Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer
Abstract
:1. Cancer Stem Cell (CSC) Theory
2. Genetic Profile of Cancer Stem Cells Versus the Bulk of Tumor Cells
3. The Case of Ovarian Cancer
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaish, M. Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Mol. Cancer 2007, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Lagana, A.S.; Colonese, F.; Colonese, E.; Sofo, V.; Salmeri, F.M.; Granese, R.; Chiofalo, B.; Ciancimino, L.; Triolo, O. Cytogenetic analysis of epithelial ovarian cancer’s stem cells: An overview on new diagnostic and therapeutic perspectives. Eur. J. Gynaecol. Oncol. 2015, 36, 495–505. [Google Scholar] [PubMed]
- Tomao, F.; Papa, A.; Rossi, L.; Strudel, M.; Vici, P.; Lo Russo, G.; Tomao, S. Emerging role of cancer stem cells in the biology and treatment of ovarian cancer: Basic knowledge and therapeutic possibilities for an innovative approach. J. Exp. Clin. Cancer Res. 2013, 32, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.E. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies. World J. Biol. Chem. 2015, 6, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Batlle, E.; Clevers, H. Cancer stem cells revisited. Nat. Med. 2017, 23, 1124–1134. [Google Scholar] [CrossRef] [PubMed]
- Pattabiraman, D.R.; Weinberg, R.A. Tackling the cancer stem cells—What challenges do they pose? Nat. Rev. Drug Discov. 2014, 13, 497–512. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.B.; Fillmore, C.M.; Jiang, G.; Shapira, S.D.; Tao, K.; Kuperwasser, C.; Lander, E.S. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 2011, 146, 633–644. [Google Scholar] [CrossRef] [Green Version]
- Sica, A.; Porta, C.; Amadori, A.; Pasto, A. Tumor-associated myeloid cells as guiding forces of cancer cell stemness. Cancer Immunol. Immunother. 2017, 66, 1025–1036. [Google Scholar] [CrossRef]
- Nassar, D.; Blanpain, C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. Annu. Rev. Pathol. 2016, 11, 47–76. [Google Scholar] [CrossRef]
- Gasparini, P.; Bertolini, G.; Binda, M.; Magnifico, A.; Albano, L.; Tortoreto, M.; Pratesi, G.; Facchinetti, F.; Abolafio, G.; Roz, L.; et al. Molecular cytogenetic characterization of stem-like cancer cells isolated from established cell lines. Cancer Lett. 2010, 296, 206–215. [Google Scholar] [CrossRef]
- Piccirillo, S.G.M.; Colman, S.; Potter, N.E.; van Delft, F.W.; Lillis, S.; Carnicer, M.J.; Kearney, L.; Watts, C.; Greaves, M. Genetic and functional diversity of propagating cells in glioblastoma. Stem Cell Rep. 2015, 4, 7–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pesenti, C.; Navone, S.E.; Guarnaccia, L.; Terrasi, A.; Costanza, J.; Silipigni, R.; Guarneri, S.; Fusco, N.; Fontana, L.; Locatelli, M.; et al. The Genetic Landscape of Human Glioblastoma and Matched Primary Cancer Stem Cells Reveals Intratumour Similarity and Intertumour Heterogeneity. Stem Cells Int. 2019, 2019, 2617030. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kotliarova, S.; Kotliarov, Y.; Li, A.; Su, Q.; Donin, N.M.; Pastorino, S.; Purow, B.W.; Christopher, N.; Zhang, W.; et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006, 9, 391–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klevebring, D.; Rosin, G.; Ma, R.; Lindberg, J.; Czene, K.; Kere, J.; Fredriksson, I.; Bergh, J.; Hartman, J. Sequencing of breast cancer stem cell populations indicates a dynamic conversion between differentiation states in vivo. Breast Cancer Res. 2014, 16, R72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiran, V.; Stanzer, S.; Heitzer, E.; Meilinger, M.; Rossmann, C.; Lax, S.; Tsybrovskyy, O.; Dandachi, N.; Balic, M. Genetic profiling of putative breast cancer stem cells from malignant pleural effusions. PLoS ONE 2017, 12, e0175223. [Google Scholar] [CrossRef]
- Tong, M.; Deng, Z.; Yang, M.; Xu, C.; Zhang, X.; Zhang, Q.; Liao, Y.; Deng, X.; Lv, D.; Zhang, Y.; et al. Transcriptomic but not genomic variability confers phenotype of breast cancer stem cells. Cancer Commun. (Lond) 2018, 38, 56. [Google Scholar] [CrossRef] [Green Version]
- Salazar-Garcia, L.; Perez-Sayans, M.; Garcia-Garcia, A.; Carracedo, A.; Cruz, R.; Lozano, A.; Sobrino, B.; Barros, F. Whole exome sequencing approach to analysis of the origin of cancer stem cells in patients with head and neck squamous cell carcinoma. J. Oral Pathol. Med. 2018, 47, 938–944. [Google Scholar] [CrossRef]
- Prado, K.; Zhang, K.X.; Pellegrini, M.; Chin, A.I. Sequencing of cancer cell subpopulations identifies micrometastases in a bladder cancer patient. Oncotarget 2017, 8, 45619–45625. [Google Scholar] [CrossRef] [Green Version]
- Bartosch, C.; Clarke, B.; Bosse, T. Gynaecological neoplasms in common familial syndromes (Lynch and HBOC). Pathology 2018, 50, 222–237. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 7–30. [Google Scholar] [CrossRef]
- Garces, A.H.; Dias, M.S.; Paulino, E.; Ferreira, C.G.; de Melo, A.C. Treatment of ovarian cancer beyond chemotherapy: Are we hitting the target? Cancer Chemother Pharmacol. 2015, 75, 221–234. [Google Scholar] [CrossRef]
- Kuhn, E.; Kurman, R.J.; Shih, I.M. Ovarian Cancer Is an Imported Disease: Fact or Fiction? Curr. Obstet. Gynecol. Rep. 2012, 1, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozols, R.F.; Bookman, M.A.; Connolly, D.C.; Daly, M.B.; Godwin, A.K.; Schilder, R.J.; Xu, X.; Hamilton, T.C. Focus on epithelial ovarian cancer. Cancer Cell 2004, 5, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Ness, R.B.; Cottreau, C. Possible role of ovarian epithelial inflammation in ovarian cancer. J. Natl. Cancer Inst. 1999, 91, 1459–1467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, C.L.; Chung, K.; Pike, M.C.; Wu, A.H. Increased ovarian cancer risk associated with menopausal estrogen therapy is reduced by adding a progestin. Cancer 2009, 115, 531–539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curley, M.D.; Therrien, V.A.; Cummings, C.L.; Sergent, P.A.; Koulouris, C.R.; Friel, A.M.; Roberts, D.J.; Seiden, M.V.; Scadden, D.T.; Rueda, B.R.; et al. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 2009, 27, 2875–2883. [Google Scholar] [CrossRef] [PubMed]
- Kryczek, I.; Liu, S.; Roh, M.; Vatan, L.; Szeliga, W.; Wei, S.; Banerjee, M.; Mao, Y.; Kotarski, J.; Wicha, M.S.; et al. Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int. J. Cancer 2012, 130, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Pasto, A.; Bellio, C.; Pilotto, G.; Ciminale, V.; Silic-Benussi, M.; Guzzo, G.; Rasola, A.; Frasson, C.; Nardo, G.; Zulato, E.; et al. Cancer stem cells from epithelial ovarian cancer patients privilege oxidative phosphorylation, and resist glucose deprivation. Oncotarget 2014, 5, 4305–4319. [Google Scholar] [CrossRef] [Green Version]
- Casanova, J. Stemness as a cell default state. EMBO Rep. 2012, 13, 396–397. [Google Scholar] [CrossRef] [Green Version]
- Zipori, D. The stem state: Mesenchymal plasticity as a paradigm. Curr. Stem Cell Res. Ther. 2006, 1, 95–102. [Google Scholar] [CrossRef]
- Pagotto, A.; Pilotto, G.; Mazzoldi, E.L.; Nicoletto, M.O.; Frezzini, S.; Pasto, A.; Amadori, A. Autophagy inhibition reduces chemoresistance and tumorigenic potential of human ovarian cancer stem cells. Cell Death Dis. 2017, 8, e2943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cancer Type | Materials | Methods | Main Conclusions | Reference |
---|---|---|---|---|
GBM | Primary tumor cells | SNP array, WES, single-cell analysis | CNAs found in primary tumor cells are also present in neurospheres in different subclones | Piccirillo S.M. et al., 2015 [11] |
GBM | Primary tumor cells | aCGH | High similarity between GBM mass and spheroids | Pesenti C. et al., 2019 [12] |
GBM | Primary tumor cells | SKY; SNP array | Cells cultured in serum-containing medium underwent genomic rearrangements, while spheroids did not | Lee J. et al., 2006 [13] |
Breast | Primary tumor cells | WES; ultra-deep amplicon sequencing | Mutations are shared between tumor bulk and spheres | Klevebring D. et al., 2014 [14] |
Breast | Tumor cells from pleural effusions | low-coverage WGS | Same alteration in sorted CSCs and bulk tumor | Tiran V. et al., 2017 [15] |
Breast | MDA-MB-231 cell line | WGS; target deep sequencing | No differences in VAF between monolayer and spheres | Tong M. et al., 2018 [16] |
HNSCC | Primary tumor cells | WES | From LOH analysis, it is hypothesized that CSCs may originate either from normal tissue or from tumor cell dedifferentiation | Salazar-Garcia L. et al., 2018 [17] |
Bladder | One primary tumor and lymph node metastases | WES | SNPs are mainly shared by sorted CSCs and bulk tumor cells; a small number is enriched either in CSCs or in bulk cells | Prado K. et al., 2017 [18] |
Various | Cell lines | SKY | More rearranged genotype of spheres compared to parental cell lines | Gasparini P. et al., 2010 [10] |
Sample | Histotype | Stage | Grade | Chemotherapy | CD117 enrichment * |
---|---|---|---|---|---|
49 III | Serous-papillary | 3C | 3 | Yes | 7.08 |
49 V | Serous-papillary | 3C | 3 | Yes | 2.41 |
84 IV | Serous-papillary | 3C | 3 | Yes | 4.02 |
98 | Serous | 3B | 1 | No | 21.53 |
101 | Serous | 3C | 3 | Yes | 4.37 |
106 | Bilateral serous-papillary | 4 | 3 | No | 5.99 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazzoldi, E.L.; Pastò, A.; Pilotto, G.; Minuzzo, S.; Piga, I.; Palumbo, P.; Carella, M.; Frezzini, S.; Nicoletto, M.O.; Amadori, A.; et al. Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer. J. Clin. Med. 2020, 9, 368. https://doi.org/10.3390/jcm9020368
Mazzoldi EL, Pastò A, Pilotto G, Minuzzo S, Piga I, Palumbo P, Carella M, Frezzini S, Nicoletto MO, Amadori A, et al. Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer. Journal of Clinical Medicine. 2020; 9(2):368. https://doi.org/10.3390/jcm9020368
Chicago/Turabian StyleMazzoldi, Elena Laura, Anna Pastò, Giorgia Pilotto, Sonia Minuzzo, Ilaria Piga, Pietro Palumbo, Massimo Carella, Simona Frezzini, Maria Ornella Nicoletto, Alberto Amadori, and et al. 2020. "Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer" Journal of Clinical Medicine 9, no. 2: 368. https://doi.org/10.3390/jcm9020368
APA StyleMazzoldi, E. L., Pastò, A., Pilotto, G., Minuzzo, S., Piga, I., Palumbo, P., Carella, M., Frezzini, S., Nicoletto, M. O., Amadori, A., & Indraccolo, S. (2020). Comparison of the Genomic Profile of Cancer Stem Cells and Their Non-Stem Counterpart: The Case of Ovarian Cancer. Journal of Clinical Medicine, 9(2), 368. https://doi.org/10.3390/jcm9020368