# Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Study Object

#### 2.2. Parametric Design of the Rake

#### 2.3. Design Optimisation

- -
- Strengthening the flexed area with more material to reduce the tensions;
- -
- Re-dimensioning the parameters of the entire set, in a way that the tensions decrease in the failure area.

- Equivalent stress: the equal stress portrays the direct components. It is based on standard load failure criteria.
- Total deformation: this is the change in an object when there is a force applied. Authors such as Punarselvam et al. [31] stated that this is the most valuable parameter to analyse the stresses.

## 3. Results and Discussion

^{−7}MPa (minimum equivalent stress) and 155.81 MPa (maximum equivalent stress).

#### 3.1. Design Optimisation

#### 3.2. Possible Future Improvements

## 4. Conclusions

- -
- Sweep distance: the distance between the ends. This usually ranges between 50 and 70 cm;
- -
- A compression direction of 45° from the handle to the teeth, creating two lines at 45° from the two ends toward the embedment area of the handle.

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Niavis, S.; Tamvakis, N.; Manos, B.; Vlontzos, G. Assessing and Explaining the Efficiency of Extensive Olive Oil Farmers: The Case of Pelion Peninsula in Greece. Agriculture
**2018**, 8, 25. [Google Scholar] [CrossRef] [Green Version] - MAPAMA. Encuesta Sobre Superficies Y Rendimientos de Cultivos. Ministerio de Agricultura, Pesca y Alimentación. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2019_tcm30-536911.pdf (accessed on 20 June 2020).
- Triviño-Tarradas, P.; Carranza-Cañadas, P.; Mesas-Carrascosa, F.J.; Gonzalez-Sanchez, E.J. Evaluation of Agricultural Sustainability on a Mixed Vineyard and Olive-Grove Farm in Southern Spain through the INSPIA Model. Sustainability
**2020**, 12, 1090. [Google Scholar] [CrossRef] [Green Version] - Tempesta, T.; Vecchiato, D. Analysis of the Factors that Influence Olive Oil Demand in the Veneto Region (Italy). Agriculture
**2019**, 9, 154. [Google Scholar] [CrossRef] [Green Version] - Zambon, I.; Serra, P.; Salvia, R.; Salvati, L. Fallow Land, Recession and Socio-Demographic Local Contexts: Recent Dynamics in a Mediterranean Urban Fringe. Agriculture
**2018**, 8, 159. [Google Scholar] [CrossRef] [Green Version] - Consejería de Agricultura. El Olivar Andaluz. Unidad de Prospectiva. 2002. Available online: http://www.juntadeandalucia.es/agriculturaypesca/prospectiva/Olivar4_doc_sinAnexo.pdf (accessed on 24 June 2020).
- Anta-Félez, J.L.; Peinado-Rodríguez, M. Women in Andalusian olive grove. New and old forms in agricultural work. Methaodos Rev. Ciencias Soc.
**2019**, 7, 302–313. [Google Scholar] [CrossRef] - Romero, P.; García, J.; Botía, P. Cost-benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in Southeastern Spain. Irrig. Sci.
**2006**, 24, 175–184. [Google Scholar] [CrossRef] - Birger, R.; Abd-ElHadi, F.; Ronen, A.; Cohen, E.; Ankorion, Y.; Najjar, A.; Moreno, J. Olive HarvesVant, a new harvest-aid formulation for improving fruit abscission and mechanical harvesting. In Proceedings of the Fifth International Symposium on Olive Growing, Izmir, Turkiye, 27 September–2 October 2004; Ozkaya, M.T., Lavee, S., Ferguson, L., Eds.; 2004. [Google Scholar] [CrossRef]
- Morales-Sillero, A.; Rallo, P.; Jimenez, M.R.; Casanova, L.; Suarez, M.P. Suitability of Two Table Olive Cultivars (′Manzanilla de Sevilla′ and ′Manzanilla Cacerena′) for Mechanical Harvesting in Superhigh-density Hedgerows. Hortscience
**2014**, 49, 1028–1033. [Google Scholar] [CrossRef] - Famiani, F.; Farinelli, D.; Urbani, S.; Al Hariti, R.; Paoletti, A.; Rosati, A.; Esposto, S.; Selvaggini, R.; Taticchi, A.; Servili, M. Harvesting system and fruit storage affect basic quality parameters and phenolic and volatile compounds of oils from intensive and super-intensive olive orchards. Sci. Hortic.
**2020**, 263, 109045. [Google Scholar] [CrossRef] - Metodo De Bielas Y Tirantes. Available online: https://issuu.com/mers/docs/monografia_m6_metodo_de_bielas_y_tirantes (accessed on 26 August 2020).
- Verma, R.; Singh, S.; Dalai, M.K.; Saravanan, M.; Agrawal, V.V.; Srivastava, A.K. Photocatalytic degradation of polypropylene film using TiO2-based nanomaterials under solar irradiation. Mater. Des.
**2017**, 133, 10–18. [Google Scholar] [CrossRef] - Loizaga, A.; Serturcha, J.; Suárez, R. Defectos metalúrgicos generados por la presencia de gases en el metal fundido. An. Quim
**2008**, 104, 111–119. [Google Scholar] - Patel, D.K.; Kalidindi, S.R. Correlation of spherical nanoindentation stress-strain curves to simple compression stress-strain curves for elastic-plastic isotropic materials using finite element models. Acta Mater.
**2016**, 112, 295–302. [Google Scholar] [CrossRef] [Green Version] - Yao, K.T.; Chen, C.S.; Cheng, C.K.; Fang, H.W.; Huang, C.H.; Kao, H.C.; Hsu, M.L. Optimization of the Conical Angel Design in Conical Implant-Abutment Connections: A Pilot Study Based on the Finite Element Method. J. Oral Implantol.
**2018**, 44, 26–35. [Google Scholar] [CrossRef] [PubMed] - Hedia, H.S.; Barton, D.C.; Fisher, J.; Elmidany, T.T. A method for shape optimization of a hip prothesis to maximize the fatigue life of the cement. Med. Eng. Phys
**1996**, 18, 647–654. [Google Scholar] [CrossRef] - Ingeniería y Construcción. 2020. Available online: https://civilgeeks.com/2011/10/23/la-plastificacion-de-la-seccion-transversal-de-una-viga-respuesta-a-la-pregunta-de-estructuras-metalicas/ (accessed on 25 May 2020).
- Ghosh, T.; Roy, A.; Mishra, R.; Kamlesh, S.S. Structural optimization of a CT guided robotic arm based on static analysis. Mater. Proc.
**2018**, 5, 19586–19593. [Google Scholar] [CrossRef] - Wang, X.; Li, B.; Yang, Z. Finite Element Analysis and Lightweight Optimization Design on main Frame Structure of Large Electrostatic Precipitator. Adv. Mater. Sci. Eng.
**2018**, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. The conical stones olive oil mill: Analysis through computer-aided engineering. Agriculture
**2020**, 7, 255. [Google Scholar] [CrossRef] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt′s plunger lock: Analysis of its construction through computer-aided engineering. Inf. Constr.
**2019**, 71, e286. [Google Scholar] [CrossRef] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt′s double-acting steam engine: Analysis through computer-aided engineering. Appl. Sci.
**2018**, 8, 2309. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt′s mechanical dredger in the port of Kronstadt: Analysis through computer-aided engineering. Appl. Sci.
**2018**, 8, 1338. [Google Scholar] [CrossRef] [Green Version] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt’s wind machine for draining marshy ground: Analysis of its construction through computer-aided engineering. Inf. Constr.
**2018**, 70, e236. [Google Scholar] [CrossRef] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. Agustin de Betancourt’s mill for grinding flint: Analysis by computer-aided engineering. Dyna
**2018**, 93, 165–169. [Google Scholar] - Javidinejad, A. Theory in parametric design optimization approach via finite element analysis. Adv. Theor. Appl. Mech.
**2012**, 5, 217–224. [Google Scholar] - Ramesh, B.T.; Koppad, V.; Raju, H. Analysis Optimization of Connecting Rod With Different Materials. World J. Res. Rev.
**2017**, 4, 33–39. [Google Scholar] - Ozkurt-kayahan, Z.; Turgut, B.; Akin, H.; Kayahan, M.B.; Kazazoglu, E. A 3D finite element analysis of stress distribution on different thicknesses of mineral trioxide aggregate applied on various sizes of pulp perforation. Clin. Oral. Investig.
**2020**, 1–7. [Google Scholar] [CrossRef] - Rojas-Sola, J.I.; De la Morena-De la Fuente, E. The Hay inclined plane in Coalbrookdale (Shropshire, England): Analysis through computer-aided engineering. Appl. Sci.
**2019**, 9, 3385. [Google Scholar] [CrossRef] [Green Version] - Punarselvam, E.; Sikkandar, M.Y.; Bakouri, M.; Parakash, N.B.; Jayasankar, T.; Sudhakar, S.J. Different loading condition and angle measurement of human lumbar spine MRI image using ANSYS. J. Ambient Intell. Hum. Comput.
**2020**, 14. [Google Scholar] [CrossRef] - Budynas, R.G.; Nisbett, J.K. Shigley′s Mechanical Engineering Design, 9th ed.; McGraw-Hill Publisher: New York, NY, USA, 2011. [Google Scholar]
- Jahanbakhshi, A.; Heidarbeigi, K. Simulation and Mechanical Stress Analysis of the Lower Link Arm of a Tractor Using Finite Element Method. J. Fail. Anal. Prev.
**2019**, 19, 1666–1672. [Google Scholar] [CrossRef] - Yang, Y.; Zeng, Q.; Wan, L.; Wang, C.; Gao, K. Optimization of Slider-Type Hydraulic Powered Support (SHPS) using FEA and Response Surface Methodology. Tech. Gazette
**2020**, 27, 497–505. [Google Scholar] - Yu, X.; Pang, X.; Zou, Z.; Zhang, G.; Hu, Y.; Dong, J.; Song, H. Lightweight and High-Strength of an Excavator Bucket under Uncertain Loading. Math. Probl. Eng.
**2019**, 1, 1–12. [Google Scholar] [CrossRef] - Arcar, E.; Tútem, N.; Güler, M.A. Design optimization of an automobile torque arm using global and successive surrogate modeling approaches. J. Automob. Eng.
**2018**, 233, 1453–1465. [Google Scholar] [CrossRef] - Chethan, K.N.; Mohammad, Z.; Shyamasunder, B.N.; Sattish, S.B. Static structural analysis of different stem designs used in total hip arthroplasty using finite element method. Heliyon
**2020**, 6, e01767. [Google Scholar] - Sathish, T.; Dinesh Kumar, S.; Karthick, S. Modelling and analysis of different connecting rod material through finite element route. Mater. Today Proc.
**2020**, 21, 971–975. [Google Scholar] [CrossRef]

**Figure 4.**CATIA (computer-aided three dimensional interactive application) representation of the area of the teeth/spikes of the rake.

**Figure 6.**Description of the parameters of the hand-rake sweeper. Views: left view (

**a**), front view (

**b**), isometric view (

**c**) and top view (

**d**).

**Figure 9.**Flexion-traction scheme in a beam [18].

**Figure 22.**Triangulation of the strengthening using the ANSYS software (concentration of tension in the handle).

FIXED PARAMETERS: fundamentally, they depend on the type of fruit to be swept. They are set at the beginning of the design and are not modified. For example, “total rake width”, that is, the length to be swept per sweep. | |

MODIFIABLE PARAMETERS WITH NO REPERCUSSION IN THE STRUCTURAL OPTIMISATION OF THE MODEL: these parameters do not influence the optimisation of the design. For example, “tooth radius” and “draft angle”. | |

STUDY PARAMETERS: these must be modified to influence the optimisation of the design. |

Variable | Description | Type | Initial Value | Units |
---|---|---|---|---|

Thickness | Thickness | 2.5 | mm | |

Stick Diameter | Handle diameter | 25 | mm | |

L_H_1 | Horizontal L of the first side | 82 | mm | |

Angle_L2 | Angle of the second side | 15 | ° | |

a_0 | Vertical L between the start of the handle and the start of the body | 60 | mm | |

L_H_2 | Horizontal L of the second side | 150 | mm | |

a3_ | L up to the end of the body | 755 | mm | |

A_L3 | Angle of the third side | 65.0 | ° | |

r_1_Handle | Radius of the contour of the handle where it is anchored with the body | 20.0 | mm | |

R_L1-L2 | Radius between the first and second sides | 12.0 | mm | |

R_L2_L3 | Radius between the second and third sides | 7.5 | mm | |

d_1_Plane | Reference plane to make the teeth | 70.0 | mm | |

s_1_plastic | Horizontal distance of each tooth in the reference plane (d_1_Plane) | 12.0 | mm | |

S2_hole | Horizontal distance of each space between teeth in the reference plane (d_1_Plane) | 7.0 | mm | |

d2_level_Plane | Start of the teeth | 80.0 | mm | |

R_Arc_Lower | Radius of the lower arch where the teeth end | 2560.0 | mm | |

Dis_Arc_Lower | Distance over the symmetry axis from the handle to the end of the teeth | 330.0 | mm | |

R_Nerve_1 | Radius of the upper tooth | 1120.0 | mm | |

W_Nerve_1 | Width of the upper tooth | 32.0 | mm | |

D_Nerve_1 | Distance over the symmetry axis from the handle to the axis of tooth 1 | 200.0 | mm | |

D_Nerve_2 | Distance over the symmetry axis from the handle to the axis of tooth 2 | 260.0 | mm | |

R_Nerve_2 | Radius of the lower tooth | 2780.0 | mm | |

W_Nerve_2 | Width of the lower tooth | 27.0 | mm | |

L_Teeth | Length of the teeth | 87.9 | mm | |

Up_Thickness_Teeth | Excess thickness of the teeth | 0.0 | mm | |

R_Teeth | Radius of the teeth | 35.0 | mm | |

R_Up_Teeth | Increase of the radius of the teeth | 0.0 | mm | |

R_General | General radius | 1.0 | mm | |

R_2_Handle | Radius of the corner between the handle and the body | 23.0 | mm | |

R_General_Corner | General radius of the corners between teeth | 3.0 | mm | |

R_End_Teeth | Radius of the end of the teeth | 2.0 | mm | |

R_Var_Handle | Variable radius of the corner between the handle and the body | 3. | mm | |

L_Handle | Handle length | 100.0 | mm | |

L_Screw_Handle | Distance from the holding point of the handle to the body of the rake | 27.0 | mm | |

D_Screw_Handle | Diameter of the handle screw | 1.5 | mm | |

Teeth_Drafting | Drafting of the teeth | 25.0 | ° | |

Handle_Drafting | Drafting of the inside of the handle | 3.0 | ° | |

General_Drafting | General drafting | 1.5 | ° |

Parameter | No. Tests | Description | Type | Initial Value (mm) | Modified Value (mm) |
---|---|---|---|---|---|

Thickness | 6 | Thickness | 2.5 | 1.8 | |

r_1_Handle | 2 | Radius of the contour of the handle where it is anchored to the body | 20.0 | 40.0 | |

R_L1-L2 | 2 | Radius between the first and second sides | 12.0 | 20.0 | |

R_L2_L3 | 2 | Radius between the second and third sides | 7.5 | 20.0 | |

W_Nerve_2 | 3 | Width of the bottom spike | 27.0 | 40.0 | |

L_Teeth | 4 | Tooth length | 87.9 | 30.0 | |

R_Up_Teeth | 4 | Increase of tooth radius | 0.0 | 3.0 | |

R_End_Teeth | 6 | Final tooth radius | 2.0 | 1.5 |

Parameter | Initial Value (mm) | Modified Value (mm) |
---|---|---|

r_1_Handle | 20.0 | 40.0 |

R_L1-L2 | 12.0 | 20.0 |

R_L2_L3 | 7.5 | 20.0 |

Parameter | Initial Value (mm) | Modified Value (mm) |
---|---|---|

W_Nerve_2 | 27.0 | 40.0 |

Parameter | Initial Value (mm) | Modified Value (mm) |
---|---|---|

L_Teeth | 87.9 | 30.0 |

R_Up_Teeth | 0.0 | 3.0 |

Parameter | Initial Value (mm) | Modified Value (mm) |
---|---|---|

Thickness | 2.5 | 1.8 |

R_End_Teeth | 2.0 | 1.5 |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Fernández, R.E.H.; Carranza-Cañadas, P.; García-Salcedo, F.J.; Triviño-Tarradas, P.
Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking. *Agriculture* **2020**, *10*, 379.
https://doi.org/10.3390/agriculture10090379

**AMA Style**

Fernández REH, Carranza-Cañadas P, García-Salcedo FJ, Triviño-Tarradas P.
Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking. *Agriculture*. 2020; 10(9):379.
https://doi.org/10.3390/agriculture10090379

**Chicago/Turabian Style**

Fernández, Rafael E. Hidalgo, Pilar Carranza-Cañadas, Francisco J. García-Salcedo, and Paula Triviño-Tarradas.
2020. "Parameterisation and Optimisation of a Hand-Rake Sweeper: Application in Olive Picking" *Agriculture* 10, no. 9: 379.
https://doi.org/10.3390/agriculture10090379