The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Thermal Water in Dermatology
3.1. Chemico-Physical Properties
3.2. Immunomodulatory Effects of Thermal Waters
3.3. Microbiological Properties
4. Thermal Water and Chronic Inflammatory Skin Diseases
4.1. Psoriasis
4.2. Atopic Dermatitis
4.3. Other Inflammatory Skin Diseases
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huang, A.; Seité, S.; Adar, T. The use of balneotherapy in dermatology. Clin. Dermatol. 2018, 36, 363–368. [Google Scholar] [CrossRef]
- Cavallo, P.; Proto, M.C.; Patruno, C.; Del Sorbo, A.; Bifulco, M. The first cosmetic treatise of history. A female point of view. Int. J. Cosmet. Sci. 2008, 30, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Melillo, L. Thermalism in ancient world. Med. Secoli. 1995, 7, 461–483. [Google Scholar] [PubMed]
- Cilliers, L.; Retief, F.P. Medical practice in Graeco-roman antiquity. Curationis 2006, 29, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Masetti, A. “Salus per Aquam”: Terme e termalismo nella storia. G. Med. Mil. 2011, 161, 11–16. [Google Scholar]
- Routh, H.B.; Bhowmik, K.R.; Parish, L.C.; Witkowski, J.A. Balneology, mineral water, and spas in historical perspective. Clin. Dermatol. 1996, 14, 551–554. [Google Scholar] [CrossRef]
- Benedetto, A.V.; Millikan, L. Mineral water and spas in the United States. Clin. Dermatol. 1996, 14, 583–600. [Google Scholar] [CrossRef]
- Antunes, J.D.M.; Daher, D.V.; Giaretta, V.M.D.A.; Ferrari, M.F.M.; Posso, M.B.S. Hydrotherapy and crenotherapy in the treatment of pain: Integrative review. BrJP 2019, 2, 187–198. [Google Scholar] [CrossRef]
- Fioravanti, A.; Cantarini, L.; Guidelli, G.M.; Galeazzi, M. Mechanisms of action of spa therapies in rheumatic diseases: What scientific evidence is there? Rheumatol. Int. 2011, 31, 1–8. [Google Scholar] [CrossRef]
- Oyama, J.; Kudo, Y.; Maeda, T.; Node, K.; Makino, N. Hyperthermia by bathing in a hot spring improves cardiovascular functions and reduces the production of inflammatory cytokines in patients with chronic heart failure. Heart Vessels 2013, 28, 173–178. [Google Scholar] [CrossRef]
- Liang, J.; Kang, D.; Wang, Y.; Yu, Y.; Fan, J.; Takashi, E. Carbonate ion-enriched hot spring water promotes skin wound healing in nude rats. PLoS ONE 2015, 10, e0117106. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.O.; Costa, P.C.; Bahia, M.F. Effect of São Pedro do Sul thermal water on skin irritation. Int. J. Cosmet. Sci. 2010, 32, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Petraccia, L.; Liberati, G.; Masciullo, S.G.; Grassi, M.; Fraioli, A. Water, mineral waters and health. Clin. Nutr. 2006, 25, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Burckhardt, P. Mineral waters: Effects on bone and bone metabolism. In Nutritional Aspects of Osteoporosis; Burckhardt, P., Dawson-Hughes, B., Heaney, R.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 439–447. [Google Scholar]
- Valitutti, S.; Castellino, F.; Musiani, P. Effect of sulfurous (thermal) water on T lymphocyte proliferative response. Ann. Allergy 1990, 65, 463–468. [Google Scholar] [PubMed]
- Marotta, D.; Sica, C. Composizione e classificazione delle acque minerali italiane. Ann. Chim. Appl. 1933, 23, 245–247. [Google Scholar]
- Fimiani, A.; Lampa, E. Meccanismi d’azione delle acque termali: La componente fisica. Clin. Term. 2015, 62, 31–40. [Google Scholar]
- Rubinson, K.A.; Rubinson, J.F. Chimica Analitica Strumentale; Zanichelli: Bologna, Italy, 2002. [Google Scholar]
- Sanghi, T.; Aluru, N.R. Thermal noise in confined fluids. J. Chem. Phys. 2014, 141, 174707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Huang, Y.; Ma, Z.; Zhou, Y.; Zhou, J.; Zheng, W.; Sun, C.Q. Hydrogen-bond memory and water-skin supersolidity resolving the Mpemba paradox. Phys. Chem. Chem. Phys. 2014, 16, 22995–23002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valeriani, F.; Margarucci, L.M.; Romano Spica, V. Recreational use of spa thermal waters: Criticisms and perspectives for innovative treatments. Int. J. Environ. Res. Public Health 2018, 15, 2675. [Google Scholar] [CrossRef] [Green Version]
- Hamidizadeh, N.; Simaeetabar, S.; Handjani, F.; Ranjbar, S.; Moghadam, M.G.; Parvizi, M.M. Composition of minerals and trace elements at Mamasani thermal source: A possible preventive treatment for some skin diseases. J. Educ. Health Promot. 2017, 6, 110. [Google Scholar] [CrossRef]
- Khalilzadeh, S.; Shirbeigi, L.; Naghizadeh, A.; Mehriardestani, M.; Shamohammadi, S.; Tabarrai, M. Use of mineral waters in the treatment of psoriasis: Perspectives of Persian and conventional medicine. Dermatol. Ther. 2019, 32, e12969. [Google Scholar] [CrossRef]
- Mooventhan, A.; Nivethitha, L. Scientific evidence-based effects of hydrotherapy on various systems of the body. N. Am. J. Med. Sci. 2014, 6, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.C.; Wang, M.; Ning, X.C. Study on preventing alopecia caused by chemotherapy with cold pillow compresses. Chin. J. Nurs. 1995, 30, 643–645. [Google Scholar]
- Ježová, D.; Vigaš, M.; Tatar, P.; Jurčovičová, J.; Palat, M. Rise in plasma β-endorphin and ACTH in response to hyperthermia in sauna. Horm. Metab. Res. 1985, 17, 693–694. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, F.; Lazzarin, P.; Todesco, S.; Cima, L. Hypothalamic–pituitary–adrenal axis dysregulation in healthy subjects undergoing mud-bath applications. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 1995, 38, 724–725. [Google Scholar] [CrossRef]
- Sukenik, S.; Abu-Shakra, M.; Flusser, D. Balneotherapy in autoimmune disease. Isr. J. Med. Sci. 1997, 33, 258–261. [Google Scholar] [PubMed]
- Nocco, P.B. Mineralwasser als Heilmittel. Veroff. Schweiz. Ges. Gesch. Pharm. 2008, 29, 13–402. [Google Scholar]
- Selas, B. Histoire du thermalísme à Avène-les-Bains et genèse de l’eau thermale d’Avène: History of thermalism at Avène-les-Bains and genesis of the Avène thermal spring water. Ann. Dermatol. Venereol. 2017, 144, S21–S26. [Google Scholar] [CrossRef]
- Bacle, I.; Meges, S.; Lauze, C.; Macleod, P.; Dupuy, P. Sensory analysis of four medical spa spring waters containing various mineral concentrations. Int. J. Dermatol. 1999, 38, 784–786. [Google Scholar] [CrossRef]
- Barut, I.F.; Erdogan, N.; Basak, E. Hydrogeochemical evaluation of Western Anatolian mineral waters. Environ. Geol. 2004, 45, 494–503. [Google Scholar] [CrossRef]
- Soroka, Y.; Ma’or, Z.; Leshem, Y.; Verochovsky, L.; Neuman, R.; Brégégère, F.M.; Milner, Y. Aged keratinocyte phenotyping: Morphology, biochemical markers and effects of Dead Sea minerals. Exp. Gerontol. 2008, 43, 947–957. [Google Scholar] [CrossRef] [PubMed]
- Duvic, M. Possible mechanisms of effectiveness of Dead Sea balneotherapy. J. Am. Acad. Dermatol. 1986, 15, 1061. [Google Scholar] [CrossRef]
- Schiener, R.; Brockow, T.; Franke, A.; Salzer, B.; Peter, R.U.; Resch, K.L. Bath PUVA and saltwater baths followed by UV-B phototherapy as treatments for psoriasis: A randomized controlled trial. Arch. Dermatol. 2007, 143, 586–596. [Google Scholar] [CrossRef] [PubMed]
- Golušin, Z.; Jovanović, M.; Magda, N.; Stojanović, S.; Matić, M.; Petrović, A. Effects of Rusanda Spa balneotherapy combined with calcipotriol on plaque psoriasis. Vojnosanitetski Pregled 2015, 72, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Bogdanov, I.; Kircheva, K.; Miteva, L.; Tsankov, N. Quality of life in patients undergoing combined climatotherapy and phototherapy. Rom. Med. J. 2012, 59, 251–254. [Google Scholar]
- Nunes, S.; Tamura, B.M. A historical review of mineral water. Surg. Cosmet. Dermatol. 2012, 4, 252–258. [Google Scholar]
- Peroni, A.; Gisondi, P.; Zanoni, M.; Girolomoni, G. Balneotherapy for chronic plaque psoriasis at Comano spa in Trentino, Italy. Dermatol. Ther. 2008, 21, S31–S38. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhu, Y.; Jia, W.; Chen, S.; Meng, Q. Spa adjuvant therapy improves diabetic lower extremity arterial disease. Complement. Ther. Med. 2014, 22, 655–661. [Google Scholar] [CrossRef]
- Heidari, A.H.; Monfared, A.S.; Mozdarani, H.; Mahmoudzadeh, A.; Razzaghdoust, A. Radioprotective effects of sulfur-containing mineral water of ramsar hot spring with high natural background radiation on mouse bone marrow cells. J. Biomed. Phys. Eng. 2017, 7, 347. [Google Scholar]
- Borroni, G.; Brazzelli, V.; Fornara, L.; Rosso, R.; Paulli, M.; Tinelli, C.; Ciocca, O. Clinical, pathological and immunohistochemical effects of arsenical-ferruginous spa waters on mild-to-moderate psoriatic lesions: A randomized placebo-controlled study. Int. J. Immunopathol. Pharmacol. 2013, 26, 495–501. [Google Scholar] [CrossRef]
- Nissen, J.B.; Avrach, W.W.; Hansen, E.S.; Stengaard-Pedersen, K.; Kragballe, K. Increased levels of enkephalin following natural sunlight (combined with salt water bathing at the Dead Sea) and ultraviolet A irradiation. Br. J. Dermatol. 1998, 139, 1012–1019. [Google Scholar] [CrossRef] [PubMed]
- Sacerdote, P.; Gaspani, L.; Panerai, A.E. Role of beta-endorphin in the modulation of immune responses: Perspectives in autoimmune diseases. Adv. Exp. Med. Biol. 2001, 493, 137–142. [Google Scholar]
- Aydin, S.; Aydin, S.; Kuloglum, T.; Yilmaz, M.; Kalayci, M.; Sahin, I.; Cicek, D. Alterations of irisin concentrations in saliva and serum of obese and normal-weight subjects, before and after 45 min of a Turkish bath or running. Peptides 2013, 50, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Olah, M.; Koncz, A.; Feher, J.; Kamanczhey, J.; Olah, C.; Nagy, G.; Bender, T. The effect of balneotherapy on antioxidant, inflammatory, and metabolic indices in patients with cardiovascular risk factors (hypertension and obesity) a randomized, controlled follow-up study. Contemp. Clin. Trials 2011, 32, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Bajgai, J.; Fadriquela, A.; Ara, J.; Begum, R.; Ahmed, M.F.; Kim, C.S.; Kim, S.K.; Shim, K.Y.; Lee, K.J. Balneotherapeutic effects of high mineral spring water on the atopic dermatitis-like inflammation in hairless mice via immunomodulation and redox balance. BMC Complement. Altern. Med. 2017, 17, 481. [Google Scholar] [CrossRef] [PubMed]
- Inoue, T.; Inoue, S.; Kubata, K. Bacterial activity of manganese and iodide ions against staphylococcus aureus: A possible treatment for acute atopic dermatitis. Acta Derm. Venereol. 1999, 79, 360–362. [Google Scholar]
- Denda, M.; Katagiric, C.; Hiro, T.; Maruyama, N.; Takahashi, M. Some magnesium salts and the mixture of magnesium and calcium salts accelerate skin barrier recovery. Arch. Dermatol. Res. 1999, 291, 560–563. [Google Scholar] [CrossRef]
- Takahashi, H.; Nakazawa, M.; Takahashi, K.; Aihara, M.; Minami, M.; Hirasawa, T.; Ikezawa, Z. Effects of zinc deficient diet on the development of atopic dermatitis like eruptions in DS-Nh mice. J. Dermatol. Sci. 2008, 50, 31–39. [Google Scholar] [CrossRef]
- Rougier, A.; Richard, A.; Dreno, B.; Celerier, B. Modulatory effects of selenium and strontium salts on keratinocyte-derived inflammatory cytokines. J. Am. Acad. Dermatol. 2012, 66, AB69. [Google Scholar] [CrossRef]
- Joly, F.; Galoppin, L.; Bordat, P.; Cousse, H.; Neuzil, E. Calcium and bicarbonate ions mediate the inhibition of mast cell histamine release by Avene spa water. Fundam. Clin. Pharmacol. 2000, 14, 611–613. [Google Scholar] [CrossRef]
- Rodrigues, L.; Ekundi, V.E.; Florenzano, J.; Cerqueira, A.R.; Soares, A.G.; Schmidt, T.P.; Santos, K.T.; Teixeira, S.A.; Ribela, M.T.C.P.; Rodrigues, S.F.; et al. Protective effects of exogenous and endogenous hydrogen sulfide in mast cell-mediated pruritus and cutaneous acute inflammation in mice. Pharmacol. Res. 2017, 115, 255–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gobbi, G.; Ricci, F.; Malinverno, C.; Carubbi, C.; Pambianco, M.; Panfilis, G.; Mirandola, P. Hydrogen sulfide impairs keratinocyte cell growth and adhesion inhibiting mitogen-activated protein kinase signaling. Lab. Investig. 2009, 89, 994–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirandola, P.; Gobbi, G.; Micheloni, C.; Vaccarezza, M.; Di Marcantonio, D.; Ruscitti, F.; Vitale, M. Hydrogen sulfide inhibits IL-8 expression in human keratinocytes via MAP kinase signaling. Lab. Investig. 2011, 91, 1188–1194. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Lee, J.Y.; Lee, H.J.; Yun, S.T.; Lee, J.T.; Kim, H.J.; Kim, J.W. Immunomodulatory effects of balneotherapy with hae-un-dae thermal water on imiquimod-induced psoriasis-like murine model. Ann. Dermatol. 2014, 26, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, H.; Yamasaki, O.; Tada, J.; Kubota, K.; Arata, J. Antimicrobial effects of acidic hot-spring water on Staphylococcus aureus strains isolated from atopic dermatitis patients. J. Dermatol. Sci. 2000, 24, 112–118. [Google Scholar] [CrossRef]
- Scala, E.; Di Caprio, R.; Cacciapuoti, S.; Caiazzo, G.; Fusco, A.; Tortorella, E.; Fabbrocini, G.; Balato, A. A new T helper 17 cytokine in hidradenitis suppurativa: Antimicrobial and proinflammatory role of interleukin-26. Br. J. Dermatol. 2019, 181, 1038–1045. [Google Scholar] [CrossRef] [PubMed]
- Wollenberg, A.; Richard, A.; Bieber, T. In vitro effect of the thermal water from La Roche-Posay on the stimulatory capacity of epidermal Langerhans cells. Eur. J. Dermatol. 1992, 2, 128–129. [Google Scholar]
- Dal Pra, I.; Chiarini, A.; Pacchiana, R.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) thermal water interferes with tumour necrosis factor-alpha expression and interleukin-8 production and secretion by cultured human psoriatic kerati¬nocytes: Yet other mechanisms of its anti-psoriatic action. Int. J. Mol. Med. 2007, 19, 373–379. [Google Scholar]
- Staquet, M.J.; Peguet-Navarro, J.; Richard, A.; Schmitt, D.; Rougier, A. In vitro effect of a spa water on the migratory and stimulatory capacities of human Langerhans calls. Eur. J. Dermatol. 2002, 12, LIX–LXI. [Google Scholar]
- Joly, F.; Charveron, M.; Ariès, M.F.; Bidault, J.; Kahhak, L.; Beauvais, F.; Gall, Y. Effect of Avène spring water on the activation of rat mast cell by substance P or antigen. Skin Pharmacol. Appl. Skin Physiol. 1998, 11, 111–116. [Google Scholar] [CrossRef]
- Portalès, P.; Ariès, M.F.; Licu, D.; Pinton, J.; Hernandez-Pion, C.; Gall, Y.; Dupuy, P.; Charveron, M.; Clot, J. Immunomodulation induced by Avène spring water on Th1- and Th2-dependent cytokine production in healthy subjects and atopic dermatitis patients. Skin Pharmacol. Appl. Skin Physiol. 2001, 14, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Cézanne, L.; Gaboriau, F.; Charveron, M.; Morlière, P.; Tocanne, J.F.; Dubertret, L. Effects of the Avène spring water on the dynamics of lipids in the membranes of cultured fibroblasts. Skin Pharmacol. 1993, 6, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Lehen’kyi, V.; Vandenberghe, M.; Belaubre, F.; Julié, S.; Castex-Rizzi, N.; Skryma, R.; Prevarskaya, N. Acceleration of keratinocyte differentiation by transient receptor potential vanilloid (TRPV6) channel activation. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Khalil, A.B.; Salim, M.; Sallal, A.K. Enumeration of thermotolerant bacteria fromrecreational thermal ponds in Jordan. Int. J. Cytogenet. Biol. Res. 1998, 96, 57–63. [Google Scholar]
- Jackson, C.R.; Langner, H.W.; Donahoe-Christiansen, J.; Inskeep, W.P.; McDermott, T.R. Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ. Microbiol. 2001, 3, 532–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Carvalho, A.M.; Duarte, M.C.; Ponezi, A.N. Quality assessment of sulphurous thermal waters in the city of Poços de Caldas, Minas Gerais, Brazil. Environ. Monit. Assess. 2015, 187, 563. [Google Scholar] [CrossRef]
- Fazlzadeh, M.; Sadeghi, H.; Bagheri, P.; Poureshg, Y.; Rostami, R. Microbial quality and physical-chemical characteristics of thermal springs. Environ. Geochem. Health 2016, 38, 413–422. [Google Scholar] [CrossRef]
- Miller, S.R.; Strong, A.L.; Jones, K.L.; Ungerer, M.C. Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in Yellowstone National Park. Appl. Environ. Microbiol. 2009, 75, 4565–4572. [Google Scholar] [CrossRef] [Green Version]
- Everroad, R.C.; Otaki, H.; Matsuura, K.; Haruta, S. Diversification of bacterial community composition along a temperature gradient at a thermal spring. Microbes Environ. 2012, 27, 374–381. [Google Scholar] [CrossRef] [Green Version]
- Chiriac, C.M.; Szekeres, E.; Rudi, K.; Baricz, A.; Hegedus, A.; Dragoş, N.; Coman, C. Differences in temperature and water chemistry shape distinct diversity patterns in thermophilic microbial communities. Appl. Environ. Microbiol. 2017, 83, e01363-17. [Google Scholar] [CrossRef] [Green Version]
- Krett, G.; Nagymáté, Z.; Márialigeti, K.; Borsodi, A.K. Seasonal and spatial changes of planktonic bacterial communities inhabiting the natural thermal Lake Hévíz, Hungary. Acta Microbiol. Immunol. Hung. 2016, 63, 115–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadhlaoui, K.; Ben Hania, W.; Postec, A.; Fauque, G.; Hamdi, M.; Ollivier, B.; Fardeau, M.L. Characterization of Desulfovibrio biadhensis sp. nov., isolated from a thermal spring. Int. J. Syst. Evol. Microbiol. 2015, 65, 1256–1261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahe, Y.F.; Perez, M.J.; Tacheau, C.; Fanchon, C.; Martin, R.; Rousset, F.; Seite, S. A new Vitreoscilla filiformis extract grown on spa water-enriched medium activates endogenous cutaneous antioxidant and antimicrobial defences through a potential Toll-like receptor 2/protein kinase C, zeta transduction pathway. Clin. Cosmet. Investig. Dermatol. 2013, 6, 191–196. [Google Scholar] [PubMed] [Green Version]
- Trabelsi, L.; Mnari, A.; Abdel-Daim, M.M.; Abid-Essafi, S.; Aleya, L. Therapeutic properties in Tunisian hot springs: First evidence of phenolic compounds in the cyanobacterium Leptolyngbya sp. biomass, capsular polysaccharides and releasing polysaccharides. BMC Complement. Altern. Med. 2016, 16, 515. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.R.; Mitchell, K.R.; Jackson-Weaver, O.; Kooser, A.S.; Cron, B.R.; Crossey, L.J.; Takacs-Vesbach, C.D. Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl. Environ. Microbiol. 2008, 74, 4910–4922. [Google Scholar] [CrossRef] [Green Version]
- Chernyh, N.A.; Mardanov, A.V.; Gumerov, V.M.; Miroshnichenko, M.L.; Lebedinsky, A.V.; Merkel, A.Y.; Crowe, D.; Pimenov, N.V.; Rusanov, I.I.; Ravin, N.V.; et al. Microbial life in Bourlyashchy, the hottest thermal pool of Uzon Caldera, Kamchatka. Extremophiles 2015, 19, 1157–1171. [Google Scholar] [CrossRef]
- Amin, A.; Ahmed, I.; Salam, N.; Kim, B.Y.; Singh, D.; Zhi, X.Y.; Xiao, M.; Li, W.J. Diversity and distribution of thermophilic bacteria in hot springs of Pakistan. Microb Ecol. 2017, 74, 116–127. [Google Scholar] [CrossRef]
- Wang, S.; Hou, W.; Dong, H.; Jiang, H.; Huang, L.; Wu, G.; Zhang, C.; Song, Z.; Zhang, Y.; Ren, H.; et al. Control of temperature on microbial community structure in hot springs of the Tibetan Plateau. PLoS ONE 2013, 8, e62901. [Google Scholar] [CrossRef] [Green Version]
- Zeichner, J.; Seite, S. From probiotic to prebiotic using thermal spring water. J. Drugs Dermatol. 2018, 17, 657–662. [Google Scholar]
- Szuróczki, S.; Kéki, Z.; Káli, S.; Lippai, A.; Márialigeti, K.; Tóth, E. Microbiological investigations on the water of a thermal bath at Budapest. Acta Microbiol. Immunol. Hung. 2016, 63, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Makk, J.; Enyedi, N.T.; Tóth, E.; Anda, D.; Szabó, A.; Felföldi, T.; Schumann, P.; Mádl-Szőnyi, J.; Borsodi, A.K. Deinococcus fonticola sp. nov., isolated from a radioactive thermal spring in Hungary. Int. J. Syst. Evol. Microbiol. 2019, 69, 1724–1730. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, R.; Liu, B.T.; Liu, C.L.; Du, Z.J. Paracnuella aquatica gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a hot spring. Int. J. Syst. Evol. Microbiol. 2019, 69, 2360–2366. [Google Scholar] [CrossRef] [PubMed]
- Rubiano-Labrador, C.; Díaz-Cárdenas, C.; López, G.; Gómez, J.; Baena, S. Colombian Andean thermal springs: Reservoir of thermophilic anaerobic bacteria producing hydrolytic enzymes. Extremophiles 2019, 23, 793–808. [Google Scholar] [CrossRef] [PubMed]
- Counts, J.A.; Zeldes, B.M.; Lee, L.L.; Straub, C.T.; Adams, M.W.W.; Kelly, R.M. Physiological, metabolic and biotechnological features of extremely thermophilic microorganisms. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Nasermoaddeli, A.; Kagamimori, S. Balneotherapy in medicine: A review. Environ. Health Prev. Med. 2005, 10, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Guerrero, D.; Garrigue, E. Eau thermale d’Avène et dermatite atopique: Avène’s thermal water and atopic dermatitis. Ann. Dermatol. Venereol. 2017, 144, S27–S34. (In French) [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial community variation in human body habitats across space and time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Lauber, C.L.; Zhou, N.; McDonald, D.; Costello, E.K.; Knight, R. Forensic identification using skin bacterial communities. Proc. Natl. Acad. Sci. USA 2010, 107, 6477–6481. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.S.; Vaz, C.V.; Silva, A.; Ferreira, S.S.; Correia, S.; Ferreira, R.; Breitenfeld, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R.; Pereira, C.; et al. Chemical signature and antimicrobial activity of Central Portuguese Natural Mineral Waters against selected skin pathogens. Environ. Geochem. Health 2020, 42, 2039–2057. [Google Scholar] [CrossRef]
- Balato, N.; Di Costanzo, L.; Patruno, C.; Patrì, A.; Ayala, F. Effect of weather and environmental factors on the clinical course of psoriasis. Occup. Environ. Med. 2013, 70, 600. [Google Scholar] [CrossRef]
- Balato, N.; Megna, M.; Ayala, F.; Balato, A.; Napolitano, M.; Patruno, C. Effects of climate changes on skin diseases. Expert Rev. Anti. Infect. Ther. 2014, 12, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Olafsson, J.H. The Blue Lagoon in Iceland and psoriasis. Clin. Dermatol. 1996, 14, 647–651. [Google Scholar] [CrossRef]
- Omulecki, A.; Nowak, A.; Zalewska, A. Spa therapy in Poland. Clin. Dermatol. 1996, 14, 679–683. [Google Scholar] [CrossRef]
- Tsankov, N.K.; Kamarashev, J.A. Spa therapy in Bulgaria. Clin. Dermatol. 1996, 14, 675–678. [Google Scholar] [CrossRef]
- Halevy, S.; Sukenik, S. Different modalities of spa therapy for skin diseases at the Dead Sea Area. Arch. Dermatol. 1998, 134, 1416–1420. [Google Scholar] [CrossRef]
- Abels, D.J.; Rose, T.; Bearman, J.E. Treatment of psoriasis at a Dead Sea dermatology clinic. Int. J. Dermatol. 1995, 34, 134–137. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Tomi, N.S.; Kreuter, A. Controlled clinical trials on balneophototherapy in psoriasis. Br. J. Dermatol. 2006, 154, 802–803. [Google Scholar] [CrossRef]
- Gisondi, P.; Farina, S.; Giordano, M.V.; Zanoni, M.; Girolomoni, G. Attitude to treatment of patients with psoriasis attending spa center. G. Ital. Dermatol. Venereol. 2012, 147, 483–489. [Google Scholar]
- Pagliarello, C.; Calza, A.; Di Pietro, C.; Tabolli, S. Self-reported psoriasis severity and quality of life assessment at Comano spa. Eur. J. Dermatol. 2012, 22, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Chiarini, A.; Dal Pra, I.; Pacchiana, R.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) thermal water interferes with interleukin-6 production and secretion and with cytokeratin-16 expression by cultured human psoriatic keratinocytes: Further potential mechanisms of its anti-psoriatic action. Int. J. Mol. Med. 2006, 18, 1073–1079. [Google Scholar] [CrossRef] [Green Version]
- Chiarini, A.; Dal Pra, I.; Pacchiana, R.; Menapace, L.; Zumiani, G.; Zanoni, M.; Armato, U. Comano’s (Trentino) thermal water interferes with the expression and secretion of vascular endothelial growth factor-A protein isoforms by cultured human psoriatic keratinocytes: A potential mechanism of its anti-psoriatic action. Int. J. Mol. Med. 2006, 18, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zumiani, G.; Tasin, L.; Urbani, F.; Tinozzi, C.C.; Carabelli, A.; Cristofolini, M. Indagine clinico-statistica sulla terapia idropinica e balneotermale con acqua oligominerale delle Terme di Comano in soggetti affetti da psoriasi. Minerva Med. 1986, 77, 627–634. [Google Scholar] [PubMed]
- Martin, R.; Henley, J.B.; Sarrazin, P.; Seité, S. Skin microbiome in patients with psoriasis before and after balneotherapy at the Thermal Care Center of La Roche-Posay. J. Drugs Dermatol. 2015, 14, 1400–1405. [Google Scholar]
- Hann, S.K. Mineral water and spas in Korea. Clin. Dermatol. 1996, 14, 633–635. [Google Scholar] [CrossRef]
- Seite, S. Thermal waters as cosmeceuticals: La Roche-Posay thermal spring water example. Clin. Cosmet. Investig. Dermatol. 2013, 6, 23–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinton, J.; Friden, H.; Kettaneh-Wold, N.; Wold, S.; Dreno, B.; Richard, A.; Bieber, T. Clinical and biological effects of balneotherapy with selenium-rich spa water in patients with psoriasis vulgaris. Br. J. Dermatol. 1995, 133, 344–347. [Google Scholar] [CrossRef]
- Léauté-Labrèze, C.; Saillour, F.; Chêne, G.; Cazenave, C.; Luxey-Bellocq, M.L.; Sanciaume, C.; Toussaint, J.F.; Taïeb, A. Saline spa water or combined water and UV-B for psoriasis vs conventional UV-B: Lessons from the Salies de Béarn randomized study. Arch. Dermatol. 2001, 137, 1035–1039. [Google Scholar]
- Ubogui, J.; Stengel, F.M.; Kien, M.C.; Sevinsky, L.; Rodriguez Lupo, L. Thermalism in Argentina. Alternative or complementary dermatologic therapy. Arch. Dermatol. 1998, 134, 1411–1412. [Google Scholar] [CrossRef]
- Delfino, M.; Russo, N.; Migliaccio, G.; Carraturo, N. Studio sperimentale sull’efficacia dei fanghi termali dell’isola di Ischia associati a balneoterapia nella cura della psoriasi volgare a placche. Clin. Ter. 2003, 154, 167–171. [Google Scholar]
- Kazandjieva, J.; Grozdev, I.; Darlenski, R.; Tsankov, N. Climatotherapy of psoriasis. Clin. Dermatol. 2008, 26, 477–485. [Google Scholar] [CrossRef]
- Patruno, C.; Fabbrocini, G.; Napolitano, M. Clinical phenotypes of atopic dermatitis of the adult. G Ital. Dermatol. Venereol. 2020, 4. [Google Scholar] [CrossRef]
- Koszoru, K.; Borza, J.; Gulacsi, L.; Sardy, M. Quality of life in patients with atopic dermatitis. Cutis 2019, 104, 174–177. [Google Scholar] [PubMed]
- Wollenberg, A.; Barbarot, S.; Bieber, T.; Christen-Zaech, S.; Deleuran, M.; Fink-Wagner, A.; Gieler, U.; Girolomoni, G.; Lau, S.; Muraro, A.; et al. Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: Part II. J. Eur. Acad. Dermatol. Venereol. 2018, 32, 850–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harari, M.; Shani, J.; Seidl, V.; Hristakieva, E. Climatotherapy of atopic dermatitis at the Dead Sea: Demographic evaluation and cost-effectiveness. Int. J. Dermatol. 2000, 39, 59–69. [Google Scholar] [CrossRef]
- Shani, J.; Seidl, V.; Hristakieva, E.; Stanimirovic, A.; Burdo, A.; Harari, M. Indications, contraindications and possible side-effects of climatotherapy at the Dead-Sea. Int. J. Dermatol. 1997, 36, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Giryes, H.; Friger, M.; Sarov, B. Treatment of atopic dermatitis in the Dead Sea area: Biology and therapy of inflammatory skin diseases. In Proceedings of the International Symposium at the Dead Sea, Dead Sea, Israel, 2–6 November 1997. [Google Scholar]
- Schiffner, R.; Schiffner-Rohe, J.; Gerstenhauer, M.; Landthaler, M.; Hofstadter, F.; Stolz, W. Dead Sea treatment—Principle for outpatient use in atopic dermatitis: Safety and efficacy of synchronous balneophototherapy using narrowband UVB and bathing in Dead Sea salt solution. Eur. J. Dermatol. 2002, 12, 543–548. [Google Scholar] [PubMed]
- Dittmar, H.C.; Pflieger, D.; Schempp, C.M.; Schopf, E.; Simon, J.C. Comparison of balneophototherapy and UVA/B mono-phototherapy in patients with subacute atopic dermatitis. Hautarzt 1999, 50, 649–653. [Google Scholar] [CrossRef]
- Zimmermann, J.; Utermann, S. Photo-brine therapy in patients with psoriasis and neurodermatitis atopica. Hautarzt 1994, 45, 849–853. [Google Scholar] [CrossRef]
- Adachi, J.; Sumitsuzi, H.; Endo, K.; Fukuzumi, T.; Aoki, T. Evaluation of the effect of short-term application of deep sea water on atopic dermatitis. Arerugi 1998, 47, 57–60. [Google Scholar]
- Merial-Kieny, C.; Castex-Rizzi, N.; Selas, B.; Mery, S.; Guerrero, D. Avène Thermal Spring Water: An active component with specific properties. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 2–5. [Google Scholar] [CrossRef]
- Pigatto, P. The efficacy of Avène thermal spring water in light to moderate atopic dermatitis. Ann. Dermatol. Venereol. 2005, 132, 6S16–6S18. [Google Scholar] [PubMed]
- Giannetti, A. The hydrotherapy centre in Avène-les-bains A controlled study in atopic dermatitis. Ann. Dermatol. Venereol. 2005, 132, 6S12–6S15. [Google Scholar] [PubMed]
- Taieb, C.; Myon, E. Dermatite atopique: Impact de l’hydrothèrapie sur la qualite’ de vie. Ann. Dermatol. Venereol. 2005, 132, 6S19–6S21. [Google Scholar] [CrossRef]
- Redoules, D.; Tarroux, R.; Pe’rie´, J. Epidermal enzymes: Their role in homeostasis and their relationships with dermatoses. Skin Pharmacol. Appl. Skin Physiol. 1998, 11, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Redoules, D.; Tarroux, R.; Assalit, M.F.; Peri, J.J. Characterisation and assay of five enzymatic activities in the stratum corneum using tapestrippings. Skin Pharmacol. Appl. Skin Physiol. 1999, 12, 182–192. [Google Scholar] [CrossRef]
- Tarroux, R.; Assalit, M.F.; Licu, D.; Pe´rie´, J.J.; Redoule’s, D. Variability of enzyme markers during clinical regression of atopic dermatitis. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 55–62. [Google Scholar] [CrossRef]
- Sachdev, H.; Chavda, R.; Mery, S. Interest of Associating Thermal Spring Water Spray with Emollient in the Maganement of Atopic Dermatitis; Poster at European Academy and Dermatology and Venerology: Berlin, Germany, 2009. [Google Scholar]
- Dikova, A.; Jeliaskoff, A.; Seite, S. An observational study on patients suffer-ing from atopic dermatitis undergoing balneotherapy. J. Am. Acad. Dermatol. 2016, 76, AB41. [Google Scholar]
- Cristofolini, G. L’acqua termale di Comano nella cura delle malattie cutanee. In Proceedings of the III Congresso ‘Società Dermatologica Tre Venezie’, Trento, Italy, 1926; p. 12. [Google Scholar]
- Farina, S.; Gisondi, P.; Zanoni, M.; Pace, M.; Rizzoli, L.; Baldo, E.; Girolomoni, G. Balneotherapy for atopic dermatitis in children at Comano spa in Trentino, Italy. J. Dermatolog. Treat. 2011, 22, 366–371. [Google Scholar] [CrossRef]
- Andreassi, L.; Flori, L. Mineral water and spas in Italy. Clin. Dermatol. 1996, 14, 627–632. [Google Scholar] [CrossRef]
- Oji, V.; Preil, M.L.; Kleinow, B.; Wehr, G.; Fischer, J.; Hennies, H.C.; Hausser, I.; Breitkreutz, D.; Aufenvenne, K.; Stieler, K.; et al. S1 guidelines for the diagnosis and treatment of ichthyoses–update. JDDG J. Dtsch. Dermatol. Ges. 2017, 15, 1053–1065. [Google Scholar] [CrossRef]
- Gambichler, T.; Soehnchen, R. Balneophototherapy in lamellar ichthyosis. Z. Dermatol. 1995, 181, 183–185. [Google Scholar]
- Gambichler, T.; Senger, E.; Altmeyer, P.; Hoffmann, K. Clearance of ichthyosis linearis circumflexa with balneophototherapy. J. Eur. Acad. Dermatol. Venereol. 2000, 14, 397–399. [Google Scholar] [CrossRef]
- Gollnick, H.; Cunliffe, W.; Berson, D.; Dreno, B.; Finlay, A.; Leyden, J.J.; Shalita, A.R.; Thiboutot, D. Management of acne: A report from a global alliance to improve outcomes in acne. J. Am. Acad. Dermatol. 2003, 49, S1–S37. [Google Scholar] [CrossRef] [PubMed]
- Fabbrocini, G.; Cacciapuoti, S.; De Vita, V.; Fardella, N.; Pastore, F.; Monfrecola, G. The effect of ALA-PDT on microcomedones and macrocomedones. Dermatology 2009, 219, 322–328. [Google Scholar] [CrossRef] [Green Version]
- Carretero, M.I. Clay minerals and their beneficial effects upon human health. A review. Appl. Clay Sci. 2002, 21, 155–163. [Google Scholar] [CrossRef]
- Ma’or, Z.; Henis, Y.; Alon, Y.; Orlov, E.; Sorensen, K.B.; Oren, A. Antimicrobial properties of Dead Sea black mineral mud. Int. J. Dermatol. 2006, 45, 504–511. [Google Scholar] [CrossRef] [PubMed]
Classification of Thermal Water | ||
---|---|---|
Classification According to Temperature | Classification According to Fixed Residue at 180 °C | Classification According to Chemical Composition |
|
|
|
Thermal Water in Dermatology | ||
---|---|---|
Type of Water | Most Abundant Chemical Elements | Beneficial Effects |
Sulfated waters Sulfurous waters Bicarbonate waters | Magnesium, Sulfur | Skin regeneration, anti-inflammatory effects, and bactericidal activities |
Iodo-Bromo-Saline waters Saline waters Carbonate waters | Calcium | Skin protection by improving natural defenses |
Manganese, Iodo, Bromo | Antioxidant effects | |
Potassium | Skin hydration and enhancement of elastic tissues | |
Arsenical-ferruginous waters | Iron and Zinc | Replenishment of oxygen to the cells of the skin |
Temperature | Thermal Spring Water (TSW) | Prevalent Phylum | References |
---|---|---|---|
>60 °C | Yellowstone National Park hot TSW Nakabusa hot TSW Bourlyashchy hottest TSW Chilas and Hunza hot TSW Tibetan hot TSW | Aquificae | Hall, et al., 2008; Everroad et al., 2012; Chernyh et al., 2015; Amin et al., 2017; Wang et al., 2013 |
<60 °C | Nakabusa hot TSW Tibetan hot TSW Yellowstone National Park hot TSW | Cyanobacteria (Thermosynechococcus/Synechococcus) Chloroflexi Proteobacteria | Everroad et al., 2012; Wang et al., 2013; Miller et al., 2009 |
20–35 °C | La Roche Posay TSW Gellért bath Lake Hevitz TW | Proteobacteria (alpha, beta, gamma) Actinobacteria Bacteroidetes Firmicutes | Zeichner et al., 2018; Szuróczki et al., 2016; Krett et al., 2016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciapuoti, S.; Luciano, M.A.; Megna, M.; Annunziata, M.C.; Napolitano, M.; Patruno, C.; Scala, E.; Colicchio, R.; Pagliuca, C.; Salvatore, P.; et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. J. Clin. Med. 2020, 9, 3047. https://doi.org/10.3390/jcm9093047
Cacciapuoti S, Luciano MA, Megna M, Annunziata MC, Napolitano M, Patruno C, Scala E, Colicchio R, Pagliuca C, Salvatore P, et al. The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature. Journal of Clinical Medicine. 2020; 9(9):3047. https://doi.org/10.3390/jcm9093047
Chicago/Turabian StyleCacciapuoti, Sara, Maria A. Luciano, Matteo Megna, Maria C. Annunziata, Maddalena Napolitano, Cataldo Patruno, Emanuele Scala, Roberta Colicchio, Chiara Pagliuca, Paola Salvatore, and et al. 2020. "The Role of Thermal Water in Chronic Skin Diseases Management: A Review of the Literature" Journal of Clinical Medicine 9, no. 9: 3047. https://doi.org/10.3390/jcm9093047