Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crop Yield under Rainfed Conditions
3.1.1. Maize
3.1.2. Wheat and Barley
3.2. Crop Yield under Irrigated Conditions in Two Bed Types
3.2.1. Maize
3.2.2. Wheat and Barley
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ureta, C.; González, E.J.; Espinosa, A.; Trueba, A.; Piñeyro-Nelson, A.; Álvarez-Buylla, E.R. Maize yield in Mexico under climate change. Agric. Syst. 2020, 177, 102697. [Google Scholar] [CrossRef]
- Sayre, K.; Hobbs, P. The raised-bed system of cultivation for irrigated production conditions. In Sustainable Agriculture and the International Rice-Wheat System; Lal, R., Hobbs, P.R., Uphoff, N., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 337–355. [Google Scholar]
- Chávez-Romero, Y.; Navarro-Noya, Y.E.; Reynoso-Martínez, S.C.; Sarria-Guzmán, Y.; Govaerts, B.; Verhulst, N.; Dendooven, L.; Luna-Guido, M. 16S metagenomics reveals changes in the soil bacterial community driven by soil organic C, N-fertilizer and tillage-crop residue management. Soil Tillage Res. 2016, 159, 1–8. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Lichter, K.; Dendooven, L.; Deckers, J. Influence of permanent raised bed planting and residue management on physical and chemical soil quality in rain fed maize/wheat systems. Plant Soil 2007, 291, 39–54. [Google Scholar] [CrossRef]
- Verhulst, N.; Kienle, F.; Sayre, K.D.; Deckers, J.; Raes, D.; Limon-Ortega, A.; Tijerina-Chavez, L.; Govaerts, B. Soil quality as affected by tillage-residue management in a wheat-maize irrigated bed planting system. Plant Soil 2011, 340, 453–466. [Google Scholar] [CrossRef]
- Fonteyne, S.; Martinez Gamiño, M.A.; Tejeda, A.S.; Verhulst, N. Conservation Agriculture Improves Long-term Yield and Soil Quality in Irrigated Maize-oats Rotation. Agronomy 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Fonteyne, S.; Burgueño, J.; Albarrán Contreras, B.A.; Andrio Enríquez, E.; Castillo Villaseñor, L.; Enyanche Velázquez, F.; Escobedo Cruz, H.; Espidio Balbuena, J.; Espinosa Solorio, A.; Garcia Meza, P.; et al. Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico. Land Degrad. Dev. 2021, 32, 2242–2256. [Google Scholar] [CrossRef]
- Verhulst, N.; Nelissen, V.; Jespers, N.; Haven, H.; Sayre, K.D.; Raes, D.; Deckers, J.; Govaerts, B. Soil water content, maize yield and its stability as affected by tillage and crop residue management in rainfed semi-arid highlands. Plant Soil 2011, 344, 73–85. [Google Scholar] [CrossRef]
- Williams, A.; Jordan, N.R.; Smith, R.G.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Koide, R.T.; Davis, A.S. A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Sci. Rep. 2018, 8, 8467. [Google Scholar] [CrossRef] [Green Version]
- Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Wojewódzki, P. A strip-till one-pass system as a component of conservation agriculture. Agronomy 2020, 10, 2015. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. Stable high yields with zero tillage and permanent bed planting? Field Crops Res. 2005, 94, 33–42. [Google Scholar] [CrossRef]
- Liu, Q.J.; Zhang, H.Y.; An, J.; Wu, Y.Z. Soil erosion processes on row sideslopes within contour ridging systems. Catena 2014, 115, 11–18. [Google Scholar] [CrossRef]
- Quinton, J.N.; Catt, J.A. The effects of minimal tillage and contour cultivation on surface runoff, soil loss and crop yield in the long-term Woburn Erosion Reference Experiment on sandy soil at Woburn, England. Soil Use Manag. 2004, 20, 343–349. [Google Scholar] [CrossRef]
- Gebreegziabher, T.; Nyssen, J.; Govaerts, B.; Getnet, F.; Behailu, M.; Haile, M.; Deckers, J. Contour furrows for in situ soil and water conservation, Tigray, Northern Ethiopia. Soil Tillage Res. 2009, 103, 257–264. [Google Scholar] [CrossRef]
- Yadav, G.S.; Saha, P.; Babu, S.; Das, A.; Layek, J.; Debnath, C. Effect of No-Till and Raised-Bed Planting on Soil Moisture Conservation and Productivity of Summer Maize (Zea mays) in Eastern Himalayas. Agric. Res. 2018, 7, 300–310. [Google Scholar] [CrossRef]
- Saldivia Tejeda, A.; Contreras Albarrán, B.A.; Fonteyne, S. Avances en Agricultura Sustentable, Resultados Plataformas de Investigación Bajío y INGP 2010–2019; CIMMYT: Texcoco, Mexico, 2021; ISBN 978-607-8263-80-6. [Google Scholar]
- Kang, S.; Liang, Z.; Pan, Y.; Shi, P.; Zhang, J. Alternate furrow irrigation for maize production in an arid area. Agric. Water Manag. 2000, 45, 267–274. [Google Scholar] [CrossRef]
- Tewabe, D.; Abebe, A.; Enyew, A.; Tsige, A. Determination of bed width on raised bed irrigation technique of wheat at Koga and Rib Irrigation Projects, North West, Ethiopia. Cogent Food Agric. 2020, 6, 1712767. [Google Scholar] [CrossRef]
- Gardeazabal, A.; Lunt, T.; Jahn, M.M.; Verhulst, N.; Hellin, J.; Govaerts, B. Knowledge management for innovation in agri-food systems: A conceptual framework. Knowl. Manag. Res. Pract. 2021. [CrossRef]
- Fonteyne, S.; Verhulst, N. Red de Plataformas de Investigación MasAgro Resultados PV 2018 y OI 2018–2019; CIMMYT: Texcoco, Mexico, 2020. [Google Scholar]
- CIMMYT. Yield, and Yield Components. “A Practical Guide for Comparing Crop Management Practices”; Centro Internacional de Mejoramiento de Maiz y Trigo (CIMMYT): Texcoco, Mexico, 2013. [Google Scholar]
- Erkossa, T.; Gizaw, A.; Stahr, K. Land preparation methods efficiency on the highland vertisols of Ethiopia. Irrig. Drain. 2004, 53, 69–75. [Google Scholar] [CrossRef]
- Jin, H.; Hongwen, L.; Kuhn, N.J.; Xuemin, Z.; Wenying, L. Soil loosening on permanent raised-beds in arid northwest China. Soil Tillage Res. 2007, 97, 172–183. [Google Scholar] [CrossRef]
- Celik, A.; Altikat, S.; Way, T.R. Strip tillage width effects on sunflower seed emergence and yield. Soil Tillage Res. 2013, 131, 20–27. [Google Scholar] [CrossRef]
- Fischer, R.A.; Moreno Ramos, O.H.; Ortiz Monasterio, I.; Sayre, K.D. Yield response to plant density, row spacing and raised beds in low latitude spring wheat with ample soil resources: An update. Field Crops Res. 2019, 232, 95–105. [Google Scholar] [CrossRef]
- Testa, G.; Reyneri, A.; Blandino, M. Maize grain yield enhancement through high plant density cultivation with different inter-row and intra-row spacings. Eur. J. Agron. 2016, 72, 28–37. [Google Scholar] [CrossRef]
- Flores-Gallardo, H.; Sifuentes-Ibarra, E.; Flores-Magdaleno, H.; Ojeda-Bustamante, W.; Cristo, Y.; Ramos-García, R. Técnicas de conservación del agua en riego por gravedad a nivel parcelario* Water conservation techniques in surface irrigation at plantation level. Rev. Mex. Cienc. Agrícolas 2014, 5, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Abd El-Halim, A.E.H.A.; Abd El-Razek, U.A.E.H. Effect of different irrigation intervals on water saving, water productivity and grain yield of maize (Zea mays L.) under the double ridge-furrow planting technique. Arch. Agron. Soil Sci. 2014, 60, 587–596. [Google Scholar] [CrossRef]
- Devkota, M.; Gupta, R.K.; Martius, C.; Lamers, J.P.A.; Devkota, K.P.; Sayre, K.D.; Vlek, P.L.G. Soil salinity management on raised beds with different furrow irrigation modes in salt-affected lands. Agric. Water Manag. 2015, 152, 243–250. [Google Scholar] [CrossRef]
- Akbar, G.; Ahmad, M.M.; Asif, M.; Hassan, I.; Hussain, Q.; Hamilton, G. Improved Soil Physical Properties, Yield and Water Productivity under Controlled Traffic, Raised-Bed Farming. Sarhad J. Agric. 2016, 32, 325–333. [Google Scholar] [CrossRef]
Site | State | Latitude (North) | Longitude (West) | Altitude (masl) | Climate | Water Regime | Precipi-tation (mm) |
---|---|---|---|---|---|---|---|
Cadereyta | Querétaro | 20.749 | 99.823 | 2000 | Semi-arid | Rainfed | 350 |
San Juan del Río I | Querétaro | 20.450 | 99.905 | 1972 | Semi-arid | Rainfed | 380 |
San Juan del Río III | Querétaro | 20.466 | 100.0912 | 1903 | Temperate Semi-dry | Irrigation | 550 |
Indaparapeo | Michoacán | 19.797 | 100.951 | 1888 | Temperate Subhumid | Rainfed | 800 |
Irapuato I | Guanajuato | 20.646 | 101.296 | 1720 | Temperate Subhumid | Irrigation | 692 |
Apaseo el Alto | Guanajuato | 20.360 | 100.567 | 1956 | Temperate Subhumid | Rainfed | 550 |
Pénjamo | Guanajuato | 20.314 | 101.837 | 1690 | Sub-humid Subhumid | Irrigation | 580 |
Texcoco I | Estado de México | 19.530 | 98.853 | 2240 | Temperate Subhumid | Rainfed | 625 |
Texcoco II | Estado de México | 19.530 | 98.853 | 2240 | Temperate Subhumid | Rainfed | 625 |
Site | Soil Type | Texture | %Clay | %Sand | %Silt | Hydraulic Conductivity (cm h−1) |
---|---|---|---|---|---|---|
Cadereyta | Vertisol | Clay Loam | 33.3 | 31.0 | 35.8 | 2.7 |
San Juan del Río I | Phaeozem | Sandy Loam | 41.2 | 20.5 | 38.0 | 2.5 |
San Juan del Río III | Vertisol | Clay Loam | - | - | - | 2.6 |
Indaparapeo | Vertisol | Loam | 33.0 | 31.2 | 35.8 | 2.5 |
Irapuato I | Vertisol | Clay Loam | 38.5 | 27.5 | 34.0 | 2.3 |
Apaseo el Alto | Vertisol | Clay | 43.8 | 30.5 | 25.8 | 0.7 |
Pénjamo | Vertisol | Clay | 44.5 | 29.2 | 26.3 | 0.4 |
Texcoco I | Phaeozem | Clay | 29.0 | 34.2 | 36.8 | 3.7 |
Texcoco II | Phaeozem | Clay | 29.0 | 34.0 | 37.0 | 4.0 |
Site | Evaluation Period | Cultivation (Cycle) | Bed Width (m) | NPK Fertilization * (kg ha−1) |
---|---|---|---|---|
Cadereyta | 2015–2019 | Maize (PV) | 0.80 and 1.6 | 11-21-11 |
San Juan del Río I | 2013–2018 | Maize (PV) | 0.75 and 1.5 | 55-22-11 |
San Juan del Río III | 2017–2019 | Maize (PV) Barley (OI) | 0.75 and 1.5 | 303-69-60 |
Indaparapeo | 2014–2018 | Maize (PV) | 0.75 and 1.5 | 175-46-30 |
Irapuato I | 2012–2018 | Maize (PV)/Wheat (OI) | 0.75 and 1.5 | 418-216-60 |
Apaseo el Alto | 2014–2018 | Maize (PV) | 0.75 and 1.5 | 156-60-60 |
Texcoco I | 2007–2019 | Maize/Wheat (PV) | 0.75 and 1.5 | 150-40-00 |
Texcoco II | 2008–2019 | Maize/Wheat (PV) | 0.75 and 1.5 | 150-40-00 |
Source of Variation | Degrees of Freedom | Sum of Squares | Medium Square | Value of F | Pr > F |
---|---|---|---|---|---|
Bed type | 1 | 0.667503 | 0.667503 | 0.35 | 0.5692 |
Site | 5 | 946.531031 | 189.306206 | 9.35 | <0.0001 |
Year (Site) | 28 | 556.879938 | 19.888569 | 30.76 | <0.0001 |
Site × Bed type | 5 | 7.121348 | 1.42427 | 2.19 | 0.0818 |
Year × Bed type (Site) | 27 | 17.213324 | 0.637531 | 0.6 | 0.9381 |
Error | 100 | 107.06939 | 1.070694 |
Source of Variation | Degrees of Freedom | Sum of Squares | Medium Square | Value of F | Pr > F |
---|---|---|---|---|---|
Bed type | 1 | 7.022311 | 7.022311 | 4.88 | 0.0858 |
Site | 2 | 157.523394 | 78.761697 | 1.59 | 0.2557 |
Year (Site) | 9 | 396.698389 | 44.077599 | 32.77 | <0.0001 |
Site × Bed type | 2 | 3.507335 | 1.753667 | 1.40 | 0.3150 |
Year × Bed type (Site) | 9 | 12.106804 | 1.345200 | 0.63 | 0.7626 |
Error | 58 | 122.896504 | 2.118905 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saldivia-Tejeda, A.; Fonteyne, S.; Guan, T.; Verhulst, N. Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico. Agriculture 2021, 11, 930. https://doi.org/10.3390/agriculture11100930
Saldivia-Tejeda A, Fonteyne S, Guan T, Verhulst N. Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico. Agriculture. 2021; 11(10):930. https://doi.org/10.3390/agriculture11100930
Chicago/Turabian StyleSaldivia-Tejeda, Abel, Simon Fonteyne, Taiyu Guan, and Nele Verhulst. 2021. "Permanent Bed Width Has Little Effect on Crop Yield under Rainfed and Irrigated Conditions across Central Mexico" Agriculture 11, no. 10: 930. https://doi.org/10.3390/agriculture11100930