Equipment Development for Small and Urban Conservation Farming Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.1.1. No-Till Powered Coulter Drill
2.1.2. Powered Roller/Crimper
2.1.3. No-Till Transplanter for Walk behind Tractor
2.2. Procedures
3. Results and Discussion
3.1. Cereal Rye, Height, Biomass and Planting Efficiency
3.2. Cereal Rye Termination Rates
3.3. Soil Volumetric Moisture Content
3.4. Tomato Spacing, Tomato Plant Density, Tomato Yield and Number Fruit per Plant
3.4.1. In-Row Tomato Spacing
3.4.2. Tomato Plant Density
3.4.3. Tomato Yield
3.4.4. Number of Fruits per Plant
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Reeves, D.W. Cover Crops and Rotations. In Advances in Soil Science: Crops Residue Management; Hatfield, J.L., Stewart, B.A., Eds.; Lewis Publishers: Boca Raton, FL, USA, 1994; pp. 125–172. [Google Scholar]
- Nelson, J.E.; Kephart, K.D.; Bauer, A.; Connor, J.F. Growth Stage of Wheat, Barley, and Wild Oat; University of Missouri Extension Service: Columbia, MO, USA, 1995; pp. 1–20. [Google Scholar]
- Kornecki, T.S.; Price, A.J. Effects of different roller/crimper designs and rolling speed on rye cover crop termination and seedcotton yield in a no-till system. J. Cotton Sci. 2011, 14, 212–220. [Google Scholar]
- Ashford, D.L.; Reeves, D.W. Use of a mechanical roller crimper as an alternative kill method for cover crop. Am. J. Altern. Agric. 2003, 18, 37–45. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Price, A.J.; Raper, R.L. Performance of different roller designs in terminating rye cover crop and reducing vibration. Appl. Eng. Agric. 2006, 22, 633–641. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T.; Kassam, A.; Hongwen, L. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010, 3, 1–25. [Google Scholar] [CrossRef]
- Hargrove, W.L.; Frye, W.W. The Need for Legume Cover Crops in Conservation Tillage Production. In The Role of Legumes in Conservation Tillage Systems; Power, J.F., Ed.; Soil and Water Conservation Society of America: Ankeny, AI, USA, 1987; pp. 1–5. [Google Scholar]
- Barnes, J.P.; Putnam, A.R. Rye residues contribute weed suppression in no-tillage cropping systems. J. Chem. Ecol. 1983, 9, 1045–1057. [Google Scholar] [CrossRef]
- Blough, R.F.; Jarrett, A.R.; Hamlett, J.M.; Shaw, M.D. Runoff and erosion water from silt, conventional, and chisel tillage under simulated rainfall. Trans. ASAE 1990, 33, 1557–1562. [Google Scholar] [CrossRef]
- Mahboubi, A.A.; Lal, R.; Faussey, N.R. Twenty-eight years of tillage effects on two soils in Ohio. Soil Sci. Soc. Am. J. 1993, 57, 506–512. [Google Scholar] [CrossRef]
- Abdul-Baki, A.A.; Teasdale, J.R.; Korcak, R.; Chitwood, D.J.; Huettel, R.N. Fresh-market tomato production in a low-input alternative system using cover crop mulch. HortScience 1996, 31, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Edralin, D.A.; Sigua, G.C.; Reyes, M.R.; Mulvaney, M.J.; Andrews, S.S. Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia. Agron. Sustain. Dev. 2017, 37, 52. [Google Scholar] [CrossRef] [Green Version]
- Assefa, T.; Jha, M.; Reyes, M.; Tilahun, S.; Worqlul, A.W. Experimental Evaluation of Conservation Agriculture with Drip Irrigation for Water Productivity in Sub-Saharan Africa. Water 2019, 11, 530. [Google Scholar] [CrossRef] [Green Version]
- Paudel, S.; Sah, L.P.; Devkota, M.; Poudyal, V.; Prasad, P.V.; Reyes, M.R. Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income while Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal. Sustainability 2020, 12, 6418. [Google Scholar] [CrossRef]
- Kornecki, T.S. Rye termination by different rollers/crimpers developed for no-till small-scale farms. Appl. Eng. Agric. 2015, 31, 849–856. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Kichler, C.M. Active Coulter Planting System. U.S. Patent 2016/0088786 A1, 31 March 2016. [Google Scholar]
- Kornecki, T.S. Powered Rolling and Crimping Device for Crop Termination. U.S. Patent No. 8,176,991 B1, 15 May 2012. [Google Scholar]
- Kornecki, T.S.; Kichler, C.M. Transplanter for a Walk-Behind Tractor. U.S. Patent No. 10,004,174 B2, 26 June 2018. [Google Scholar]
- Grieve Ovens & Furnaces. Available online: https://www.grievecorp.com/product-category/shelf-loading-ovens/shelf-ovens/ (accessed on 21 November 2020).
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Arriaga, F.J.; Price, A.J. Evaluation of methods to assess termination rates of cover crops using visual and non-visible light active sensors. Trans. ASABE 2012, 55, 733–741. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics. A Biometrical Approach, 2nd ed.; McGraw-Hill Publishing Co.: New York, NY, USA, 1980. [Google Scholar]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1984. [Google Scholar]
- SAS. Proprietary Software Release 9.2; SAS Institute, Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Kornecki, T.S.; Price, A.J.; Raper, R.L.; Bergtold, J.S. Effectiveness of different herbicide applicators mounted on a roller/crimper for accelerated rye cover crop termination. Appl. Eng. Agric. 2009, 25, 819–826. [Google Scholar] [CrossRef]
- Kornecki, T.S.; Price, A.J. Management of High-Residue Cover Crops in a Conservation Tillage Organic Vegetable On-Farm Setting. Agronomy 2019, 9, 640. [Google Scholar] [CrossRef] [Green Version]
Source | * DF | Cereal Rye Plant Height | Cereal Rye Biomass | Planting Efficiency for Cereal Rye | |||
---|---|---|---|---|---|---|---|
p-Value | Pr > F | p-Value | Pr > F | p-Value | Pr > P | ||
YEAR | 2 | 20.07 | 0.0003 | 22.82 | 0.0002 | 1.42 | 0.2863 |
BLOCK | 2 | 2.45 | 0.1366 | 0.70 | 0.5187 | 0.53 | 0.6038 |
SOIL | 1 | 6.50 | 0.0289 | 29.27 | 0.0003 | 0.98 | 0.3465 |
Growing Season | Soil Type | |||||||
---|---|---|---|---|---|---|---|---|
Davidson Clay | Hiwassee Sandy Loam | |||||||
Height Plant (cm) | Rye Biomass Mg ha−1 | Number of Rye Plants/ m2 | * Planting Efficiency (%) | Height Plant (cm) | Rye Biomass Mg ha−1 | Number of Rye Plants/m2 | Planting Efficiency (%) | |
2017 | 159 | 9.8 | 493 | 82.9 | 149 c ** | 4.9 b | 461 | 77.5 |
2018 | 162 | 11.4 | 473 | 79.5 | 156 b | 11.2 a | 519 | 87.2 |
2019 | 166 | 9.4 | 492 | 82.7 | 168 a | 5.9 b | 525 | 88.2 |
p-Value | 0.2177 | 0.2255 | 0.7572 | 0.7572 | 0.0019 | 0.0035 | 0.1023 | 0.1023 |
LSD | N/A | N/A | N/A | N/A | 4.5 | 1.8 | N/A | N/A |
Source | * DF | Cereal Rye Termination | Volumetric Water Content | ||
---|---|---|---|---|---|
p-Value | Pr > F | p-Value | Pr > F | ||
REP | 2 | 0.89 | 0.4158 | 0.78 | 0.4619 |
WEEK | 2 | 144.74 | <0.001 | 23.76 | <0.001 |
SOIL | 1 | 0.88 | 0.3493 | 37.58 | <0.001 |
TRT | 1 | 1219.16 | <0.001 | 30.70 | <0.001 |
YEAR | 2 | 3.57 | 0.0322 | 45.93 | <0.001 |
YEAR*TRT | 2 | 15.76 | <0.001 | 4.60 | 0.0125 |
Soil Type | TRT | Growing Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | ||||||||
Days after Rolling/Crimping | ||||||||||
7 | 14 | 21 | 7 | 14 | 21 | 7 | 14 | 21 | ||
Clay soil | Rolled | 51a * | 88a | 96a | 55a | 67a | 96a | 53a | 81a | 92a |
Contr. | 16b | 19b | 24b | 18b | 37b | 53b | 15b | 28b | 40b | |
p-value | 0.0163 | 0.0019 | 0.0003 | 0.0123 | 0.0117 | 0.0278 | 0.0037 | 0.0276 | 0.0003 | |
LSD | 13.4 | 8.85 | 3.72 | 11.97 | 11.77 | 21.15 | 6.77 | 26.4 | 2.48 | |
Sandy loam | Rolled | 60a | 90a | 97a | 61a | 69a | 95a | 52a | 82a | 93a |
Contr. | 15b | 22 b | 24b | 16b | 19b | 40b | 24b | 44b | 49b | |
p-value | 0.0021 | 0.0028 | 0.0003 | 0.0041 | 0.0079 | 0.0015 | 0.0424 | 0.0025 | 0.0479 | |
LSD | 6.03 | 10.60 | 3.81 | 8.42 | 13.07 | 6.21 | 17.39 | 5.60 | 29.87 |
Soil Type | Treatment | Growing Season | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | ||||||||
Days after Rolling/Crimping | ||||||||||
7 | 14 | 21 | 7 | 14 | 21 | 7 | 14 | 21 | ||
Clay soil | Rolled | 18.7a * | 23.2a | 13.2a | 14.6a | 13.1a | 8.9a | 14.1a | 13.4a | 15.9a |
Contr. | 14.2b | 21.3a | 11.3b | 12.4b | 11.4b | 7.8a | 8.7b | 9.0b | 9.5b | |
p-value | 0.0188 | 0.2421 | 0.0295 | 0.0549 | 0.0651 | 0.3526 | 0.0800 | 0.0333 | 0.0307 | |
LSD | 1.8 | N/S | 1.0 | 1.6 | 1.4 | N/S | 4.7 | 2.4 | 3.3 | |
Sandy loam | Rolled | 16.3 a | 18.4a | 8.9a | 13.7a | 9.2a | 4.3a | 11.5a | 8.3a | 12.0a |
Contr. | 13.4b | 17.8a | 7.3b | 12.1b | 8.0b | 3.9a | 4.9b | 5.1b | 7.1b | |
p-value | 0.0612 | 0.7452 | 0.0579 | 0.0488 | 0.0050 | 0.7490 | 0.0070 | 0.0260 | 0.0493 | |
LSD | 2.2 | N/S | 1.2 | 1.1 | 0.3 | N/S | 1.6 | 1.6 | 3.3 |
Source | * DF | Tomato Fruit per Plant | Tomato Spacing | Tomato Yield | |||
---|---|---|---|---|---|---|---|
p-Value | Pr > P | p-Value | Pr > P | p-Value | Pr > P | ||
YEAR | 2 | 26.97 | <0.001 | 6.28 | 0.0171 | 8.81 | 0.0062 |
BLOCK | 2 | 2.11 | 0.1714 | 0.20 | 0.8255 | 1.48 | 0.2735 |
SOIL | 1 | 3.46 | 0.0924 | 0.05 | 0.8202 | 2.97 | 0.1154 |
Growing Season | Tomato Spacing (cm) | Tomato Plant Density Plants ha−1 | Yield Mg ha−1 | Number Fruits/Plant for Variable YEAR | Number Fruits/Plant for Variable SOIL | |
---|---|---|---|---|---|---|
2017 | 59.8b * | 5525a | 15.9b | 8c | Clay soil | 16a |
2018 | 73.7a | 4650b | 28.3a | 15b | ||
2019 | 70.9a | 5197a | 25.3a | 20a | Sandy loam | 13b |
p-value | 0.0171 | 0.0134 | 0.0062 | <0.0001 | ||
LSD | 7.5 | 433 | 5.6 | 3.0 | p-value | 0.0910 |
Average | 68 | 5124 | 23.2 | 14 | Average | 14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kornecki, T.S.; Reyes, M.R. Equipment Development for Small and Urban Conservation Farming Systems. Agriculture 2020, 10, 595. https://doi.org/10.3390/agriculture10120595
Kornecki TS, Reyes MR. Equipment Development for Small and Urban Conservation Farming Systems. Agriculture. 2020; 10(12):595. https://doi.org/10.3390/agriculture10120595
Chicago/Turabian StyleKornecki, Ted S., and Manuel R. Reyes. 2020. "Equipment Development for Small and Urban Conservation Farming Systems" Agriculture 10, no. 12: 595. https://doi.org/10.3390/agriculture10120595
APA StyleKornecki, T. S., & Reyes, M. R. (2020). Equipment Development for Small and Urban Conservation Farming Systems. Agriculture, 10(12), 595. https://doi.org/10.3390/agriculture10120595