Impact of Azithromycin and/or Hydroxychloroquine on Hospital Mortality in COVID-19
Abstract
:1. Introduction
2. Experimental Section
2.1. Study Sample
2.2. Exposure
2.3. Outcomes
2.4. Statistical Analysis
3. Results
3.1. Primary Outcome
3.2. Secondary Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID–19) Outbreak in China: Summary of a Report of 72 314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagali, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, J.; et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020, 30, 269–271. [Google Scholar] [CrossRef] [PubMed]
- Touret, F.; Gilles, M.; Barral, K.; Nougairède, A.; van Helden, J.; Decroly, E.; de Lamballerie, X.; Coutard, B. In vitro screening of a FDA approved chemical library reveals potential inhibitors of SARS–CoV–2 replication. bioRxiv 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Gautret, P.; Lagier, J.-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; et al. Hydroxychloroquine and azithromycin as a treatment of COVID–19: Results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents 2020, 56, 105949. [Google Scholar] [CrossRef] [PubMed]
- Kalil, A.C. Treating COVID-19—Off-Label Drug Use, Compassionate Use, and Randomized Clinical Trials During Pandemics. JAMA 2020, 323, 1897–1898. [Google Scholar] [CrossRef]
- Rosenberg, E.S.; Dufort, E.M.; Udo, T.; Wilberschied, L.A.; Kumar, J.; Tesoriero, J.; Weinberg, P.; Kirkwood, J.; Muse, A.; DeHovitz, J.; et al. Association of Treatment With Hydroxychloroquine or Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New York State. JAMA 2020, 324, 617–618. [Google Scholar]
- Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labela, A.; Manson, D.K.; Kubin, C.; Barr, G.; et al. Observational Study of Hydroxychloroquine in Hospitalized Patients with Covid-19. N. Engl. J. Med. 2020, 382, 2411–2418. [Google Scholar] [CrossRef]
- Mehra, M.R.; Ruschitzka, F.; Patel, A.N. Retraction—Hydroxychloroquine or chloroquine with or without a macrolide for treatment of COVID-19: A multinational registry analysis. Lancet 2020. [Google Scholar] [CrossRef]
- Boulware, D.R.; Pullen, M.F.; Bangdiwala, A.S.; Pastick, K.A.; Lofgren, S.M.; Okafor, E.C.; Skipper, P.C.; Nascene, A.A.; Nicol, M.R.; Abassi, M.; et al. A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19. N. Engl. J. Med. 2020, 383, 517–525. [Google Scholar] [CrossRef]
- Kissler, S.M.; Tedijanto, C.; Goldstein, E.; Grad, Y.H.; Lipsitch, M. Projecting the transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 2020, 368, 860–868. [Google Scholar] [CrossRef] [PubMed]
- Peduzzi, P.; Concato, J.; Kemper, E.; Holford, T.R.; Feinstein, A.R. A simulation study of the number of events per variable in logistic regression analysis. J. Clin. Epidemiol. 1996, 49, 1373–1379. [Google Scholar] [CrossRef]
- Hsieh, F.Y.; Bloch, D.A.; Larsen, M.D. A simple method of sample size calculation for linear and logistic regression. Stat. Med. 1998, 17, 1623–1634. [Google Scholar] [CrossRef] [Green Version]
- Craney, T.A.; Surles, J.G. Model-Dependent Variance Inflation Factor Cutoff Values. Qual. Eng. 2002, 14, 391–403. [Google Scholar] [CrossRef]
- Thomas, L.; Li, F.; Pencina, M. Using Propensity Score Methods to Create Target Populations in Observational Clinical Research. JAMA 2020, 323, 466–467. [Google Scholar] [CrossRef]
- VanderWeele, T.J.; Ding, P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann. Intern. Med. 2017, 167, 268–274. [Google Scholar] [CrossRef]
- Thomas, L.E.; Li, F.; Pencina, M.J. Overlap Weighting: A Propensity Score Method That Mimics Attributes of a Randomized Clinical Trial. JAMA 2020, 323, 2417–2418. [Google Scholar] [CrossRef]
- Gielen, V.; Johnston, S.L.; Edwards, M.R. Azithromycin induces anti-viral responses in bronchial epithelial cells. Eur. Respir. J. 2010, 36, 646–654. [Google Scholar] [CrossRef] [Green Version]
- Retallack, H.; Lullo, E.D.; Arias, C.; Knopp, K.A.; Laurie, M.T.; Sandoval-Espinosa, C.; Leon, W.R.M.; Krencik, R.; Ullian, E.M.; Spatazza, J.; et al. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. Proc. Natl. Acad. Sci. USA 2016, 113, 14408–14413. [Google Scholar] [CrossRef] [Green Version]
- Madrid, P.B.; Panchal, R.G.; Warren, T.K.; Shurtleff, A.C.; Endsley, A.N.; Green, C.E.; Kolokoltsov, A.; Davey, R.; Manger, I.D.; Gilfillan, L.; et al. Evaluation of Ebola Virus Inhibitors for Drug Repurposing. ACS Infect. Dis 2015, 1, 317–326. [Google Scholar] [CrossRef]
- Borba, M.G.S.; Val, F.F.A.; Sampaio, V.S.; Alexandre, M.A.A.; Melo, G.C.; Brito, M.; Mourao, M.P.G.; Brito-Sousa, J.D.; Baia–da–Silva, D.; Guerra, M.V.F.; et al. Effect of High vs Low Doses of Chloroquine Diphosphate as Adjunctive Therapy for Patients Hospitalized with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection: A Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e208857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorin, E.; Wadhwani, L.; Magnani, S.; Dai, M.; Shulman, E.; Nadeau-Routhier, C.; Knotts, R.; Bar–Cohen, R.; Kogan, E.; Barbhaiya, C.; et al. QT Interval Prolongation and Torsade De Pointes in Patients with COVID-19 treated with Hydroxychloroquine/Azithromycin. Heart Rhythm 2020. [Google Scholar] [CrossRef] [PubMed]
Neither Ttreatment | HCQ Aalone | AZT Aalone | AZT and HCQ | p-Value | ||
---|---|---|---|---|---|---|
Patients | N (%) | 605 (43) | 211 (15) | 421 (30) | 166 (12) | |
Age | years | 72 (60–81) | 68 (59–74) | 71 (59–79) | 70 (62–75) | <0.001 |
Body mass index | kg∗m−2 | 26 (23–29) | 26 (24–29) | 26 (23–29) | 26 (24–29) | 0.007 |
Male | N (%) | 387 (64.0) | 155 (73.5) | 262 (62.2) | 120 (72.3) | 0.008 |
Comorbidity | ||||||
Arterial hypertension | N (%) | 210 (34.7) | 73 (34.6) | 156 (37.1) | 60 (36.1) | 0.871 |
Diabetes mellitus | N (%) | 137 (22.6) | 36 (17.1) | 79 (18.8) | 37 (22.3) | 0.229 |
Laboratory data | ||||||
PaO2 | mmHg | 54 (45–65) | 52 (42–64) | 57 (48–68) | 53 (45–60) | 0.009 |
PaCO2 | mmHg | 34 (30–38) | 34 (31–38) | 34 (31–38) | 33 (31–37) | 0.359 |
PaO2/FiO2 | mmHg | 254 (204–299) | 237 (180–286) | 274 (226–323) | 257 (217–288) | <0.001 |
pH | 7.48 (7.44–7.51) | 7.49 (7.46–7.52) | 74.8 (7.46–7.51) | 7.49 (7.47–7.52) | <0.001 | |
Lactate | Mmol∗L–1 | 1.1 (0.8–1.7) | 1.0 (0.8–1.4) | 1.0 (0.7–1.4) | 1.0 (0.8–1.4) | <0.001 |
Leukocytes | 109∗L−1 | 7.8 (5.9–10.6) | 7.1 (5.3–9.9) | 7.0 (5.2–9.2) | 7.0 (5.3–9.4) | 0.006 |
Lymphocytes | 109∗L−1 | 0.9 (0.6–1.3) | 0.9 (0.6–1.2) | 1.0 (0.7–1.4) | 0.9 (0.7–1.2) | 0.002 |
Platelets | 109∗L−1 | 195 (144–255) | 171 (132–243) | 176 (136–230) | 164 (132–231) | 0.002 |
C-reactive protein | mg∗L−1 | 106 (41–177) | 140 (73–198) | 74 (36–142) | 108 (62–167) | <0.001 |
Lactate dehydrogenase | U∗L−1 | 433 (304–578) | 642 (506–794) | 470 (334–567) | 417 (319–529) | 0.042 |
Outcomes | ||||||
In-hospital mortality | N (%) | 172 (28.4) | 60 (28.4) | 69 (16.4) | 53 (31.9) | <0.001 |
ICU admission | N (%) | 46 (7.6) | 73 (34.6) | 20 (4.8) | 48 (28.9) | <0.001 |
Hospital length of stay | days | 6 (4–9) | 10 (6–16) | 6 (4–10) | 10 (7–18) | <0.001 |
Survivors | Non-Survivors | p-Value | ||
---|---|---|---|---|
Patients | N (%) | 1022 (74.3) | 354 (25.7) | |
Age | years | 68 (57–76) | 77 (71–83) | <0.001 |
Body mass index | kg∗m−2 | 26 (24–29) | 26 (24–29) | 0.11 |
Male | N (%) | 648 (63.4) | 261 (73.7) | 0.001 |
Comorbidity | ||||
Arterial hypertension | N (%) | 377 (36.9) | 122 (34.5) | 0.45 |
Diabetes mellitus | N (%) | 204 (20.0) | 85 (24.0) | 0.12 |
Laboratory data | ||||
PaO2 | mmHg | 57 (49–67) | 47 (38–56) | <0.001 |
PaCO2 | mmHg | 34 (31–38) | 33 (30–38) | 0.003 |
PaO2/FiO2 | mmHg | 271 (231–314) | 211 (162–254) | <0.001 |
pH | 7.49 (7.46–7.51) | 7.48 (7.43–7.51) | <0.001 | |
Lactate | mmol∗L−1 | 1.0 (0.7–1.3) | 1.3 (1.0–2.1) | <0.001 |
Leukocytes | 109∗L−1 | 7.2 (5.5–9.6) | 7.6 (5.3–10.6) | 0.15 |
Lymphocytes | 109∗L−1 | 1.0 (0.7–1.4) | 0.8 (0.6–1.1) | <0.001 |
Platelets | 109∗L−1 | 185 (143–246) | 164 (122–226) | <0.001 |
C-reactive protein | mg∗L−1 | 81 (35–153) | 143 (91–198) | <0.001 |
Lactate dehydrogenase | U∗L−1 | 423 (32–616) | 641 (472–795) | 0.016 |
Outcomes | ||||
ICU admission | N (%) | 78 (7.6) | 96 (27.1) | <0.001 |
Hospital length of stay | days | 7 (5–11) | 7 (3–11) | 0.001 |
Model | AZT vs. Nneither Ttreatment | HCQ vs. Nneither Ttreatment | AZT and HCQ vs. Nneither Ttreatment | |
---|---|---|---|---|
In-hospital mortality | Logit regression | 0.60 (0.42–0.85) | 0.76 (0.53–1.09) | 1.13 (0.77–1.69) |
ICU admission | Logit regression | 1.08 (0.57–2.05) | 1.10 (0.69–1.76) | 1.82 (1.27–2.61) |
Hospital length of stay | Poisson regression | 1.17 (1.10–1.25) | 1.15 (1.06–1.24) | 1.34 (1.24–1.45) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albani, F.; Fusina, F.; Giovannini, A.; Ferretti, P.; Granato, A.; Prezioso, C.; Divizia, D.; Sabaini, A.; Marri, M.; Malpetti, E.; et al. Impact of Azithromycin and/or Hydroxychloroquine on Hospital Mortality in COVID-19. J. Clin. Med. 2020, 9, 2800. https://doi.org/10.3390/jcm9092800
Albani F, Fusina F, Giovannini A, Ferretti P, Granato A, Prezioso C, Divizia D, Sabaini A, Marri M, Malpetti E, et al. Impact of Azithromycin and/or Hydroxychloroquine on Hospital Mortality in COVID-19. Journal of Clinical Medicine. 2020; 9(9):2800. https://doi.org/10.3390/jcm9092800
Chicago/Turabian StyleAlbani, Filippo, Federica Fusina, Alessia Giovannini, Pierluigi Ferretti, Anna Granato, Chiara Prezioso, Danilo Divizia, Alessandra Sabaini, Marco Marri, Elena Malpetti, and et al. 2020. "Impact of Azithromycin and/or Hydroxychloroquine on Hospital Mortality in COVID-19" Journal of Clinical Medicine 9, no. 9: 2800. https://doi.org/10.3390/jcm9092800