Glucose Levels as a Mediator of the Detrimental Effect of Abdominal Obesity on Relative Handgrip Strength in Older Adults
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Sample Population
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Newman, A.B.; Lee, J.S.; Visser, M.; Goodpaster, B.H.; Kritchevsky, S.B.A.; Tylavsky, F.; Nevitt, M.; Harris, T.B. Weight change and the conservation of lean mass in old age: The Health, Aging and Body Composition Study. Am. J. Clin. Nutr. 2005, 82, 872–878. [Google Scholar] [CrossRef] [PubMed]
- Villareal, D.T.; Apovian, C.M.; Kushner, R.F.; Klein, S. Obesity in Older Adults: Technical Review and Position Statement of the American Society for Nutrition and NAASO, The Obesity Society. Obes. Res. 2005, 13, 1849–1863. [Google Scholar] [CrossRef] [PubMed]
- Alberti, K.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.-C.; James, W.P.T.; Loria, C.M.; Smith, S.C. Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Westphal, S.A. Obesity, Abdominal Obesity, and Insulin Resistance. Clin. Cornerstone 2008, 9, 23–31. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Perez-Sousa, M.A.; González-Ruíz, K.; Cano-Gutiérrez, C.A.; Schmidt-RioValle, J.; Correa-Rodríguez, M.; Izquierdo, M.; Romero-García, J.A.; Campos-Rodríguez, A.Y.; Triana-Reina, H.R.; et al. Obesity- and Lipid-Related Parameters in the Identification of Older Adults with a High Risk of Prediabetes According to the American Diabetes Association: An Analysis of the 2015 Health, Well-Being, and Aging Study. Nutrients 2019, 11, 2654. [Google Scholar] [CrossRef]
- Meisinger, C.; Döring, A.; Thorand, B.; Heier, M.; Löwel, H. Body fat distribution and risk of type 2 diabetes in the general population: Are there differences between men and women? The MONICA/KORA Augsburg cohort study. Am. J. Clin. Nutr. 2006, 84, 483–489. [Google Scholar] [CrossRef]
- Jura, M.; Kozak, L.P. Obesity and related consequences to ageing. Age 2016, 38. [Google Scholar] [CrossRef]
- De Carvalho, D.H.T.; Scholes, S.; Santos, J.L.F.; De Oliveira, C.; Alexandre, T.D.S. Does Abdominal Obesity Accelerate Muscle Strength Decline in Older Adults? Evidence From the English Longitudinal Study of Ageing. J. Gerontol. Ser. A Boil. Sci. Med. Sci. 2019, 74, 1105–1111. [Google Scholar] [CrossRef]
- Lee, P.G.; Halter, J.B. The Pathophysiology of Hyperglycemia in Older Adults: Clinical Considerations. Diabetes Care 2017, 40, 444–452. [Google Scholar] [CrossRef]
- Ohlendieck, K. Pathobiochemical Changes in Diabetic Skeletal Muscle as Revealed by Mass-Spectrometry-Based Proteomics. J. Nutr. Metab. 2012, 2012, 1–12. [Google Scholar] [CrossRef]
- World Health Organization. Global Status Report on Noncommunicable Diseases; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Chamberlain, J.J.; Rhinehart, A.S.; Shaefer, C.F.; Neuman, A. Diagnosis and Management of Diabetes: Synopsis of the 2016 American Diabetes Association Standards of Medical Care in Diabetes. Ann. Intern. Med. 2016, 164, 542. [Google Scholar] [CrossRef] [PubMed]
- Cho, N.H.; Shaw, J.; Karuranga, S.; Huang, Y.; Fernandes, J.D.D.R.; Ohlrogge, A.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pr. 2018, 138, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Tramunt, B.; Smati, S.; Grandgeorge, N.; Lenfant, F.; Arnal, J.-F.; Montagner, A.; Gourdy, P. Sex differences in metabolic regulation and diabetes susceptibility. Diabetology 2019, 63, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Bohannon, R.W. Grip Strength: An Indispensable Biomarker for Older Adults. Clin. Interv. Aging 2019, 14, 1681–1691. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Peng, L.-N.; Chiou, S.-T.; Chen, L.-K. Relative Handgrip Strength Is a Simple Indicator of Cardiometabolic Risk among Middle-Aged and Older People: A Nationwide Population-Based Study in Taiwan. PLoS ONE 2016, 11, e0160876. [Google Scholar] [CrossRef] [PubMed]
- Chun, S.-W.; Kim, W.; Choi, K.H. Comparison between grip strength and grip strength divided by body weight in their relationship with metabolic syndrome and quality of life in the elderly. PLoS ONE 2019, 14, e0222040. [Google Scholar] [CrossRef]
- Peterson, M.D.; McGrath, R.; Zhang, P.; Markides, K.S.; Al Snih, S.; Wong, R. Muscle Weakness Is Associated With Diabetes in Older Mexicans: The Mexican Health and Aging Study. J. Am. Med. Dir. Assoc. 2016, 17, 933–938. [Google Scholar] [CrossRef]
- McGrath, R.; Vincent, B.M.; Al Snih, S.; Markides, K.S.; Peterson, M.D. The Association between Muscle Weakness and Incident Diabetes in Older Mexican Americans. J. Am. Med. Dir. Assoc. 2017, 18, 452.e7–452.e12. [Google Scholar] [CrossRef]
- Li, J.J.; Wittert, G.; Vincent, A.; Atlantis, E.; Shi, Z.; Appleton, S.L.; Hill, C.L.; Jenkins, A.J.; Januszewski, A.S.; Adams, R.J. Muscle grip strength predicts incident type 2 diabetes: Population-based cohort study. Metabolism 2016, 65, 883–892. [Google Scholar] [CrossRef]
- Lee, M.-R.; Jung, S.M.; Bang, H.; Kim, H.S.; Kim, Y.B. Association between muscle strength and type 2 diabetes mellitus in adults in Korea. Med. 2018, 97, e10984. [Google Scholar] [CrossRef]
- Corriere, M.; Rooparinesingh, N.; Kalyani, R.R. Epidemiology of diabetes and diabetes complications in the elderly: an emerging public health burden. Curr. Diabetes Rep. 2013, 13, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Nwose, E.U.; Richards, R.S.; Bwititi, P.; Igumbor, E.O.; Oshionwu, E.J.; Okolie, K.; Onyia, I.C.; Pokhrel, A.; Gyawali, P.; Okuzor, J.N.; et al. Prediabetes and cardiovascular complications study (PACCS): international collaboration 4 years’ summary and future direction. BMC Res. Notes 2017, 10, 730. [Google Scholar] [CrossRef] [PubMed]
- Van Agtmaal, M.J.; Houben, A.J.; De Wit, V.; Henry, R.M.; Schaper, N.C.; Dagnelie, P.C.; Van Der Kallen, C.J.; Koster, A.; Sep, S.J.; Kroon, A.A.; et al. Prediabetes Is Associated With Structural Brain Abnormalities: The Maastricht Study. Diabetes Care 2018, 41, 2535–2543. [Google Scholar] [CrossRef]
- Mizgier, M.L.; Casas, M.; Contreras-Ferrat, A.; Llanos, P.; Galgani, J.E. Potential role of skeletal muscle glucose metabolism on the regulation of insulin secretion. Obes. Rev. 2014, 15, 587–597. [Google Scholar] [CrossRef] [PubMed]
- Oberbach, A.; Bossenz, Y.; Lehmann, S.; Niebauer, J.; Adams, V.; Paschke, R.; Schön, M.R.; Blüher, M.; Punkt, K. Altered Fiber Distribution and Fiber-Specific Glycolytic and Oxidative Enzyme Activity in Skeletal Muscle of Patients with Type 2 Diabetes. Diabetes Care 2006, 29, 895–900. [Google Scholar] [CrossRef]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; De Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; Newman, A.B. Decreased Muscle Strength and Quality in Older Adults With Type 2 Diabetes: The Health, Aging, and Body Composition Study. Diabetes 2006, 55, 1813–1818. [Google Scholar] [CrossRef]
- Park, S.W.; Goodpaster, B.H.; Strotmeyer, E.S.; Kuller, L.H.; Broudeau, R.; Kammerer, C.M.; De Rekeneire, N.; Harris, T.B.; Schwartz, A.V.; Tylavsky, F.A.; et al. Accelerated Loss of Skeletal Muscle Strength in Older Adults With Type 2 Diabetes: The Health, Aging, and Body Composition Study. Diabetes Care 2007, 30, 1507–1512. [Google Scholar] [CrossRef]
- Giglio, B.M.; Mota, J.F.; Wall, B.T.; Pimentel, G.D. Low Handgrip Strength Is Not Associated with Type 2 Diabetes Mellitus and Hyperglycemia: a Population-Based Study. Clin. Nutr. Res. 2018, 7, 112–116. [Google Scholar] [CrossRef]
- Palacios-Chávez, M.; Dejo-Seminario, C.; Mayta-Tristán, P. Physical performance and muscle strength in older patients with and without diabetes from a public hospital in Lima, Peru. Endocrinol. Nutr. (Engl. Ed.) 2016, 63, 220–229. [Google Scholar] [CrossRef]
- Ramírez-Vélez, R.; Correa-Bautista, J.E.; Garcia-Hermoso, A.; Cano-Gutiérrez, C.A.; Izquierdo, M. Reference values for handgrip strength and their association with intrinsic capacity domains among older adults. J. Cachex—Sarcopenia Muscle 2019, 10, 278–286. [Google Scholar] [CrossRef]
- Mamtani, M.R.; Kulkarni, H.R. Predictive Performance of Anthropometric Indexes of Central Obesity for the Risk of Type 2 Diabetes. Arch. Med Res. 2005, 36, 581–589. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988. [Google Scholar]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Publications: New York, NY, USA, 2017. [Google Scholar]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clinical practice: a Consensus Statement from the IAS and ICCR Working Group on Visceral Obesity. Nat. Rev. Endocrinol. 2020, 16, 177–189. [Google Scholar] [CrossRef] [PubMed]
- Freemantle, N.; Holmes, J.; Hockey, A.; Kumar, S. How strong is the association between abdominal obesity and the incidence of type 2 diabetes? Int. J. Clin. Pr. 2008, 62, 1391–1396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Rimm, E.B.; Stampfer, M.J.; Willett, W.C.; Hu, F.B. Comparison of abdominal adiposity and overall obesity in predicting risk of type 2 diabetes among men. Am. J. Clin. Nutr. 2005, 81, 555–563. [Google Scholar] [CrossRef]
- Son, Y.J.; Kim, J.; Park, H.-J.; Park, S.E.; Park, C.-Y.; Lee, W.-Y.; Oh, K.-W.; Park, S.-W.; Rhee, E.-J. Association of Waist-Height Ratio with Diabetes Risk: A 4-Year Longitudinal Retrospective Study. Endocrinol. Metab. 2016, 31, 127–133. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Integrated Care for Older People (ICOPE); WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Dodds, R.; Kuh, D.; Sayer, A.A.; Cooper, R. Physical activity levels across adult life and grip strength in early old age: Updating findings from a British birth cohort. Age Ageing 2013, 42, 794–798. [Google Scholar] [CrossRef]
- Wang, D.X.; Yao, J.; Zirek, Y.; Reijnierse, E.M.; Maier, A.B. Muscle mass, strength, and physical performance predicting activities of daily living: A meta-analysis. J. Cachex- Sarcopenia Muscle 2019, 11, 3–25. [Google Scholar] [CrossRef]
- Çetinus, E.; Buyukbese, M.A.; Üzel, M.; Ekerbiçer, H.; Karaoguz, A. Hand grip strength in patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pr. 2005, 70, 278–286. [Google Scholar] [CrossRef]
- Peterson, M.D.; Duchowny, K.; Meng, Q.; Wang, Y.; Chen, X.; Zhao, Y. Low Normalized Grip Strength is a Biomarker for Cardiometabolic Disease and Physical Disabilities Among U.S. and Chinese Adults. Journals Gerontol. Ser. A Boil. Sci. Med. Sci. 2017, 72, 1525–1531. [Google Scholar] [CrossRef]
- Garcia-Hermoso, A.; Carrillo, H.A.; González-Ruíz, K.; Vivas, A.; Triana-Reina, H.R.; Martínez-Torres, J.; Prieto-Benavidez, D.H.; Correa-Bautista, J.E.; Ramos-Sepúlveda, J.A.; Villa-González, E.; et al. Fatness mediates the influence of muscular fitness on metabolic syndrome in Colombian collegiate students. PLoS ONE 2017, 12, e0173932. [Google Scholar] [CrossRef]
- Brand, C.; Dias, A.F.; Fochesatto, C.F.; Garcia-Hermoso, A.; Mota, J.; Gaya, A.; Gaya, A.R. The role of body fat in the relationship of cardiorespiratory fitness with cardiovascular risk factors in Brazilian children. Motriz: Revista de Educação Física 2018, 24. [Google Scholar] [CrossRef]
- Bailey, D.P.; Savory, L.A.; Denton, S.J.; Kerr, C.J. The Association Between Cardiorespiratory Fitness and Cardiometabolic Risk in Children is Mediated by Abdominal Adiposity: The HAPPY Study. J. Phys. Act. Heal. 2015, 12, 1148–1152. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Murai, J.; Nishizawa, H.; Otsuka, A.; Fukuda, S.; Tanaka, Y.; Nagao, H.; Sakai, Y.; Suzuki, M.; Yokota, S.; Tada, H.; et al. Low muscle quality in Japanese type 2 diabetic patients with visceral fat accumulation. Cardiovasc. Diabetol. 2018, 17, 112. [Google Scholar] [CrossRef] [PubMed]
- Al-Sofiani, M.E.; Ganji, S.S.; Kalyani, R.R. Body composition changes in diabetes and aging. J. Diabetes its Complicat. 2019, 33, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.S.; Buscemi, A.; Forrester, L.; Hafer-Macko, C.E.; Ivey, F.M. Atrophy and intramuscular fat in specific muscles of the thigh: Associated weakness and hyperinsulinemia in stroke survivors. Neurorehabilit. Neural Repair 2011, 25, 865–872. [Google Scholar] [CrossRef]
- Barrett-Connor, E.; Ferrara, A. Isolated postchallenge hyperglycemia and the risk of fatal cardiovascular disease in older women and men. The Rancho Bernardo Study. Diabetes Care 1998, 21, 1236–1239. [Google Scholar] [CrossRef]
- Hong, S.; Chang, Y.; Jung, H.-S.; Yun, K.E.; Shin, H.; Ryu, S. Relative muscle mass and the risk of incident type 2 diabetes: A cohort study. PLoS ONE 2017, 12, e0188650. [Google Scholar] [CrossRef]
- Virtanen, K.A.; Lönnroth, P.; Parkkola, R.; Peltoniemi, P.; Asola, M.; Viljanen, T.; Tolvanen, T.; Knuuti, J.; Rönnemaa, T.; Huupponen, R.; et al. Glucose Uptake and Perfusion in Subcutaneous and Visceral Adipose Tissue during Insulin Stimulation in Nonobese and Obese Humans. J. Clin. Endocrinol. Metab. 2002, 87, 3902–3910. [Google Scholar] [CrossRef]
- Dimitriadis, G.; Mitrou, P.; Lambadiari, V.; Maratou, E.; Raptis, S.A. Insulin effects in muscle and adipose tissue. Diabetes Res. Clin. Pr. 2011, 93, S52–S59. [Google Scholar] [CrossRef]
- Shepherd, P.R.; Kahn, B.B. Glucose Transporters and Insulin Action — Implications for Insulin Resistance and Diabetes Mellitus. N. Engl. J. Med. 1999, 341, 248–257. [Google Scholar] [CrossRef]
- Eaton, S.B.; Eaton, S.B. Physical Inactivity, Obesity, and Type 2 Diabetes: An Evolutionary Perspective. Res. Q. Exerc. Sport 2017, 88, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kelley, D.E.; He, J.; Menshikova, E.V.; Ritov, V.B. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002, 51, 2944–2950. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.K. Muscles and their myokines. J. Exp. Boil. 2010, 214, 337–346. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Fan, J.; Su, Q.; Yang, Z. Cytokines and Abnormal Glucose and Lipid Metabolism. Front. Endocrinol. 2019, 10, 703. [Google Scholar] [CrossRef] [PubMed]
- Van Der Kooi, A.-L.L.F.; Snijder, M.B.; Peters, R.J.G.; Van Valkengoed, I.G.M. The Association of Handgrip Strength and Type 2 Diabetes Mellitus in Six Ethnic Groups: An Analysis of the HELIUS Study. PLoS ONE 2015, 10, e0137739. [Google Scholar] [CrossRef]
- López-Jaramillo, P.; Cohen, D.D.; Gomez-Arbelaez, D.; Bosch, J.; Dyal, L.; Yusuf, S.; Gerstein, H.C. Association of handgrip strength to cardiovascular mortality in pre-diabetic and diabetic patients: A subanalysis of the ORIGIN trial. Int. J. Cardiol. 2014, 174, 458–461. [Google Scholar] [CrossRef]
- Hamasaki, H.; Kawashima, Y.; Katsuyama, H.; Sako, A.; Goto, A.; Yanai, H. Association of handgrip strength with hospitalization, cardiovascular events, and mortality in Japanese patients with type 2 diabetes. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef]
- Leenders, M.; Verdijk, L.B.; Van Der Hoeven, L.; Adam, J.J.; Van Kranenburg, J.; Nilwik, R.; Van Loon, L. Patients With Type 2 Diabetes Show a Greater Decline in Muscle Mass, Muscle Strength, and Functional Capacity With Aging. J. Am. Med. Dir. Assoc. 2013, 14, 585–592. [Google Scholar] [CrossRef]
Characteristics | Full Sample (n = 1571) | Healthy (n = 331) | Abdominal Obesity (n = 1239) | p-Value |
---|---|---|---|---|
Age, years | 69.6 (7.3) | 70.5 (8.1) | 69.6 (7.3) | 0.052 |
Sex, n (%) | ||||
Females | 943 (60.0) | 108 (32.6) | 835 (67.3) | <0.001 |
Clinical outcomes, mean (SD) | ||||
Body mass, kg | 68.3 (11.5) | 55.2 (8.4) | 68.3 (11.5) | <0.001 |
Height, m | 1.55 (0.08) | 1.59 (0.08) | 1.55 (0.07) | <0.001 |
BMI, Kg/m2 | 28.9 (4.3) | 22.5 (2.7) | 28.9 (4.3) | <0.001 |
Waist circumference, cm | 96.1 (9.1) | 79.3 (6.6) | 96.1 (9.1) | <0.001 |
Glucose fasting, mg/dL | 100.1 (26.3) | 90.4 (18.0) | 100.1 (26.3) | <0.001 |
Muscular strength, mean (SD) | ||||
HGS (kg) | 21.1 (8.4) | 22.9 (8.6) | 20.6 (8.2) | <0.001 |
Relative HGS (kg/kg body mass) | 0.32 (0.12) | 0.41 (0.13) | 0.30 (0.1) | <0.001 |
Race/ethnic group, n (%) | ||||
Indigenous | 79 (5.0) | 21 (6.3) | 58 (4.7) | <0.001 |
Black “mulato” or Afro-Colombian | 125 (8.0) | 32 (9.7) | 93 (7.5) | <0.001 |
White | 414 (26.4) | 70 (21.1) | 344 (27.7) | <0.001 |
Others * | 753 (47.9) | 153 (46.2) | 600 (48.4) | <0.001 |
Missing date | 200 (12.7) | 55 (16.6) | 145 (11.7) | ― |
Socioeconomic status, n (%) | ||||
Level I-II (low) | 1138 (72.4) | 247 (74.6) | 891 (71.9) | <0.001 |
Level III-IV (middle) | 424 (27.0) | 83 (25.1) | 341 (27.5) | <0.001 |
Level V-VI (high) | 9 (0.6) | 1 (0.3) | 8 (0.6) | 0.020 |
Lifestyle outcomes, n (%) | ||||
Smoking | 152 (9.7) | 56 (16.9) | 96 (7.7) | 0.001 |
Alcohol intake | 203 (12.9) | 59 (17.9) | 144 (11.6) | <0.001 |
Physical activity “proxy” | 1278 (81.3) | 261 (78.9) | 1017 (82.2) | <0.001 |
Urbanicity, n (%) | ||||
Urban | 1311 (83.5) | 247 (74.6) | 1064 (85.8) | <0.001 |
Rural | 260 (16.5) | 84 (25.4) | 176 (14.2) | <0.001 |
Variables | Model 1 | Model 2 | Model 3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Healthy | Abdominal Obesity | d | Healthy | Abdominal Obesity | d | Healthy | Abdominal Obesity | d | |
Glucose levels (mg/dl) | 90.5 (87.8; 93.3) | 100.0 (98.6; 101.4) | 0.38 * | 90.9 (88.1; 93.7) | 99.9 (98.5; 101.3) | 0.36 * | 90.9 (87.8; 94.0) | 100.1 (98.5; 101.5) | 0.36 * |
Relative HSG (kg/kg) | 0.38 (0.37; 0.39) | 0.30 (0.29; 0.31) | 0.65 * | 0.38 (0.37; 0.39) | 0.31 (0.30; 0.32) | 0.63 * | 0.38 (0.37; 0.39) | 0.31 (0.30; 0.32) | 0.62 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Sousa, M.Á.; del Pozo-Cruz, J.; Cano-Gutiérrez, C.A.; Ferrebuz, A.J.; Sandoval-Cuellar, C.; Izquierdo, M.; Hernández-Quiñonez, P.A.; Ramírez-Vélez, R. Glucose Levels as a Mediator of the Detrimental Effect of Abdominal Obesity on Relative Handgrip Strength in Older Adults. J. Clin. Med. 2020, 9, 2323. https://doi.org/10.3390/jcm9082323
Pérez-Sousa MÁ, del Pozo-Cruz J, Cano-Gutiérrez CA, Ferrebuz AJ, Sandoval-Cuellar C, Izquierdo M, Hernández-Quiñonez PA, Ramírez-Vélez R. Glucose Levels as a Mediator of the Detrimental Effect of Abdominal Obesity on Relative Handgrip Strength in Older Adults. Journal of Clinical Medicine. 2020; 9(8):2323. https://doi.org/10.3390/jcm9082323
Chicago/Turabian StylePérez-Sousa, Miguel Ángel, Jesús del Pozo-Cruz, Carlos A. Cano-Gutiérrez, Atilio J. Ferrebuz, Carolina Sandoval-Cuellar, Mikel Izquierdo, Paula A. Hernández-Quiñonez, and Robinson Ramírez-Vélez. 2020. "Glucose Levels as a Mediator of the Detrimental Effect of Abdominal Obesity on Relative Handgrip Strength in Older Adults" Journal of Clinical Medicine 9, no. 8: 2323. https://doi.org/10.3390/jcm9082323
APA StylePérez-Sousa, M. Á., del Pozo-Cruz, J., Cano-Gutiérrez, C. A., Ferrebuz, A. J., Sandoval-Cuellar, C., Izquierdo, M., Hernández-Quiñonez, P. A., & Ramírez-Vélez, R. (2020). Glucose Levels as a Mediator of the Detrimental Effect of Abdominal Obesity on Relative Handgrip Strength in Older Adults. Journal of Clinical Medicine, 9(8), 2323. https://doi.org/10.3390/jcm9082323