Bedside Renal Doppler Ultrasonography and Acute Kidney Injury after TAVR
Abstract
:- Acute kidney injury (AKI) is a common complication following Transcatheter Aortic Valve Replacement (TAVR)
- AKI occurs in a sizeable proportion of TAVR patients (22.1% ± 11.2 according to the VARC-2 definition) and carries poor prognosis
- Intrarenal Doppler ultrasonography can assess intrarenal hemodynamic
- Doppler based renal resistive index (RRI) measurements is a rapid and non-invasive method proposed for early AKI detection
- 24 h post-TAVR evaluation by Doppler-based resistive index is associated with AKI occurrence up to day 3
- Doppler based renal resistive index is an easy, objective, reliable and low-cost tool that succeeded to identify an at-risk population for AKI and able to improve the post TAVR management
- This study clarifies the characteristics of intrarenal Doppler RRI profiles and their interactions with systemic hemodynamic in TAVR patients
1. Introduction
2. Methods
2.1. Patients
2.2. Definition of AKI
2.3. Intrarenal Hemodynamic Evaluation by Doppler Ultrasonography
2.4. Echocardiography Protocol and Hemodynamic Parameters
2.5. Collection of Data and Outcomes
2.6. Statistical analysis
3. Results
3.1. Baseline Characteristics
3.2. Renal Resistive Index (RRI)
3.3. Hemodynamic Parameters
3.4. Predictors of AKI Following TAVR
4. Discussion
4.1. Impact of AKI Definitions
4.2. Impact of Renal Resistive Index (RRI)
4.3. Impact of Systemic and Renal Hemodynamics Parameters
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACE inhibitor | Angiotensin-converting enzyme inhibitor |
AKI | Acute Kidney injury |
AF | atrial fibrillation |
APT | antiplatelet therapy |
ARBs | Angiotensin II receptor blockers |
AS | Aortic stenosis |
BMI | body mass index |
EuroSCORE | logistic EuroSCORE predicted risk of mortality at 30 days |
GRF | Glomerular Filtration Rate |
LVEF | left ventricular ejection fraction |
MACE | Major adverse cardiac events |
RDU | Renal Doppler ultrasound |
RRI | Doppler based renal resistive index |
sCr | serum Creatinine |
sCyC | Serum cystatin C |
TAVR | transcatheter aortic valve replacement. |
TTE | transthoracic echocardiography |
VARC-2 | valve academic research consortium-2 consensus |
References
- Kappetein, A.P.; Head, S.J.; Généreux, P.; Piazza, N.; van Mieghem, N.M.; Blackstone, E.H.; Brott, T.G.; Cohen, D.J.; Cutlip, D.E.; van Es, G.A.; et al. Valve Academic Research Consortium-2 Updated standardized endpoint definitions for transcatheter aortic valve implantation: The ValveAcademic Research Consortium-2 consensus document. J. Thorac. Cardiovasc. Surg. 2013, 145, 6–23. [Google Scholar] [CrossRef] [Green Version]
- Gargiulo, G.; Sannino, A.; Capodanno, D.; Perrino, C.; Capranzano, P.; Barbani, M.; Stabile, E.; Trimarco, B.; Tamburino, C.; Esposito, G. Impact of postoperative acute kidney injury on clinical outcomes after transcatheter aortic valve implantation: A meta-analysis of 5971 patients. Catheter. Cardiovasc. Interv. 2015, 86, 518–527. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Srivali, N.; Kittanamongkolchai, W.; Greason, K.L.; Kashani, K.B. Incidence and risk factors of acute kidney injury following transcatheter aortic valve replacement. Nephrology 2016, 21, 1041–1046. [Google Scholar] [CrossRef]
- Thongprayoon, C.; Cheungpasitporn, W.; Mao, M.A.; Srivali, N.; Kittanamongkolchai, W.; Harrison, A.M.; Greason, K.L.; Kashani, K.B. Persistent acute kidney injury following transcatheter aortic valve replacement. J. Card. Surg. 2017, 32, 550–555. [Google Scholar] [CrossRef]
- Doi, Y.; Iwashima, Y.; Yoshihara, F.; Kamide, K.; Hayashi, S.; Kubota, Y.; Nakamura, S.; Horio, T.; Kawano, Y. Renal resistive index and cardiovascular and renal outcomes in essential hypertension. Hypertension 2012, 60, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Tedesco, M.A.; Natale, F.; Mocerino, R.; Tassinario, G.; Calabrò, R. Renal resistive index and cardiovascular organ damage in a large population of hypertensive patients. J. Hum. Hypertens. 2007, 21, 291–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pontremoli, R.; Viazzi, F.; Martinoli, C.; Ravera, M.; Nicolella, C.; Berruti, V.; Leoncini, G.; Ruello, N.; Zagami, P.; Bezante, G.P.; et al. Increased renal resistive index in patients with essential hypertension: A marker of target organ damage. Nephrol Dial. Transplant. 1999, 14, 360–365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, J.D.; Craven, T.E.; Edwards, M.S.; Corriere, M.A.; Crutchley, T.A.; Fleming, S.H.; Hansen, K.J. Associations between renal duplex parameters and adverse cardiovascular events in the elderly: A prospective cohort study. Am. J. Kidney Dis. 2010, 55, 281–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toledo, C.; Thomas, G.; Schold, J.D.; Arrigain, S.; Gornik, H.L.; Nally, J.V.; Navaneethan, S.D. Renal resistive index and mortality in chronic kidney disease. Hypertension 2015, 66, 382–388. [Google Scholar] [CrossRef] [Green Version]
- Bellos, I.; Pergialiotis, V.; Kontzoglou, K. Renal resistive index as predictor of acute kidney injury after major surgery: A systematic review and meta-analysis. J. Crit. Care 2018, 50, 36–43. [Google Scholar] [CrossRef]
- Ninet, S.; Schnell, D.; Dewitte, A.; Zeni, F.; Meziani, F.; Darmon, M. Doppler-based renal resistive index for prediction of renal dysfunction reversibility: A systematic review and meta-analysis. J. Crit. Care 2015, 30, 629–635. [Google Scholar] [CrossRef]
- Wybraniec, M.T.; Bożentowicz-Wikarek, M.; Chudek, J.; Mizia-Stec, K. Pre-procedural renal resistive index accurately predicts contrast-induced acute kidney injury in patients with preserved renal function submitted to coronary angiography. Int J. Cardiovasc. Imaging 2017, 33, 595–604. [Google Scholar] [CrossRef]
- Calabia, J.; Torguet, P.; Garcia, I.; Martin, N.; Mate, G.; Marin, A.; Molina, C.; Valles, M. The relationship between renal resistive index, arterial stiffness, and atherosclerotic burden: The link between macrocirculation and microcirculation. J. Clin. Hypertens. 2014, 16, 186–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.F.; Zhang, T.; Ding, D.; Sun, S.Q.; Wang, X.L.; Chu, S.C.; Shen, L.H.; He, B. Use of Both Serum Cystatin C and Creatinine as Diagnostic Criteria for Contrast-Induced Acute Kidney Injury and Its Clinical Implications. J. Am. Heart Assoc. 2017, 13, e004747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tublin, M.E.; Bude, R.O.; Platt, J.F. Review. The resistive index in renal Doppler sonography: Where do we stand? AJR Am. J. Roentgenol. 2003, 180, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Keogan, M.T.; Kliewer, M.A.; Hertzberg, B.S.; DeLong, D.M.; Tupler, R.H.; Carroll, B.A. Renal resistive indexes: Variability in Doppler US measurement in a healthy population. Radiology 1996, 199, 165–169. [Google Scholar] [CrossRef]
- Granata, A.; Zanoli, L.; Clementi, S.; Fatuzzo, P.; di Nicolò, P.; Fiorini, F. BrPMCID: PMC4075561 Resistive intrarenal index: Myth or reality? J. Radiol. June 2014, 87, 20140004. [Google Scholar] [CrossRef] [Green Version]
- Barbanti, M.; Gulino, S.; Capranzano, P.; Immè, S.; Sgroi, C.; Tamburino, C.; Ohno, Y.; Attizzani, G.F.; Patanè, M.; Sicuso, R.; et al. Acute Kidney Injury With the RenalGuard System in Patients Undergoing Transcatheter Aortic Valve Replacement: The PROTECT-TAVI Trial. JACC Cardiovasc. Interv. 2015, 8, 1595–1604. [Google Scholar] [CrossRef] [Green Version]
- Putzu, A.; Boscolo Berto, M.; Belletti, A.; Pasotti, E.; Cassina, T.; Moccetti, T.; Pedrazzini, G. Prevention of Contrast-Induced Acute Kidney Injury by Furosemide With Matched Hydration in Patients Undergoing Interventional Procedures: A Systematic Review and Meta-Analysis of Randomized Trials. JACC Cardiovasc. Interv. 2017, 10, 355–363. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, B.; Sheng, X.; Jin, N. Cystatin C in prediction of acute kidney injury: A systemic review and meta-analysis. Am. J. Kidney Dis. 2011, 58, 356–365. [Google Scholar] [CrossRef]
- Newman, D.J.; Thakkar, H.; Edwards, R.G.; Wilkie, M.; White, T.; Grubb, A.O.; Price, C.P. Serum cystatin C measured by automated immunoassay: A more sensitive marker of changes in GFR than serum creatinine. Kidney Int. 1995, 47, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dharnidharka, V.R.; Kwon, C.; Stevens, G. Serum cystatin C is superior to serum creatinine as a marker of kidney function: A meta-analysis. Am. J. Kidney Dis. 2002, 40, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Briguori, C.; Visconti, G.; Rivera, N.V.; Focaccio, A.; Golia, B.; Giannone, R.; Castaldo, D.; De Micco, F.; Ricciardelli, B.; Colombo, A. Cystatin C and contrast-induced acute kidney injury. Circulation 2010, 121, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Inker, L.A. Assessment of Glomerular Filtration Rate in Health and Disease: A State of the Art Review. Clin. Pharm. Ther. 2017, 102, 405–419. [Google Scholar] [CrossRef] [Green Version]
- Schnell, D.; Reynaud, M.; Venot, M.; Le Maho, A.L.; Dinic, M.; Baulieu, M.; Ducos Terreaux, J.; Zeni, F.; Azoulay, E.; Meziani, F.; et al. Resistive Index or color-Doppler semi-quantitative evaluation of renal perfusion by inexperienced physicians: Results of a pilot study. Minerva Anestesiol. 2014, 80, 1273–1281. [Google Scholar]
- Lin, Z.Y.; Wang, L.Y.; Yu, M.L.; Dai, C.Y.; Chen, S.C.; Chuang, W.L.; Hsieh, M.Y.; Tsai, J.F.; Chang, W.Y. Influence of age on intrarenal resistive index measurement in normal subjects. Abdom. Imaging 2003, 28, 230–232. [Google Scholar] [CrossRef]
- Kawai, T.; Kamide, K.; Onishi, M.; Hongyo, K.; Yamamoto-Hanasaki, H.; Oguro, R.; Maekawa, Y.; Yamamoto, K.; Takeya, Y.; Sugimoto, K.; et al. Relationship between renal hemodynamic status and aging in patients without diabetes evaluated by renal Doppler ultrasonography. Clin. Exp. Nephrol. 2012, 16, 786–791. [Google Scholar] [CrossRef]
- Ponte, B.; Pruijm, M.; Ackermann, D.; Vuistiner, P.; Eisenberger, U.; Guessous, I.; Rousson, V.; Mohaupt, M.G.; Alwan, H.; Ehret, G.; et al. Reference values and factors associated with renal resistive index in a family-based population study. Hypertension 2014, 63, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, C.; Götzberger, M.; Landauer, N.; Dieterle, C.; Heldwein, W.; Schiemann, U. Age dependency of intrarenal resistance index (RI) in healthy adults and patients with fatty liver disease. Eur. J. Med. Res. 2007, 12, 191–195. [Google Scholar]
- Di Nicolò, P.; Granata, A. Renal Resistive Index: Not only kidney. Clin. Exp. Nephrol. 2017, 21, 359–366. [Google Scholar] [CrossRef]
- Hachicha, Z.; Dumesnil, J.G.; Pibarot, P. Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J. Am. Coll. Cardiol. 2009, 54, 1003–1011. [Google Scholar] [CrossRef] [Green Version]
- Lancellotti, P.; Donal, E.; Magne, J.; Moonen, M.; O’Connor, K.; Daubert, J.C.; Pierard, L.A. Risk stratification in asymptomatic moderate to severe aortic stenosis: The importance of the valvular, arterial and ventricular interplay. Heart 2010, 96, 1364–1371. [Google Scholar] [CrossRef]
- Giannini, C.; Petronio, A.S.; De Carlo, M.; Guarracino, F.; Benedetti, G.; Delle Donne, M.G.; Dini, F.L.; Marzilli, M.; Di Bello, V. The incremental value of valvuloarterial impedance in evaluating the results of transcatheter aortic valve implantation in symptomatic aortic stenosis. J. Am. Soc. Echocardiogr. 2012, 25, 444–453. [Google Scholar] [CrossRef]
- Lindman, B.R.; Otto, C.M.; Douglas, P.S.; Hahn, R.T.; Elmariah, S.; Weissman, N.J.; Stewart, W.J.; Ayele, G.M.; Zhang, F.; Zajarias, A.; et al. Blood Pressure and Arterial Load After Transcatheter Aortic Valve Replacement for Aortic Stenosis. Circ. Cardiovasc. Imaging 2017, 10, e006308. [Google Scholar] [CrossRef] [Green Version]
Global Cohort | AKI sCyC | No AKI sCyC | p-Value | |
---|---|---|---|---|
n = 100 | n = 10 | n = 90 | ||
Clinical parameters | ||||
Age—years ± SD | 83.7 ± 6.3 | 83.4 ± 6.7 | 83.7 ± 6.3 | 0.88 |
Male sex—no/total no. (%) | 48 (48%) | 5 (50%) | 43 (48%) | 0.58 |
Euroscore * (%) | 5.5 ± 5 | 8 ± 8 | 5.3 ± 4.6 | 0.1 |
STS mortality (%) | 5.2 ± 3.7 | 6.7 ± 4.4 | 5 ± 3.6 | 0.16 |
STS renal failure (%) | 6.5 ± 8.5 | 10.2 ± 10.9 | 6.1 ± 8.2 | 0.16 |
Mehran Contrast nephropathy risk score (points) | 7.75 ± 3 | 9.4 ± 4 | 7.6 ± 2.8 | 0.067 |
Mehran Risk Score (%) | 13.9 ± 7.6 | 19.4 ± 14.7 | 13.3 ± 6.3 | 0.016 |
Coronary artery disease—no./total no. (%) | 53 (53%) | 2 (20%) | 51 (56.7%) | 0.03 |
Pacemaker—no./total no. (%) | 12 (12%) | 1 (10%) | 11 (12.2%) | 0.66 |
Cardiovascular Risk Factors | ||||
Hypertension—no./total no. (%) | 90 (90%) | 9 (90%) | 81 (90%) | 0.67 |
Past or current smoker—no./total no. (%) | 26 (26%) | 4 (40%) | 22 (24.4%) | 0.24 |
Dyslipidaemia—no./total no. (%) | 53 (53%) | 5 (10%) | 48 (52%) | 0.55 |
Diabetes mellitus—no./total no. (%) | 40 (40%) | 5 (10%) | 35 (38.9%) | 0.36 |
BMI—kg/m2 ± SD | 32 ± 13 | 29 ± 9 | 32 ± 13 | 0.47 |
Prehospital management | ||||
VKA—no./total no. (%) | 18 (18%) | 1 (10%) | 17 (18.9%) | 0.42 |
DOAC—no./total no. (%) | 22 (22%) | 3 (30%) | 19 (21.1%) | 0.38 |
ASA—no./total no. (%) | 56 (56%) | 4 (5.6%) | 52 (57.8%) | 0.23 |
Clopidogrel—no./total no. (%) | 23 (23%) | 0 | 23 (25.6%) | 0.06 |
ACE inhibitors/ARBs—no./total no. (%) | 56 (56%) | 5 (50%) | 51 (56.7%) | 0.47 |
Beta blockers—no./total no. (%) | 48 (48%) | 5 (50%) | 43 (47.8%) | 0.58 |
Calcium channel blockers—no./total no. (%) | 31 (31%) | 2 (20%) | 29 (32.2%) | 0.35 |
Thiazide diuretics—no./total no. (%) | 16 (16%) | 3 (30%) | 13 (14.4%) | 0.19 |
Aldosterone-receptor antagonists (ARAs)—no./total no. (%) | 12 (12%) | 0 | 12 (13.5%) | 0.26 |
Furosemide—mg ± SD | 71 ± 147 | 84 ± 155 | 70 ± 147 | 0.77 |
Statin—no./total no. (%) | 46 (46%) | 3 (30%) | 43 (47.8%) | 0.23 |
Echocardiography | ||||
LEVF—% ± median IQR | 60 (51–67) | 54.6 ± 12 | 59 ± 12.4 | 0.19 |
LV mass—g/m2 ± SD | 137 ± 77.8 | 112.7 ± 19.9 | 138.8 ± 80.8 | 0.43 |
LVendDV—mm ± SD | 49 ± 8.5 | 46.2 ± 9 | 49 ± 8.4 | 0.33 |
Mean Aortic Gradient—mmHg ± SD | 44.5 ± 11.9 | 43.5 ± 9.8 | 44.6 ± 12.2 | 0.72 |
E/A | 0.9 ± 0.6 | 0.6 ± 0.2 | 1 ± 0.6 | 0.95 |
E/e′ | 11.9 ± 4.6 | 12.9 ± 3.9 | 11.7 ± 4.6 | 0.48 |
Mean Pulmonary Artery Pressure (MPAP)—mmHg ± SD | 40.5 ± 13.2 | 42 ± 11.1 | 40.3 ± 13.4 | 0.77 |
Right Atrial Pressure (RAP)—mmHg ± SD | 7 ± 4 | 10 ± 6 | 6 ± 4 | 0.02 |
Stroke volume (SV)—mL ± median (IQR) | 81.5 (65.3–99.5) | 88.1 ± 22.2 | 80 (65.7–98.5) | 0.34 |
Cardiac index—mL/min/m2 ± SD | 2.9 ± 0.9 | 3.3 ± 1.3 | 2.8 ± 0.9 | 0.17 |
Baseline biological parameters | ||||
Creatinine (Cr) level—µmol/L ± SD | 113.6 ± 77.9 | 135.9 ± 89.9 | 111.2 ± 76.6 | 0.34 |
Cr eGFR—mL/min/1.73 m2 ± SD | 54.5 ± 19.9 | 49 ± 23.5 | 55 ± 19.6 | 0.37 |
Cystatin (CysC)—mg/L ± SD | 1.7 ± 0.9 | 1.9 ± 1 | 1.7 ± 0.9 | 0.59 |
CysC eGFR—ml/min/1.73m2 ± SD | 43.9 ± 18.3 | 38.5 ± 18.7 | 44.5 ± 18.3 | 0.32 |
Haemoglobin—g/dL median (IQR) | 12 (11–13.1) | 11.1 ± 2.1 | 12 ± 2 | 0.17 |
BNP—ng/L ± SD | 471 ± 856 | 561 ± 848 | 461 ± 862 | 0.73 |
Global Cohort | AKI sCyC | No AKI sCyC | p-Value | |
---|---|---|---|---|
n = 100 | n = 10 | n = 90 | ||
Approach | ||||
Transfemoral—no./total no. (%) | 93 (93%) | 9 (90%) | 84 (93%) | 0.48 |
Transcarotid—no./total no. (%) | 5 (5%) | 0 | 5 (5.6%) | 0.58 |
Transaortic—no./total no. (%) | 1 (1%) | 1 (10%) | 0 | 0.1 |
Valve | ||||
Sapien—no./total no. (%) | 64 (64%) | 7 (70%) | 57 (63.3%) | 0.48 |
Corevalve—no./total no. (%) | 34 (34%) | 3 (30%) | 31 (34.4%) | 0.54 |
Boston Accurate—no./total no. (%) | 2 (2%) | 0 | 2 (2.2%) | 0.81 |
Sizing—no./total no. (%) | ||||
23 mm | 18 (18%) | 2 (20%) | 16 (17.8%) | 0.57 |
25 mm | 1 (1%) | 0 | 1 (1.1%) | 0.9 |
26 mm | 40 (40%) | 4 (40%) | 36 (40%) | 0.64 |
27 mm | 1 (1%) | 0 | 1 (1.1%) | 0.9 |
29 mm | 1 (1%) | 0 | 1 (1.1%) | 0.9 |
31 mm | 33 (33%) | 4 (40%) | 29 (32.2%) | 0.43 |
34 mm | 6 (6%) | 0 | 6 (6.7%) | 0.52 |
Post Dilatation—no./total no. (%) | 6 (6%) | 0 | 6 (6.7%) | 0.52 |
Procedure | ||||
Length of the procedure—min ± DS | 69 ± 21 | 78 ± 30 | 68 ± 20 | 0.16 |
Contrast media volume—mL ± DS | 140 ± 50 | 138 ± 47 | 141 ± 50 | 0.88 |
Procedural and Post-procedural Complications | ||||
Major vascular complications—n (%) | 9 (9%) | 0 | 9 (10%) | 0.37 |
Minor vascular complications—n (%) | 23 (23%) | 2 (20%) | 21 (23.3%) | 0.58 |
Red blood cell transfusion—n (%) | 0.5 ± 1 | 1 ± 1.7 | 0.4 ± 0.9 | 0.08 |
Length of Stay (days) | 8.4 ± 4.6 | 8.4 ± 3.7 | 8.4 ± 4.7 | 0.98 |
Global Cohort | AKI SCyC | No AKI SCyC | p-Value | |
---|---|---|---|---|
n = 100 | n = 10 | n = 90 | ||
Serum Creatinine level—µmol/L | ||||
Baseline | 113.6 ± 77.9 | 135.9 ± 89.9 | 111.2 ± 76.6 | 0.34 |
Post TAVR—H0 | 103.2 ± 98.8 | 141.7 ± 150.5 | 98.8 ± 91.4 | 0.2 |
Post TAVR—Day 1 | 108.6 ± 115.7 | 172.6 ± 193.5 | 101.5 ± 103 | 0.065 |
Post TAVR—Day 3 | 108.5 ± 95.5 | 177.1 ± 174.4 | 100.9 ± 80.4 | 0.016 |
Serum Cystatin—mg/L | ||||
Baseline | 1.7 ± 0.9 | 1.9 ± 1 | 1.7 ± 0.9 | 0.59 |
Post TAVR—Day 1 | 1.6 ± 1 | 2.2 ± 1.6 | 1.5 ± 0.8 | 0.025 |
Post TAVR—Day 3 | 1.6 ± 1 | 2.3 ± 1.7 | 1.6 ± 0.8 | 0.029 |
Haemoglobin—g/dL | ||||
Baseline | 12 (11–13.1) | 10.2 (9.3–10.9) | 11.2 (10.2–12.2) | 0.17 |
Post TAVR—Day 1 | 10.2 (9.6–10.7) | 10.2 (9.6–10.7) | 10.6 (9.5–11.6) | 0.25 |
Post TAVR—Day 3 | 9.6 (8.5–9.95) | 9.6 (8.5–9.9) | 10 (9.2–11) | 0.08 |
BNP—ng/L ± SD | ||||
Baseline | 471 ± 856 | 561 ± 848 | 461 ± 862 | 0.73 |
Post TAVR—H0 | 515 ± 920 | 690 ± 1140 | 495 ± 898 | 0.53 |
Post TAVR—Day 1 | 426 ± 747 | 686 ± 1185 | 397 ± 684 | 0.24 |
Post TAVR—Day 3 | 283 ± 402 | 511 ± 674 | 257 ± 356 | 0.058 |
Post TAVR—Day 3 | 60.8 ± 47 | 66.2 ± 86.7 | 60.2 ± 41 | 0.7 |
Group | Definition | no./Total no. (%) |
---|---|---|
Group 1: No AKI | No AKI: No AKIsCr AND No AKI sCyC | (84/100)—84% |
Group 2: AKIsCr | AKI sCr: according to VARC2 definition. Absolute increase in sCr of ≥ 0.3 mg/dL (≥ 26.4 mmol/L) OR ≥ 50% increase in sCr | (10/100)—10% |
Group 3: AKIsCyC | AKI sCyC: sCyC increase ≥ 15% from baseline. | (10/100)—10% |
Group 4: AKI sCr OR sCyC | AKI sCr OR sCyC AKI detected by a single marker: fulfill only 1 of criteria as below: (1) sCr increase ≥ 0.3 mg/dL or 50% from baseline OR (2) sCyC increase ≥ 15% from baseline. | (16/100)—16% |
Group 5: AKI sCr AND sCyC | AKI sCr AND sCyC: AKI detected by both markers: sCr increase ≥ 0.3 mg/dL or 50% from baseline; and sCyC increase ≥ 15% from baseline. | (4/100)—4% |
Global Cohort | AKI SCyC | No AKI SCyC | p-Value | |
---|---|---|---|---|
n = 100 | n = 10 | n = 90 | ||
Renal Doppler based parameters | ||||
Peak systolic velocity—cm/s ± SD | ||||
Baseline | 29.2 ± 9.5 | 28.9 ± 7.7 | 29.3 ± 9.7 | 0.91 |
Post TAVR—Day 1 | 32.5 ± 11 | 33.7 ± 6.9 | 32.4 ± 11.4 | 0.72 |
Post TAVR—Day 3 | 31.2 ± 8.7 | 26.7 ± 8.6 | 31.7 ± 8.6 | 0.083 |
End diastolic velocity—cm/s ± SD | ||||
Baseline | 6.8 ± 2.1 | 6.3 ± 1.4 | 6.8 ± 2.2 | 0.47 |
Post TAVR—Day 1 | 7 ± 3.3 | 5.7 ± 1.5 | 7.2 ± 3.4 | 0.17 |
Post TAVR—Day 3 | 6.9 ± 2.8 | 6.9 ± 4 | 6.9 ± 2.6 | 0.98 |
Renal doppler resistive index (RRI) | ||||
Baseline | 0.76 ± 0.7 | 0.78 ± 0.4 | 0.75 ± 0.7 | 0.34 |
Post TAVR—Day 1 | 0.78 ± 0.6 | 0.83 ± 0.1 | 0.77 ± 0.6 | 0.005 |
Post TAVR—Day 3 | 0.77 ± 0.6 | 0.75 ± 0.1 | 0.78 ± 0.5 | 0.11 |
RRI Day 1 > 0.7 (no./total no. (%)) | 90 (90%) | 10 (100%) | 80 (80%) | 0.37 |
RRI Day 1 > 0.8 (no./total no. (%)) | 42 (42%) | 8 (80%) | 34 (37.8%) | 0.013 |
RRI Day 3 > 0.7 (no./total no. (%)) | 93 (93%) | 8 (80%) | 85 (94.4%) | 0.14 |
RRI Day 3 > 0.8 (no./total no. (%)) | 40 (40%) | 4 (40%) | 36 (40%) | 0.64 |
Echocardiography | ||||
Mean Aortic Gradient—mmHg ± SD | ||||
Baseline | 44.5 ± 11.9 | 43.5 ± 9.8 | 44.6 ± 12.2 | 0.72 |
Post TAVR—Day 1 | 8.4 ± 2.6 | 7.9 ± 3.5 | 8.5 ± 3.6 | 0.64 |
Post TAVR—Day 3 | 9.4 ± 4.2 | 9.9 ± 5 | 9.4 ± 4.1 | 0.71 |
Stroke volume—mL ± median IQR | ||||
Baseline | 81.5 (65.2–99.5) | 92.5 (63–106.2) | 80 (65.7–98.5) | 0.34 |
Post TAVR—Day 1 | 75 (64.5–89.7) | 78 (55–97) | 75 (65.5–89) | 0.87 |
Post TAVR—Day 3 | 78.5 (64.2–90.7) | 84.5 (64.5–104.7) | 77.5 (64–90.3) | 0.5 |
Cardiac index—mL/min/m2 | ||||
Baseline | 2.9 ± 0.9 | 3.3 ± 1.3 | 2.8 ± 0.9 | 0.17 |
Post TAVR—Day 1 | 2.9 ± 0.9 | 3 ± 0.8 | 2.9 ± 0.9 | 0.86 |
Post TAVR—Day 3 | 2.9 ± 0.98 | 3 ± 1.2 | 2.9 ± 0.96 | 0.59 |
E/A | ||||
Baseline | 0.9 ± 0.6 | 0.6 ± 0.2 | 1 ± 0.6 | 0.95 |
Post TAVR—Day 1 | 0.9 ± 0.5 | 0.95 ± 0.6 | 0.9 ± 0.5 | 0.85 |
Post TAVR—Day 3 | 1.4 ± 2.6 | 0.7 ± 0.1 | 1.5 ± 2.8 | 0.53 |
E/e′ | ||||
Baseline | 11.9 ± 4.6 | 12.9 ± 3.9 | 11.7 ± 4.6 | 0.48 |
Post TAVR—Day 3 | 10.4 ± 3.8 | 11.9 ± 3.6 | 10.2 ± 3.8 | 0.21 |
Post TAVR—Day 3 | 11.2 ± 4.3 | 11.7 ± 1.8 | 11.1 ± 4.6 | 0.69 |
Right Atrial Pressure—mmHg ± SD | ||||
Baseline | 7 ± 4 | 10 ± 6 | 6 ± 4 | 0.02 |
Post TAVR—Day 1 | 6.5 ± 3 | 8 ± 4 | 6 ± 3 | 0.09 |
Post TAVR—Day 3 | 7 ± 4 | 9 ± 6 | 7 ± 4 | 0.31 |
AKI Definition | RRI J1 | p |
---|---|---|
Group 1: No AKI | 0.78 ± 0.6 | x |
Group 2: AKI sCr | 0.8 ± 0.05 | 0.149 |
Group 3: AKI sCyC | 0.83 ± 0.04 | 0.05 |
Group 4: AKI sCr OR sCyC | 0.81 ± 0.05 | 0.033 |
Group 5: AKI sCr AND sCyC | 0.85 ± 0.05 | 0.013 |
Global Cohort | AKI sCyC | NO AKI sCyC | p-Value | |
---|---|---|---|---|
n = 100 | n = 10 | n = 90 | ||
Renal parameters | ||||
Renal pulse pressure—mmHg ± SD | ||||
Baseline | 84 ± 14 | 87 ± 18 | 83 ± 14 | 0.38 |
Post TAVR—Day 1 | 82 ± 14 | 78 ± 14 | 82 ± 14 | 0.39 |
Post TAVR—Day 3 | 78 ± 14 | 82 ± 19 | 78 ± 13 | 0.36 |
Renal arterial load | ||||
Baseline | 10 ± 3.5 | 10.1 ± 4.4 | 10 ± 3.5 | 0.87 |
Post TAVR—Day 1 | 10 ± 3.3 | 9.8 ± 3.4 | 10 ± 3.3 | 0.76 |
Post TAVR—Day 3 | 9.2 ± 2.5 | 9.5 ± 3.7 | 9.2 ± 2.3 | 0.72 |
Renal arterial compliance | ||||
Baseline | 0.11 ± 0.4 | 0.1 ± 0.6 | 0.11 ± 0.4 | 0.27 |
Post TAVR—Day 1 | 0.11 ± 0.4 | 0.12 ± 0.5 | 0.11 ± 0.4 | 0.39 |
Post TAVR—Day 3 | 0.12 ± 0.4 | 0.12 ± 0.4 | 0.12 ± 0.4 | 0.77 |
Systemic parameters | ||||
Valvuloarterial impedance—mmHg/mL/m2 | ||||
Baseline | 4.3 ± 1.3 | 4.2 ± 1.5 | 4.3 ± 1.3 | 0.77 |
Post TAVR—Day 1 | 3.7 ± 1.6 | 4.9 ± 4 | 3.6 ± 1.1 | 0.016 |
Post TAVR—Day 3 | 3.2 ± 0.9 | 3.3 ± 1 | 3.2 ± 0.9 | 0.9 |
Total arterial load | ||||
Baseline | 2.9 ± 1 | 3 ± 1.2 | 2.9 ± 1 | 0.95 |
Post TAVR—Day 1 | 1.7 ± 0.9 | 2.4 ± 2.3 | 1.7 ± 0.5 | 0.008 |
Post TAVR—Day 3 | 1.5 ± 0.41 | 1.5 ± 0.5 | 1.5 ± 0.4 | 0.967 |
Systemic arterial compliance | ||||
Baseline | 0.9 ± 0.1 | 0.7 ± 0.3 | 1 ± 0.3 | 0.71 |
Post TAVR—Day 1 | 1.2 ± 4.3 | 1 ± 0.5 | 1.2 ± 0.4 | 0.23 |
Post TAVR—Day 3 | 0.7 ± 0.3 | 0.69 ± 0.2 | 0.7 ± 0.3 | 0.78 |
Pulse Pressure mmHg ± SD | ||||
Baseline | 65 ± 20 | 72 ± 12 | 64 ± 20 | 0.26 |
Post TAVR—Day 1 | 63 ± 20 | 70 ± 11 | 62.4 ± 21 | 0.3 |
Post TAVR—Day 3 | 63 ± 20 | 69 ± 10 | 62 ± 21 | 0.3 |
Resistive arterial load—dynes/s/cm—5 ± SD | ||||
Baseline | 2905 ± 1217 | 2743 ± 1272 | 2923 ± 1217 | 0.66 |
Post TAVR—Day 1 | 2755 ± 1506 | 3500 ± 3454 | 2672±1117 | 0.09 |
Post TAVR—Day 3 | 2631 ± 1069 | 2512 ± 888 | 2644±1091 | 0.71 |
Systolic Blood Pressure—mmHg ± SD | ||||
Baseline | 135 ± 22 | 143 ± 22 | 134 ± 22 | 0.21 |
Post TAVR—Day 1 | 132 ± 22 | 129 ± 22 | 132 ± 22 | 0.66 |
Post TAVR—Day 3 | 127 ± 25 | 133 ± 18 | 126 ± 25 | 0.42 |
Diastolic Blood Pressure—mmHg ± SD | ||||
Baseline | 70 ± 12 | 71 ± 17 | 70 ± 12 | 0.7 |
Post TAVR—Day 1 | 65 ± 13 | 63 ± 9 | 65 ± 13 | 0.69 |
Post TAVR—Day 3 | 64 ± 9 | 64 ± 10 | 64 ± 10 | 0.93 |
Mean Arterial Pressure—mmHg ± SD | ||||
Baseline | 91 ± 13 | 97 ± 16 | 90 ± 13 | 0.97 |
Post TAVR—Day 1 | 88 ± 13 | 86 ± 12 | 88 ± 13 | 0.59 |
Post TAVR—Day 3 | 86 ± 13 | 91 ± 17 | 85 ± 13 | 0.19 |
Univariate | |||
---|---|---|---|
HR | CI 95% | p-Value | |
Baseline characteristics | |||
Age | 0.99 | 0.89–1.1 | 0.88 |
Male Sex | 1 | 0.3–4 | 0.89 |
EuroScore | 1 | 0.98–1.2 | 0.12 |
Mehran contrast nephropathy risk score (points) | 1.2 | 0.98–1.5 | 0.074 |
Mehran Risk Score (%) | 1.1 | 1–1.2 | 0.04 |
Hypertension | 1 | 0.1–8.8 | 1 |
Current or past Smoking | 2 | 0.5–8 | 0.29 |
Dyslipidaemia | 0.88 | 0.24–3.2 | 0.84 |
Diabetes melitus | 1.6 | 0.4–5.8 | 0.5 |
BMI | 1 | 0.94–1.1 | 0.47 |
Coronary Artery Disease (CAD) | 0.19 | 0.04–0.95 | 0.04 |
ACE inhibitors/ARBs | 0.77 | 0.21–2.8 | 0.69 |
Furosemide | 1 | 0.99–1 | 0.77 |
Procedural characteristics | |||
Length of procedure | 1 | 0.99–1.1 | 0.16 |
Contrast media volume | 0.99 | 0.99–1 | 0.88 |
Transfemoral approach | 0.53 | 0.06–5.1 | 0.59 |
Sapien | 1.3 | 0.33–5.6 | 0.68 |
Corevalve | 0.82 | 0.2–3.4 | 0.78 |
Baseline and Day 1 biological parameters | |||
BNP | |||
Baseline | 1 | 0.99–1 | 0.73 |
Day 1 | 1 | 1–1.1 | 0.28 |
Serum Creatinine | |||
Baseline | 1 | 0.99–1 | 0.36 |
Day 1 | 1 | 0.99–1 | 0.1 |
Serum Cystatin | |||
Baseline | 1.2 | 0.6–2.2 | 0.59 |
Day 1 | 1.6 | 1–2.5 | 0.05 |
Baseline and Day 1 Echocardiography parameters | |||
Baseline LVEF | 0.97 | 0.93–1 | 0.29 |
Baseline Mean Aortic Gradient | 0.99 | 0.94–1.1 | 0.72 |
Right Atrial Pressure (RAP) | |||
Baseline | 1.1 | 1–1.3 | 0.035 |
Day 1 | 1.1 | 0.97–1.7 | 0.11 |
Stroke Volume | |||
Baseline | 1 | 0.98–1.1 | 0.28 |
Day 1 | 1 | 0.95–1.1 | 0.77 |
Cardiac index | |||
Baseline | 1.6 | 0.82–3.1 | 0.17 |
Day 1 | 1.1 | 0.51–2.3 | 0.86 |
Renal doppler parameters | |||
High Renal Resistive Index (RRI > 0.8) | |||
Baseline | 0.9 | 0.18–4.8 | 0.935 |
Day 1 | 6.5 | 1.3–32.9 | 0.021 |
Renal hemodynamic parameters | |||
Renal pulse pressure | |||
Baseline | 1 | 0.98–1.1 | 0.38 |
Day 1 | 0.98 | 0.93–1 | 0.38 |
Renal Arterial Load | |||
Baseline | 1 | 0.85–1.2 | 0.87 |
Day 1 | 0.97 | 0.78–1.2 | 0.76 |
High Renal Arterial Compliance (> 0.12) | |||
Baseline | 1.5 | 0.355–6.337 | 0.581 |
Day 1 | 1.325 | 0.315–5.565 | 0.701 |
Systemic hemodynamic parameters | |||
Valvulo-arterial impedance | |||
Baseline | 0.93 | 0.56–1.5 | 0.77 |
Day 1 | 1.3 | 0.96–1.9 | 0.083 |
Total arterial load | |||
Baseline | 1 | 0.53–1.9 | 0.95 |
Day 1 | 1.8 | 0.89–3.6 | 0.099 |
Pulse Pressure | |||
Baseline | 1 | 0.99–1.1 | 0.26 |
Day 1 | 1 | 0.95–1 | 0.85 |
Systemic arterial compliance | |||
Baseline | 0.67 | 0.51–8.7 | 0.76 |
Day 1 | 0.33 | 0.53–2 | 0.23 |
Resistive arterial load | |||
Baseline | 1 | 0.99–1 | 0.67 |
Day 1 | 1 | 0.98–1.01 | 0.14 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peillex, M.; Marchandot, B.; Bayer, S.; Prinz, E.; Matsushita, K.; Carmona, A.; Heger, J.; Trimaille, A.; Petit-Eisenmann, H.; Jesel, L.; et al. Bedside Renal Doppler Ultrasonography and Acute Kidney Injury after TAVR. J. Clin. Med. 2020, 9, 905. https://doi.org/10.3390/jcm9040905
Peillex M, Marchandot B, Bayer S, Prinz E, Matsushita K, Carmona A, Heger J, Trimaille A, Petit-Eisenmann H, Jesel L, et al. Bedside Renal Doppler Ultrasonography and Acute Kidney Injury after TAVR. Journal of Clinical Medicine. 2020; 9(4):905. https://doi.org/10.3390/jcm9040905
Chicago/Turabian StylePeillex, Marilou, Benjamin Marchandot, Sophie Bayer, Eric Prinz, Kensuke Matsushita, Adrien Carmona, Joe Heger, Antonin Trimaille, Hélène Petit-Eisenmann, Laurence Jesel, and et al. 2020. "Bedside Renal Doppler Ultrasonography and Acute Kidney Injury after TAVR" Journal of Clinical Medicine 9, no. 4: 905. https://doi.org/10.3390/jcm9040905
APA StylePeillex, M., Marchandot, B., Bayer, S., Prinz, E., Matsushita, K., Carmona, A., Heger, J., Trimaille, A., Petit-Eisenmann, H., Jesel, L., Ohlmann, P., & Morel, O. (2020). Bedside Renal Doppler Ultrasonography and Acute Kidney Injury after TAVR. Journal of Clinical Medicine, 9(4), 905. https://doi.org/10.3390/jcm9040905