Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Growth Conditions
2.2. Harvest and Measurement of Parameters
2.3. Statistics Analysis
3. Results
3.1. Yield Performance
3.2. Relationships between Yield and Its Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Porkka, M.; Kummu, M.; Siebert, S.; Varis, O. From food insufficiency towards trade dependency: A historical analysis of global food availability. PLoS ONE 2013, 8, e82714. [Google Scholar] [CrossRef] [Green Version]
- Aisawi, K.; Reynolds, M.P.; Singh, R.P.; Foulkes, M.J. The physiological basis of the genetic progress in yield potential of CIMMYT spring wheat cultivars from 1966 to 2009. Crop Sci. 2015, 55, 1749–1764. [Google Scholar] [CrossRef]
- Battenfield, S.D.; Klatt, A.R.; Raun, W.R. Genetic yield potential improvement of semidwarf winter wheat in the Great Plains. Crop Sci. 2013, 53, 946–955. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Wang, X.; Wang, N.; Chen, Y.; Zhang, S. Changes in the yield and associated photosynthetic traits of dry-land winter wheat (Triticum aestivum L.) from the 1940s to the 2010s in Shaanxi Province of China. Field Crops Res. 2014, 167, 1–10. [Google Scholar] [CrossRef]
- Reynolds, M.; Bonnett, D.; Chapman, S.C.; Furbank, R.T.; Manès, Y.; Mather, D.E.; Parry, M.A.J. Raising yield potential of wheat. I. overview of a consortium approach and breeding strategies. J. Exp. Bot. 2011, 62, 439–452. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.D.; Shen, J.Y.; Kun, L.; Liu, Q.R.; Li, Q.Q. Effects of irrigation and wide-precision planting on water use, radiation interception, and grain yield of winter wheat in the North China Plain. Agric. Water Manag. 2013, 118, 87–92. [Google Scholar]
- Gao, F.M.; Ma, D.Y.; Yin, G.H.; Rasheed, A.; Dong, Y.; Xiao, Y.G.; Xia, X.C.; BU, X.X.; He, Z.H. Genetic progress in grain yield and physiological traits in Chinese wheat cultivars of southern Yellow and Huai Valley since 1950. Crop Sci. 2017, 57, 760–773. [Google Scholar] [CrossRef]
- Liu, C.; Jia, Y.; Zhang, J.; Sun, P.; Li, J.; Li, P.; Shi, S. Effects of sowing patterns and irrigation amount on dry matter and yield of spring wheat. J. Triticeae Crops 2019, 39, 728–737. [Google Scholar]
- Ali, S.; Xu, Y.; Ma, X.; Jia, Q.; Jia, Z. Farming practices and deficit irrigation management improve winter wheat crop water productivity and biomass through mitigated greenhouse gas intensity under semi-arid regions. Environ. Sci. Pollut. Res. 2021, 28, 27666–27680. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, F.; Liu, C.; Yu, H.; Cao, B.; Tian, S.; Liao, Y.; Siddique, K.H.M. Wheat yield improvements in China: Past trends and future directions. Field Crops Res. 2015, 177, 117–124. [Google Scholar] [CrossRef]
- Austin, R.; Bingham, J.; Blackwell, R.D.; Evans, L.T.; Taylor, M. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. J. Agric. Sci. 1980, 94, 675–689. [Google Scholar] [CrossRef]
- Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, S.; Sun, H.; Chen, S.; Liu, X. Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: A case study in the North China Plain. Eur. J. Agron. 2013, 50, 52–59. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J.; Duan, A.; Wang, J.; Shen, X.; Liu, X. Effects of different planting patterns on water use and yield performance of winter wheat in the Huang-Huai-Hai plain of China. Agric. Water Manag. 2007, 92, 41–47. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zhou, X.B.; Chen, Y.H.; Yu, S.L. Water consumption characteristics of winter wheat grown using different planting patterns and deficit irrigation regime. Agric. Water Manag. 2012, 105, 8–12. [Google Scholar]
- Klepeckas, M.; Janukaitien, I.; Vaguseviien, I.; Juknys, R. Effects of different sowing time to phenology and yield of winter wheat. Agric. Food Sci. 2020, 29, 346–358. [Google Scholar] [CrossRef]
- Shah, F.; Coulter, J.A.; Ye, C.; BU, W. Yield penalty due to delayed sowing of winter wheat and the mitigatory role of increased seeding rate. Eur. J. Agron. 2020, 119, 126120. [Google Scholar] [CrossRef]
- Abdelhadi, A.W.; El, A.; Bashir, M.A.; Hata, T. Evaluation of wheat bed planting system in irrigated vertisols of Sudan. Ama Agric. Mech. Asia Afr. Lat. Am. 2006, 37, 62–67. [Google Scholar]
- Choudhury, B.U.; Bouman, B.; Singh, A.K. Yield and water productivity of rice–wheat on raised beds at New Delhi, India. Field Crops Res. 2007, 100, 229–239. [Google Scholar] [CrossRef]
- Li, Q.; Bian, C.; Liu, X.; Ma, C.; Liu, Q. Winter wheat grain yield and water use efficiency in wide-precision planting pattern under deficit irrigation in North China Plain. Agric. Water Manag. 2015, 153, 71–76. [Google Scholar] [CrossRef]
- Bian, C.Y.; Ma, C.J.; Liu, X.H.; Gao, C.; Liu, Q.R.; Yan, Z.X.; Ren, Y.J.; Li, Q.Q. Responses of winter wheat yield and water use efficiency to irrigation frequency and planting pattern. PLoS ONE 2016, 11, e0154673. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.S. Effect of sowing patterns and nitrogen rates on quality traits and yield of wheat. J. Environ. Sci. Nat. Resour. 2012, 5, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhou, X.B.; Chen, Y.H. Effects of irrigation and precision planting patterns on photosynthetic product of wheat. Agron. J. 2016, 108, 2322–2328. [Google Scholar] [CrossRef]
- Castellanos-Navarrete, A.; Chocobar, A.; Cox, R.A.; Fonteyne, S.; Govaerts, B.; Jespers, N.; Kienle, F.; Sayre, K.D.; Verhulst, N. Yield and Yield Component, a Practical Guide for Comparing Crop Management Practices. J. Chem. Inf. Model 2013, 53, 1689–1699. [Google Scholar]
- Koester, R.P.; Skoneczka, J.A.; Cary, T.R.; Diers, B.W.; Ainsworth, E.A. Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J. Exp. Bot. 2014, 65, 3311–3321. [Google Scholar] [CrossRef]
- Shao, M.; Sun, L.; Zhao, K.; Xu, X.; Huang, L.; Wang, L.; Yan, L.; Ju, Z.C. Effects of different line spacing and seedling belt width on yield formation of broad-width fine sowing wheat. Agric. Biotechnol. 2020, 9, 29–33. [Google Scholar]
- Barroso, J.; Genna, N.G. Effect of row spacing and seeding rate on Russian Thistle (Salsola tragus) in spring barley and spring wheat. Plants 2021, 10, 126. [Google Scholar] [CrossRef] [PubMed]
- Brancourt-Hulmel, M.; Doussinault, G.; Lecomte, C.; Bérard, P.; Le Buanec, B.; Trottet, B. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Sci. 2003, 43, 37–45. [Google Scholar] [CrossRef]
- Beche, E.; Benin, G.; Silva, C.; Munaro, L.B.; Marchese, J.A. Genetic gain in yield and changes associated with physiological traits in Brazilian wheat during the 20th century. Eur. J. Agron. 2014, 61, 49–59. [Google Scholar] [CrossRef]
- Del Pozo, A.; Matus, I.; Serret, M.D.; Araus, J.L. Agronomic and physiological traits associated with breeding advances of wheat under high-productive Mediterranean conditions. The case of Chile. Environ. Exp. Bot. 2014, 103, 180–189. [Google Scholar] [CrossRef]
Genotype (G) | Sowing Pattern (SP) | 2017–2018 | 2018–2019 | 2019–2020 | Means of Three Years | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AGB | HI | GY | AGB | HI | GY | AGB | HI | GY | AGB | HI | GY | ||
G1 | LDN | 426 | 32.1 | 137 | 489 | 43.9 | 213 | 560 | 43.2 | 241 | 492 | 39.7 | 197 |
LDW | 846 | 41.6 | 351 | 611 | 49.1 | 301 | 1065 | 43.1 | 457 | 841 | 44.6 | 370 | |
BUN | 1098 | 43.5 | 477 | 957 | 44.2 | 430 | 1119 | 45.6 | 510 | 1058 | 44.9 | 472 | |
BUW | 914 | 40.9 | 374 | 1045 | 46.9 | 489 | 1241 | 44.5 | 552 | 1067 | 44.1 | 472 | |
G1-means | 821 | 38.2 | 335 | 775 | 46.0 | 358 | 996 | 44.1 | 440 | 864 | 42.8 | 378 | |
G19 | LDN | 486 | 49.2 | 239 | 538 | 48.8 | 263 | 538 | 45.9 | 249 | 521 | 48.0 | 250 |
LDW | 652 | 46.3 | 304 | 450 | 49.5 | 223 | 924 | 49.1 | 453 | 675 | 48.3 | 327 | |
BUN | 774 | 47.3 | 365 | 868 | 50.6 | 439 | 1170 | 45.9 | 538 | 937 | 47.9 | 447 | |
BUW | 871 | 49.4 | 431 | 1139 | 45.3 | 516 | 1140 | 47.8 | 545 | 1050 | 47.5 | 497 | |
G19-means | 696 | 48.1 | 335 | 749 | 48.6 | 360 | 943 | 47.2 | 446 | 796 | 48.0 | 380 | |
G30 | LDN | 542 | 46.9 | 255 | 718 | 44.8 | 322 | 465 | 43.5 | 203 | 575 | 45.1 | 260 |
LDW | 508 | 47.9 | 242 | 662 | 45.5 | 301 | 941 | 48.2 | 455 | 704 | 47.2 | 333 | |
BUN | 833 | 46.5 | 395 | 986 | 42.0 | 413 | 1296 | 46.6 | 604 | 1038 | 45.1 | 471 | |
BUW | 758 | 49.4 | 374 | 806 | 44.0 | 349 | 1199 | 46.5 | 558 | 921 | 46.6 | 427 | |
G30-means | 660 | 47.7 | 317 | 793 | 44.1 | 346 | 975 | 46.2 | 455 | 809 | 45.9 | 373 | |
G4 | LDN | 584 | 45.8 | 312 | 551 | 48.2 | 266 | 502 | 43.9 | 220 | 546 | 46.0 | 266 |
LDW | 760 | 45.9 | 349 | 635 | 46.7 | 295 | 1142 | 45.6 | 521 | 846 | 46.1 | 388 | |
BUN | 962 | 45.2 | 434 | 916 | 42.4 | 390 | 1291 | 46.7 | 603 | 1056 | 44.8 | 476 | |
BUW | 849 | 46.7 | 396 | 799 | 44.4 | 355 | 1308 | 48.1 | 629 | 985 | 46.4 | 460 | |
G4-means | 789 | 45.9 | 373 | 725 | 45.4 | 327 | 1061 | 46.1 | 493 | 858 | 45.8 | 397 | |
G | *** (74) | *** (1.6) | n.s | n.s | *** (1.4) | * (23) | n.s | *** (1.1) | n.s | ||||
SP | *** (74) | ** (1.6) | *** (41) | *** (56) | *** (1.4) | *** (23) | *** (95) | *** (1.1) | *** (46) | ||||
G × SP | ** (149) | *** (3.3) | ** (83) | *** (111) | *** (2.9) | *** (46) | n.s | * (2.3) | n.s |
Grain Yield (g m−2) | AGB (g m−2) | HI | Contribution Rate to Yield (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Range | Mean | CV (%) | Range | Mean | CV (%) | Range | Mean | CV (%) | AGB | HI |
208–744 | 433 | 34.3 | 401–1630 | 960 | 34.7 | 0.40–0.62 | 0.46 | 9.9 | 83.7 *** | 16.3 *** |
Genotype (G) | Sowing Pattern (SP) | 2017–2018 | 2018–2019 | 2019–2020 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SN | GN | TGW | SN | GN | TGW | SN | GN | TGW | ||
G1 | LDN | 138 | 32.7 | 30.1 | 159 | 44.3 | 30.8 | 157 | 48.4 | 31.6 |
LDW | 328 | 35.3 | 30.3 | 234 | 39.1 | 33.2 | 313 | 40.5 | 36.0 | |
BUN | 398 | 39.2 | 30.9 | 381 | 36.3 | 31.1 | 248 | 65.8 | 31.3 | |
BUW | 350 | 34.6 | 30.7 | 348 | 43.6 | 32.3 | 370 | 43.9 | 34.0 | |
G19 | LDN | 177 | 38.4 | 35.2 | 253 | 29.3 | 35.4 | 158 | 43.9 | 35.4 |
LDW | 314 | 26.1 | 37.8 | 269 | 23.8 | 34.8 | 260 | 54.3 | 32.1 | |
BUN | 380 | 27.9 | 34.4 | 279 | 45.7 | 34.4 | 350 | 47.2 | 32.5 | |
BUW | 352 | 33.7 | 36.5 | 375 | 37.9 | 36.3 | 336 | 44.9 | 36.0 | |
G30 | LDN | 169 | 44.9 | 33.3 | 214 | 42.3 | 35.6 | 166 | 32.2 | 37.9 |
LDW | 221 | 26.8 | 40.8 | 279 | 28.5 | 37.9 | 307 | 36.2 | 40.6 | |
BUN | 276 | 42.4 | 33.0 | 390 | 31.6 | 33.8 | 371 | 47.2 | 34.6b | |
BUW | 366 | 31.4 | 33.0 | 376 | 25.5 | 36.2 | 364 | 38.7 | 39.4 | |
G4 | LDN | 178 | 40.7 | 45.2 | 205 | 29.0 | 45.0 | 129 | 38.0 | 44.9 |
LDW | 304 | 28.3 | 40.8 | 243 | 29.1 | 41.8 | 261 | 46.6 | 42.8 | |
BUN | 343 | 31.7 | 40.8 | 334 | 29.1 | 39.9 | 303 | 50.9 | 39.2 | |
BUW | 268 | 36.8 | 42.9 | 316 | 27.2 | 41.3 | 311 | 51.1 | 39.7 | |
G | ** (26) | n.s | *** (0.3) | ** (20) | *** (2.2) | *** (0.3) | *** (22) | *** (2.2) | *** (0.2) | |
SP | *** (26) | ** (5) | *** (0.3) | *** (20) | *** (2.2) | *** (0.3) | *** (22) | *** (2.2) | *** (0.2) | |
G×SP | *** (52) | ** (10) | *** (0.5) | *** (39) | *** (4.6) | *** (0.6) | *** (44) | *** (4.3) | *** (0.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zhu, Y.; Dong, R.; Ren, M.; He, J.; Li, F. Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China. Agriculture 2021, 11, 1077. https://doi.org/10.3390/agriculture11111077
Chen T, Zhu Y, Dong R, Ren M, He J, Li F. Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China. Agriculture. 2021; 11(11):1077. https://doi.org/10.3390/agriculture11111077
Chicago/Turabian StyleChen, Ting, Yonghe Zhu, Rui Dong, Minjian Ren, Jin He, and Fengmin Li. 2021. "Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China" Agriculture 11, no. 11: 1077. https://doi.org/10.3390/agriculture11111077
APA StyleChen, T., Zhu, Y., Dong, R., Ren, M., He, J., & Li, F. (2021). Belt Uniform Sowing Pattern Boosts Yield of Different Winter Wheat Cultivars in Southwest China. Agriculture, 11(11), 1077. https://doi.org/10.3390/agriculture11111077