Efficacy of Low-Dose Radioiodine Ablation in Low- and Intermediate-Risk Differentiated Thyroid Cancer: A Retrospective Comparative Analysis
Abstract
:1. Introduction
2. Experimental Section
2.1. Patients
2.2. Study Protocol
2.3. Ethics
2.4. Statistical Analysis
3. Results
3.1. General Characteristics
3.2. Association between Clinical Characteristics and Response to Treatment and Recurrence Rate and Predictive Factors for Bad Response and Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pacini, F.; Schlumberger, M.; Dralle, H.; Elisei, R.; Smith, J.W.; Wiersinga, W. The European thyroid cancer taskforce. European consensus for the management of patients with differentiated thyroid carcinoma of the follicular epithelium. Eur. J. Endocrinol. 2006, 154, 787–803. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, N.C.; Button, J.; Solorzano, C.C. Thyroid cancer: Is the incidence still increasing? Ann. Surg. Oncol. 2004, 11, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Cameselle-Teijeiro, J.M.; Sobrinho-Simões, M. New WHO classification of thyroid tumors: A pragmatic categorization of thyroid gland neoplasms. Endocrinol. Diabetes Nutr. 2018, 65, 133–135. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Haugen, B.; Perrier, N.D. Updated American Joint Committee on cancer/tumor-node-metastasis staging system for differentiated and anaplastic thyroid cancer (eighth edition): What changed and why? Thyroid 2017, 27, 751–756. [Google Scholar] [CrossRef] [PubMed]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, R.M.; Tala, H.; Shah, J.; Leboeuf, R.; Ghossein, R.; Gonen, M.; Brokhin, M.; Omry, G.; Fagin, J.A.; Shaha, A. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: Using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid 2010, 20, 1341–1349. [Google Scholar]
- Schlumberger, M.; Leboulleux, S.; Catargi, B.; Deandreis, D.; Zerdoud, S.; Bardet, S.; Rusu, D.; Godbert, Y.; Buffet, C.; Schvartz, C.; et al. Outcome after ablation in patients with low-risk thyroid cancer (ESTIMABL1): 5-year follow-up results of a randomised, phase 3, equivalence trial. Lancet Diabetes Endocrinol. 2018, 6, 618–626. [Google Scholar] [CrossRef]
- Dehbi, H.M.; Mallick, U.; Wadsley, J.; Newbold, K.; Harmer, C.; Hackshaw, A. Recurrence after low-dose radioiodine ablation and recombinant human thyroid-stimulating hormone for differentiated thyroid cancer (HiLo): Long-term results of an open-label, non-inferiority randomised controlled trial. Lancet Diabetes Endocrinol. 2019, 7, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Ben Ghachem, T.; Yeddes, I.; Meddeb, I.; Bahloul, A.; Mhiri, A.; Slim, I.; Ben Slimene, M.F. A comparison of low versus high radioiodine administered activity in patients with low-risk differentiated thyroid cancer. Eur. Arch. Oto Rhino Laryngol. 2017, 274, 655–660. [Google Scholar] [CrossRef]
- Súss, S.K.A.; Mesa, C.O.J.; Carvalho, G.A.; Miasaki, F.Y.; Chaves, C.P.; Fuser, D.C.; Corbo, R.; Momesso, D.; Bulzico, D.A.; Graf, H.; et al. Clinical outcomes of low and intermediate risk differentiated thyroid cancer patients treated with 30mCi for ablation or without radioactive iodine therapy. Arch. Endocrinol. Metab. 2018, 62, 149–156. [Google Scholar] [CrossRef]
- Jimenez Londoño, G.A.; Garcia Vicente, A.M.; Sastre Marcos, J.; Pena Pardo, F.J.; Amo-Salas, M.; Moreno Caballero, M.; Talavera Rubio, M.P.; Gonzalez Garcia, B.; Disotuar Ruiz, N.D.; Soriano Castrejón, A.M. Low-Dose Radioiodine Ablation in Patients with Low-Risk Differentiated Thyroid Cancer. Eur. Thyroid. J. 2018, 7, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Ahuja, S.; Avram, A.M.; Bernet, V.J.; Bourguet, P.; Daniels, G.H.; Dillehay, G.; Draganescu, C.; Flux, G.; Führer, D.; et al. Controversies, Consensus, and Collaboration in the Use of 131I Therapy in Differentiated Thyroid Cancer: A Joint Statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine and Molecular Imaging, and the European Thyroid Association. Thyroid 2019, 29, 461–470. [Google Scholar] [PubMed] [Green Version]
- Tufano, R.P.; Clayman, G.; Heller, K.S.; Inabnet, W.B.; Kebebew, E.; Shaha, A.; Steward, D.L.; Tuttle, R.M. The American Thyroid Association Surgical Affairs Committee Writing Task Force. Management of recurrent/persistent nodal disease in patients with differentiated thyroid cancer: A critical review of the risks and benefits of surgical intervention versus active surveillance. Thyroid 2015, 25, 15–27. [Google Scholar] [PubMed]
- Schlumberger, M.; Catargi, B.; Borget, I.; Deandreis, D.; Zerdoud, S.; Bridji, B.; Bardet, S.; Leenhardt, L.; Bastie, D.; Schvartz, C.; et al. Strategies of radioiodine ablation in patients with lowrisk thyroid cancer. N. Engl. J. Med. 2012, 366, 1663–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Y.; Huang, R.; Li, L. Low- and high-dose radioiodine therapy for low-/intermediaterisk differentiated thyroid cancer: A preliminary clinical trial. Ann. Nucl. Med. 2017, 31, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, B.; Beiki, D.; Takavar, A.; Fard-Esfahani, A.; Gilani, K.A.; Saghari, M.; Eftekhari, M. Low versus high radioiodine dose in postoperative ablation of residual thyroid tissue in patients with differentiated thyroid carcinoma: A large randomized clinical trial. Nucl. Med. Commun. 2012, 33, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Toubeau, M.; Touzery, C.; Arveux, P.; Chaplain, G.; Vaillant, G.; Berriolo, A.; Riedinger, J.M.; Boichot, C.; Cochet, A.; Brunotte, F. Predictive value for disease progression of serum thyroglobulin levels measured in the postoperative period and after (131) I ablation therapy in patients with differentiated thyroid cancer. J. Nucl. Med. 2004, 45, 988–994. [Google Scholar]
- Kim, T.Y.; Kim, W.B.; Kim, E.S.; Ryu, J.S.; Yeo, J.S.; Kim, S.C.; Hong, S.J.; Shong, Y.K. Serum thyroglobulin levels at the time of 131I remnant ablation just after thyroidectomy are useful for early prediction of clinical recurrence in low-risk patients with differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 2005, 90, 1440–1445. [Google Scholar] [CrossRef] [Green Version]
- Rosario, P.W.; Xavier, A.C.; Calsolari, M.R. Value of postoperative thyroglobulin and ultrasonography for the indication of ablation and 131I activity in patients with thyroid cancer and low risk of recurrence. Thyroid 2011, 21, 49–53. [Google Scholar] [CrossRef]
- Polachek, A.; Hirsch, D.; Tzvetov, G.; Grozinsky-Glasberg, S.; Slutski, I.; Singer, J.; Weinstein, R.; Shimon, I.; Benbassat, C.A. Prognostic value of post-thyroidectomy thyroglobulin levels in patients with differentiated thyroid cancer. J. Endocrinol. Investig. 2011, 34, 855–860. [Google Scholar]
- Gorges, R.; Maniecki, M.; Jentzen, W.; Sheu, S.N.; Mann, K.; Bockisch, A.; Janssen, O.E. Development and clinical impact of thyroglobulin antibodies in patients with differentiated thyroid carcinoma during the first 3 years after thyroidectomy. Eur. J. Endocrinol. 2005, 153, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adil, A.; Jafri, R.A.; Waqar, A.; Abbasi, S.A.; Matiul, H.; Asghar, A.H.; Jilani, A.; Naz, I. Frequency and clinical importance of anti-Tg auto-antibodies (ATG). J. Coll. Physicians Surg. Pak. 2003, 13, 504–506. [Google Scholar] [PubMed]
- Chung, J.K.; Park, Y.J.; Kim, T.Y.; So, Y.; Kim, S.K.; Park, D.J.; Lee, D.S.; Lee, M.C.; Cho, B.Y. Clinical significance of elevated level of serum antithyroglobulin antibody in patients with differentiated thyroid cancer after thyroid ablation. Clin. Endocrinol. 2002, 57, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Sherman, S.I. Thyroid carcinoma. Lancet 2003, 361, 501–511. [Google Scholar] [CrossRef]
- Verburg, F.A.; Hänscheid, H.; Luster, M. Radioactive iodine (RAI) therapy for metastatic differentiated thyroid cancer. Best Pract. Res. Clin. Endocrinol. Metab. 2017, 31, 279–290. [Google Scholar] [CrossRef]
Complete Sample | Low-Risk Tumours | Intermediate-Risk Tumours | ||||
---|---|---|---|---|---|---|
Low-Dose | High-Dose | Low-Dose | High-Dose | Low-Dose | High-Dose | |
N | 90 | 84 | 77 | 50 | 13 | 34 |
Age at diagnosis, mean (±SD) (years) | 45.7 (13.9) | 43.3 (14.08) | 46.04 (14.32) | 44.98 (13.62) | 43.69 (±11.34) | 40.82 (±14.58) |
Sex (%) | * | * | ||||
Male | 16.7 | 13.1 | 13 | 14 | 38.5 | 11.8 |
Female | 83.3 | 86.9 | 87 | 86 | 61.5 | 88.2 |
Histology (%) | * | * | * | * | ||
PTC | 46.7 | 58.3 | 46.8 | 60 | 42.6 | 55.9 |
FTC | 13.3 | 7.1 | 14.3 | 4 | 7.7 | 11.8 |
Mixed | 8.9 | 0 | 9.1 | 0 | 7.7 | 0 |
HTC | 1.1 | 7.1 | 0 | 0 | 7.7 | 17.6 |
PTC + HC | 4.4 | 0 | 2.6 | 0 | 15.4 | 0 |
FVPTC | 25.6 | 27.4 | 27.3 | 36 | 15.4 | 14.7 |
Multifocality (%) | ||||||
No | 72.2 | 63.1 | 72.7 | 56 | 69.2 | 73.5 |
Yes | 27.8 | 36.9 | 27.3 | 44 | 30.8 | 26.5 |
Margins (%) | * | * | ||||
Free | 70 | 63.1 | 71.4 | 70 | 61.5 | 52.9 |
Near | 11.1 | 15.5 | 9.1 | 20 | 23.1 | 8.8 |
Contact capsule | 5.6 | 15.5 | 6.5 | 10 | 0 | 23.5 |
Capsule invasion | 13.3 | 6 | 13 | 0 | 15.4 | 14.7 |
Tumour size (%) | * | * | ||||
T1 | 63.3 | 67.9 | 62.3 | 76 | 69.2 | 55.9 |
T2 | 33.3 | 32.1 | 36.4 | 24 | 15.4 | 44.1 |
T3 | 3.3 | 0 | 1.3 | 0 | 15.4 | 0 |
Lymph node affection (%) | * | * | ||||
N0 | 85.6 | 69 | 95.3 | 100 | 38.5 | 23.5 |
N1a | 13.3 | 27.4 | 6.5 | 0 | 53.8 | 67.6 |
N1b | 1.1 | 3.6 | 0 | 0 | 7.7 | 8.8 |
Initial recurrence risk (%) | ** | ** | – | – | – | – |
Low | 85.6 | 59.5 | ||||
Intermediate | 14.4 | 40.5 | ||||
Anti-TgAb-RAI ablation (%) | * | * | * | * | * | * |
Negative | 61.2 | 84.5 | 62.5 | 80 | 53.8 | 91.2 |
Positive | 38.8 | 15.5 | 37.5 | 20 | 42.6 | 8.8 |
Response to treatment (%) | * | * | * | * | ||
Excellent | 78.9 | 85.7 | 84.4 | 86 | 42.6 | 85.3 |
Indeterminate | 14.4 | 3.6 | 11.7 | 6 | 30.8 | 0 |
IBR | 2.2 | 6 | 1.3 | 6 | 7.7 | 5.9 |
ISR | 4.4 | 4.8 | 2.6 | 2 | 15.4 | 8.8 |
Recurrence rate (%) | * | * | ||||
No | 90 | 96.4 | 94.8 | 100 | 61.5 | 91.2 |
Yes | 10 | 3.6 | 5.2 | 0 | 38.5 | 8.8 |
sTg at RAI ablation, median (ICR) (ng/dL) | 0.87 (0.12–2.47) | 1.15 (0.20–3.15) | 0.84 (0.11–2.58) | 0.50 (0.20–2.23) | 1.30 (0.15–2.85) | 1.61 (0.30–5.43) |
Anti-TgAb-RAI ablation, median (ICR) (UI) | 20 (15–33.28) | 20 (16.05–20.58) | 20 (15–30.50) | 20 (20–23.75) | 17 (15–177.50) | 20 (15–20) |
sTg 1 year, median (ICR) (ng/dL) | 0.05 (0.04–0.20) | 0.20 (0.20–0.20) | 0.04 (0.04–0.20) | 0.20 (0.20–0.20) | 0.05 (0.04–0.20) | 0.20 (0.20–0.47) |
Anti-TgAb 1 year, median (ICR) (UI) | 15 (9.61–20) | 8.41 (4.71–15) | 15 (8.65–18) | 8.41 (4.80–15) | 17 (12.27–47.45) | 8.40 (4.55–17.67) |
Bivariate | Multivariate | |||||
---|---|---|---|---|---|---|
Independent variables | OR | 95% CI | p | OR | 95% CI | p |
Age | 0.973 | 0.944–1.002 | 0.07 | 0.971 | 0.938–1.004 | 0.087 |
Lymph node involvement | ||||||
N0 | 1 (ref.) | 1 (ref.) | ||||
N1 | 2.398 | 1.026–5.609 | 0.044 | 1.113 | 0.267–4.641 | 0.883 |
Initial recurrence risk | ||||||
Low | 1 (ref.) | 1 (ref.) | ||||
Intermediate | 0.482 | 0.211–1.098 | 0.082 | 0.407 | 0.147–1.123 | 0.082 |
RAI dose (mCi) | 0.996 | 0.985–1.007 | 0.43 | 0.994 | 0.981–1.007 | 0.361 |
RAI dose | ||||||
Low | 1 (ref.) | 1 (ref.) | ||||
High | 0.667 | 0.300–1.484 | 0.321 | 1.062 | 0.510–22.294 | 0.969 |
Anti-TgAb | ||||||
Negative | 1 (ref.) | 1 (ref.) | ||||
Positive | 0.202 | 0.088–0.462 | <0.001 | 5.785 | 2.431–13.762 | <0.001 |
sTg at the moment of RAI | 1.032 | 0.997–1.069 | 0.073 | 1.043 | 1.004–1.084 | 0.032 |
Anti-TgAb at the moment of RAI | 1.004 | 1.000–1.007 | 0.027 | 1.002 | 0.999–1.005 | 0.285 |
sTg at the moment of RAI | ||||||
<1 ng/dL | 1 (ref.) | |||||
1–10 ng/dL | 1.194 | 0.520–2.743 | 0.676 | – | – | – |
>10 ng/dL | 1.543 | 0.376–6.329 | 0.547 |
Bivariate | Multivariate | |||||
---|---|---|---|---|---|---|
Independent variables | OR | 95% CI | p | OR | 95% CI | p |
Age | 0.926 | 0.869–0.987 | 0.018 | 0.933 | 0.879–0.991 | 0.023 |
Lymph node involvement | ||||||
N0 | 1 (ref). | 1 (ref.) | ||||
N1 | 5.687 | 1.694–19.093 | 0.005 | 2.536 | 0.404–15.921 | 0.321 |
Initial recurrence risk | ||||||
Low | 1 (ref.) | 1 (ref.) | ||||
Intermediate | 0.159 | 0.045–0.555 | 0.004 | 15.456 | 3.369–70.907 | <0.001 |
RAI dose | ||||||
Low | 12.596 | 1.848–85.841 | 0.01 | 12.679 | 2.280–70.516 | 0.004 |
High | 1 (ref.) | 1 (ref.) | ||||
Anti-TgAb | ||||||
Negative | 1 (ref.) | 1 (ref.) | ||||
Positive | 2.952 | 0.892–9.587 | 0.076 | 2.915 | 0.703–12.088 | 0.141 |
Only Low-Risk | Only Intermediate-Risk | |||||
---|---|---|---|---|---|---|
Independent variables | OR | 95% CI | p | OR | 95% CI | p |
Age | 0.966 | 0.920–1.015 | 0.168 | – | – | – |
RAI dose | ||||||
Low | – | – | – | 6.029 | 1.152–31.545 | 0.033 |
High | 1 (ref.) | |||||
Anti-TgAb | ||||||
Negative | 1 (ref.) | – | – | – | ||
Positive | 8.850 | 2.644–29.626 | <0.001 | |||
sTg at the moment of RAI | 1.145 | 1.014–1.294 | 0.029 | 1.054 | 1.002–1.109 | 0.042 |
Anti-TgAb at the moment of RAI | 1.011 | 1.000–1.023 | 0.054 | – | – | – |
Only Low-Risk | Only Intermediate-Risk | |||||
---|---|---|---|---|---|---|
Independent variables | OR | 95% CI | p | OR | 95% CI | p |
Age | 0.940 | 0.853–1.035 | 0.208 | 0.925 | 0.854–1.002 | 0.055 |
Lymph node involvement | ||||||
N0 | 1 (ref) | – | – | – | ||
N1 | 6.191 | 0.467–82.010 | 0.167 | |||
RAI dose | – | – | – | |||
Low | 11.728 | |||||
High | 1 (ref.) | 1.655–83.081 | 0.014 | |||
Anti-TgAb | ||||||
Negative | 1 (ref.) | 1 (ref.) | ||||
Positive | 7.412 | 0.745–73.776 | 0.088 | 0.845 | 0.0.079–8.999 | 0.889 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Pérez, A.M.; García-Alemán, J.; Molina-Vega, M.; Sebastián Ochoa, A.; Pérez García, P.; Mancha Doblas, I.; Tinahones, F.J. Efficacy of Low-Dose Radioiodine Ablation in Low- and Intermediate-Risk Differentiated Thyroid Cancer: A Retrospective Comparative Analysis. J. Clin. Med. 2020, 9, 581. https://doi.org/10.3390/jcm9020581
Gómez-Pérez AM, García-Alemán J, Molina-Vega M, Sebastián Ochoa A, Pérez García P, Mancha Doblas I, Tinahones FJ. Efficacy of Low-Dose Radioiodine Ablation in Low- and Intermediate-Risk Differentiated Thyroid Cancer: A Retrospective Comparative Analysis. Journal of Clinical Medicine. 2020; 9(2):581. https://doi.org/10.3390/jcm9020581
Chicago/Turabian StyleGómez-Pérez, Ana María, Jorge García-Alemán, María Molina-Vega, Arantzazu Sebastián Ochoa, Pilar Pérez García, Isabel Mancha Doblas, and Francisco J Tinahones. 2020. "Efficacy of Low-Dose Radioiodine Ablation in Low- and Intermediate-Risk Differentiated Thyroid Cancer: A Retrospective Comparative Analysis" Journal of Clinical Medicine 9, no. 2: 581. https://doi.org/10.3390/jcm9020581
APA StyleGómez-Pérez, A. M., García-Alemán, J., Molina-Vega, M., Sebastián Ochoa, A., Pérez García, P., Mancha Doblas, I., & Tinahones, F. J. (2020). Efficacy of Low-Dose Radioiodine Ablation in Low- and Intermediate-Risk Differentiated Thyroid Cancer: A Retrospective Comparative Analysis. Journal of Clinical Medicine, 9(2), 581. https://doi.org/10.3390/jcm9020581