1. Introduction
2. Graduating from Simple Division
3. Infection Fatality Risk (IFR): All Infected Individuals as the Denominator
4. Additional Calibrations of the Ascertainment Rate
5. Heterogeneous risk of Death
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- European Centre for Disease Prevention and Control. “Situation Update—Worldwide”. 2020. Available online: https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases (accessed on 13 February 2020).
- Kelly, H.; Cowling, B.J. Case fatality: Rate, ratio, or risk? Epidemiology 2013, 24, 622–623. [Google Scholar] [CrossRef] [PubMed]
- Ghani, A.C.; Donnelly, C.A.; Cox, D.R.; Griffin, J.T.; Fraser, C.; Lam, T.H.; Ho, L.M.; Chan, W.S.; Anderson, R.M.; Hedley, A.J.; et al. Methods for estimating the case fatality ratio for a novel, emerging infectious disease. Am. J. Epidemiol. 2005, 162, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H.; Klinkenberg, D.; Roberts, M.; Heesterbeek, J.A. Early epidemiological assessment of the virulence of emerging infectious diseases: A case study of an influenza pandemic. PLoS ONE 2009, 4, e6852. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Akhmetzhanov, A.R.; Hayashi, K.; Linton, N.M.; Yang, Y.; Yuan, B.; Kobayashi, T.; Kinoshita, R.; Nishiura, H. Real time estimation of the risk of death from novel coronavirus (2019-nCoV) infection: Inference using exported cases. J. Clin. Med. 2020, 9, 523. [Google Scholar]
- Dorigatti, I.; Okell, L.; Cori, A.; Imai, N.; Baguelin, M.; Bhatia, S.; Boonyasiri, A.; Cucunubá, Z.; Cuomo-Dannenburg, G.; FitzJohn, R.; et al. Report 4: Severity of 2019-Novel Coronavirus (nCoV). Available online: https://www.imperial.ac.uk/media/imperial-college/medicine/sph/ide/gida-fellowships/Imperial-College-2019-nCoV-severity-10-02-2020.pdf (accessed on 13 February 2020).
- Althaus, C. Estimating case Fatality Ratio of COVID-19 from Observed Cases outside China. Available online: https://github.com/calthaus/ncov-cfr (accessed on 16 February 2020).
- Nishiura, H.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Miyama, T.; Kinoshita, R.; Linton, N.M.; Jung, S.M.; Yuan, B.; Suzuki, A.; et al. The rate of underascertainment of novel coronavirus (2019-nCoV) infection: Estimation using Japanese passengers data on evacuation flights. J. Clin. Med. 2020, 9, 419. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.Y.; Wu, P.; Nishiura, H.; Goldstein, E.; Lau, E.H.; Yang, L.; Chuang, S.K.; Tsang, T.; Peiris, J.S.; Wu, J.T.; et al. Infection fatality risk of the pandemic A (H1N1) 2009 virus in Hong Kong. Am. J. Epidemiol. 2013, 177, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med. 2020. [Google Scholar] [CrossRef] [PubMed]
- Read, J.M.; Bridgen, J.R.E.; Cummings, D.A.T.; Ho, A.; Jewell, C.P. Novel coronavirus 2019-nCoV: Early estimation of epidemiological parameters and epidemic predictions. MedRxiv 2020. [Google Scholar] [CrossRef]
- Poon, L.L.; Chan, K.H.; Wong, O.K.; Yam, W.C.; Yuen, K.Y.; Guan, Y.; Lo, Y.M.; Peiris, J.S. Early diagnosis of SARS coronavirus infection by real time RT-PCR. J. Clin. Virol. 2003, 28, 233–238. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, R.; Reusken, C.; Koopmans, M. MERS coronavirus: Data gaps for laboratory preparedness. J. Clin. Virol. 2014, 59, 4–11. [Google Scholar] [CrossRef] [PubMed]
- Nishiura, H. Case fatality ratio of pandemic influenza. Lancet Infect. Dis. 2010, 10, 443–444. [Google Scholar] [CrossRef]
- Donnelly, C.A.; Ghani, A.C.; Leung, G.M.; Hedley, A.J.; Fraser, C.; Riley, S.; Abu-Raddad, L.J.; Ho, L.M.; Thach, T.Q.; Chau, P.; et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 2003, 361, 1761–1766. [Google Scholar] [CrossRef]
- Mizumoto, K.; Endo, A.; Chowell, G.; Miyamatsu, Y.; Saitoh, M.; Nishiura, H. Real-time characterization of risks of death associated with the Middle East respiratory syndrome (MERS) in the Republic of Korea, 2015. BMC Med. 2015, 13, 228. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lu, Q.; Liu, M.; Wang, Y.; Zhang, A.; Jalali, N.; Dean, N.; Longini, I.; Halloran, M.E.; Xu, B.; et al. Epidemiological and clinical features of the 2019 novel coronavirus outbreak in China. MedRxiv 2020. [Google Scholar] [CrossRef]
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S. ; Epidemiological characteristics of novel coronavirus infection: A statistical analysis of publicly available case data. J. Clin. Med. 2020, 9, 538. [Google Scholar]
Locations | Unadjusted cCFR as of 14 February 2020 [1] | Adjusted cCFR [6] | 95% Confidence Intervals of cCFR [6] |
---|---|---|---|
Hubei | 2.5% | 18% | 11–81% |
Outside mainland China | 0.4% | 1–5% | 1–85% |
Sensitivity | Virus Detection Window (Days) | |||||
---|---|---|---|---|---|---|
1 Day | 3 Days | 5 Days | ||||
q (%) | IFR (%) | q (%) | IFR (%) | q (%) | IFR (%) | |
30% | 0.2 (0.2, 0.3) | 0.02 (0.02, 0.02) | 0.7 (0.6, 0.8) | 0.06 (0.05, 0.07) | 1.1 (0.9, 1.4) | 0.10 (0.08, 0.12) |
50% | 0.4 (0.3, 0.5) | 0.03 (0.03, 0.04) | 1.1 (0.9, 1.5) | 0.10 (0.08, 0.13) | 1.9 (1.5, 2.5) | 0.16 (0.13, 0.22) |
80% | 0.6 (0.4, 0.9) | 0.05 (0.04, 0.08) | 1.8 (1.3, 2.6) | 0.16 (0.12, 0.23) | 3.1 (2.2, 4.4) | 0.27 (0.19, 0.38) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).