.46 ± 0.08 a | 34.32 ± 1.89 | 45.01 ± 0.93 a |
p-value | - | 0 | - | 0 | - | 0 | - | 0 |
SOM (%) | STN (%) | Available P (ppm) | Caex (cmol(+)/kg) | Mgex cmol(+)/kg) | Soil pH | EC (dS/m) | CEC (cmol(+)/kg) | |
---|---|---|---|---|---|---|---|---|
SOM content (%) | 1 | |||||||
Soil TN (%) | 0.946 *** | 1 | ||||||
Available P (ppm) | 0.795 *** | 0.739 ** | 1 | |||||
Caex (cmol(+)/kg) | 0.820 *** | 0.717 *** | 0.974 *** | 1 | ||||
Mgex (cmol(+)/kg) | 0.766 *** | 0.750 *** | 0.978 *** | 0.945 *** | 1 | |||
Soil pH | 0.814 *** | 0.721 *** | 0.983 *** | 0.983 *** | 0.915 *** | 1 | ||
EC (dS/m) | 0.841 *** | 0.856 *** | 0.935 *** | 0.899 *** | 0.950 *** | 0.890 *** | 1 | |
CEC (cmol(+)/kg) | 0.738 *** | 0.690 ** | 0.915 *** | 0.927 *** | 0.923 *** | 0.901 *** | 0.884 *** | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islam, M.R.; Talukder, M.M.H.; Hoque, M.A.; Uddin, S.; Hoque, T.S.; Rea, R.S.; Alorabi, M.; Gaber, A.; Kasim, S. Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil. Agriculture 2021, 11, 1070. https://doi.org/10.3390/agriculture11111070
Islam MR, Talukder MMH, Hoque MA, Uddin S, Hoque TS, Rea RS, Alorabi M, Gaber A, Kasim S. Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil. Agriculture. 2021; 11(11):1070. https://doi.org/10.3390/agriculture11111070
Chicago/Turabian StyleIslam, Mohammad Rafiqul, Mohammad Moyeed Hasan Talukder, Mohammad Anamul Hoque, Shihab Uddin, Tahsina Sharmin Hoque, Rafea Sultana Rea, Mohammed Alorabi, Ahmed Gaber, and Susilawati Kasim. 2021. "Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil" Agriculture 11, no. 11: 1070. https://doi.org/10.3390/agriculture11111070
APA StyleIslam, M. R., Talukder, M. M. H., Hoque, M. A., Uddin, S., Hoque, T. S., Rea, R. S., Alorabi, M., Gaber, A., & Kasim, S. (2021). Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil. Agriculture, 11(11), 1070. https://doi.org/10.3390/agriculture11111070