Mitochondrial DNA Variants in Patients with Liver Injury Due to Anti-Tuberculosis Drugs
Abstract
:1. Introduction
2. Patients and Methods
2.1. Study Design
2.2. Patients and Definition of DILI
2.3. DNA Extraction
2.4. Sequencing of the Entire Mitochondrial Genome by Using NGS
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Data Sharing Statement
Author Contributions
Funding
Conflicts of Interest
References
- Frieden, T.R.; Sterling, T.R.; Munsiff, S.S.; Watt, C.J.; Dye, C. Tuberculosis. Lancet 2003, 362, 887–899. [Google Scholar] [CrossRef]
- Tostmann, A.; Boeree, M.J.; Aarnoutse, R.E.; de Lange, W.C.; van der Ven, A.J.; Dekhuijzen, R. Antituberculosis drug-induced hepatotoxicity: Concise up-to-date review. J. Gastroenterol. Hepatol. 2008, 23, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Sarich, T.C.; Youssefi, M.; Zhou, T.; Adams, S.P.; Wall, R.A.; Wright, J.M. Role of hydrazine in the mechanism of isoniazid hepatotoxicity in rabbits. Arch. Toxicol. 1996, 70, 835–840. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Liu, C.H.; Hu, F.C.; Chang, H.C.; Liu, J.L.; Chen, J.M.; Yu, C.J.; Lee, L.N.; Kao, J.H.; Yang, P.C. Risk factors of hepatitis during anti-tuberculous treatment and implications of hepatitis virus load. J. Infect. 2011, 62, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Begriche, K.; Massart, J.; Robin, M.A.; Borgne-Sanchez, A.; Fromenty, B. Drug-induced toxicity on mitochondria and lipid metabolism: Mechanistic diversity and deleterious consequences for the liver. J. Hepatol. 2011, 54, 773–794. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Segall, L. Drugs interfering with mitochondrial disorders. Drug Chem. Toxicol. 2010, 33, 138–151. [Google Scholar] [CrossRef] [PubMed]
- Fromenty, B.; Pessayre, D. Inhibition of mitochondrial beta-oxidation as a mechanism of hepatotoxicity. Pharmacol. Ther. 1995, 67, 101–154. [Google Scholar] [CrossRef]
- Labbe, G.; Pessayre, D.; Fromenty, B. Drug-induced liver injury through mitochondrial dysfunction: Mechanisms and detection during preclinical safety studies. Fundam. Clin. Pharmacol. 2008, 22, 335–353. [Google Scholar] [CrossRef]
- Pessayre, D.; Mansouri, A.; Berson, A.; Fromenty, B. Mitochondrial involvement in drug-induced liver injury. Handb. Exp. Pharmacol. 2010, 311–365. [Google Scholar]
- Chowdhury, A.; Santra, A.; Bhattacharjee, K.; Ghatak, S.; Saha, D.R.; Dhali, G.K. Mitochondrial oxidative stress and permeability transition in isoniazid and rifampicin induced liver injury in mice. J. Hepatol. 2006, 45, 117–126. [Google Scholar] [CrossRef]
- Lee, K.K.; Fujimoto, K.; Zhang, C.; Schwall, C.T.; Alder, N.N.; Pinkert, C.A.; Krueger, W.; Rasmussen, T.; Boelsterli, U.A. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex i dysfunction in mouse hepatocytes. Free Radic. Biol. Med. 2013, 65, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Cho, T.; Wang, X.; Uetrecht, J. Rotenone Increases Isoniazid Toxicity but Does Not Cause Significant Liver Injury: Implications for the Hypothesis that Inhibition of the Mitochondrial Electron Transport Chain Is a Common Mechanism of Idiosyncratic Drug-Induced Liver Injury. Chem. Res. Toxicol. 2019, 32, 1423–1431. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef] [PubMed]
- DiMauro, S.; Schon, E.A. Mitochondrial respiratory-chain diseases. N. Engl. J. Med. 2003, 348, 2656–2668. [Google Scholar] [CrossRef] [PubMed]
- Sookoian, S.; Flichman, D.; Scian, R.; Rohr, C.; Dopazo, H.; Gianotti, T.F.; Martino, J.S.; Castano, G.O.; Pirola, C.J. Mitochondrial genome architecture in non-alcoholic fatty liver disease. J. Pathol. 2016, 240, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Koh, H.; Park, G.S.; Shin, S.M.; Park, C.E.; Kim, S.; Han, S.J.; Pham, H.Q.; Shin, J.H.; Lee, D.W. Mitochondrial Mutations in Cholestatic Liver Disease with Biliary Atresia. Sci. Rep. 2018, 8, 905. [Google Scholar] [CrossRef]
- Chan, S.L.; Chua, A.P.G.; Aminkeng, F.; Chee, C.B.E.; Jin, S.; Loh, M.; Gan, S.H.; Wang, Y.T.; Brunham, L.R. Association and clinical utility of nat2 in the prediction of isoniazid-induced liver injury in singaporean patients. PLoS ONE 2017, 12, e0186200. [Google Scholar] [CrossRef]
- Hein, D.W.; Doll, M.A. Accuracy of various human nat2 snp genotyping panels to infer rapid, intermediate and slow acetylator phenotypes. Pharmacogenomics 2012, 13, 31–41. [Google Scholar] [CrossRef]
- Blumberg, H.M.; Burman, W.J.; Chaisson, R.E.; Daley, C.L.; Etkind, S.C.; Friedman, L.N.; Fujiwara, P.; Grzemska, M.; Hopewell, P.C.; Iseman, M.D.; et al. American thoracic society/centers for disease control and prevention/infectious diseases society of america: Treatment of tuberculosis. Am. J. Respir. Crit. Care Med. 2003, 167, 603–662. [Google Scholar]
- Aithal, G.P.; Watkins, P.B.; Andrade, R.J.; Larrey, D.; Molokhia, M.; Takikawa, H.; Hunt, C.M.; Wilke, R.A.; Avigan, M.; Kaplowitz, N.; et al. Case definition and phenotype standardization in drug-induced liver injury. Clin. Pharmacol. Ther. 2011, 89, 806–815. [Google Scholar] [CrossRef]
- Rhoads, A.; Au, K.F. Pacbio sequencing and its applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Ardui, S.; Ameur, A.; Vermeesch, J.R.; Hestand, M.S. Single molecule real-time (smrt) sequencing comes of age: Applications and utilities for medical diagnostics. Nucleic Acids Res. 2018, 46, 2159–2168. [Google Scholar] [CrossRef] [PubMed]
- Herrnstadt, C.; Elson, J.L.; Fahy, E.; Preston, G.; Turnbull, D.M.; Anderson, C.; Ghosh, S.S.; Olefsky, J.M.; Beal, M.F.; Davis, R.E.; et al. Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major african, asian, and european haplogroups. Am. J. Hum. Genet. 2002, 70, 1152–1171. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, T.; Bottcher, B. The gross structure of the respiratory complex i: A lego system. Biochim. Biophys. Acta 2004, 1608, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ghatineh, S.; Morgan, W.; Preece, N.E.; Timbrell, J.A. A biochemical and nmr spectroscopic study of hydrazine in the isolated rat hepatocyte. Arch. Toxicol. 1992, 66, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Karbowski, M.; Kurono, C.; Wozniak, M.; Ostrowski, M.; Teranishi, M.; Nishizawa, Y.; Usukura, J.; Soji, T.; Wakabayashi, T. Free radical-induced megamitochondria formation and apoptosis. Free Radic Biol. Med. 1999, 26, 396–409. [Google Scholar] [CrossRef]
- Boelsterli, U.A.; Lee, K.K. Mechanisms of isoniazid-induced idiosyncratic liver injury: Emerging role of mitochondrial stress. J. Gastroenterol. Hepatol. 2014, 29, 678–687. [Google Scholar] [CrossRef]
- Hunte, C.; Screpanti, E.; Venturi, M.; Rimon, A.; Padan, E.; Michel, H. Structure of a na+/h+ antiporter and insights into mechanism of action and regulation by ph. Nature 2005, 435, 1197–1202. [Google Scholar] [CrossRef]
- Zickermann, V.; Wirth, C.; Nasiri, H.; Siegmund, K.; Schwalbe, H.; Hunte, C.; Brandt, U. Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex i. Science 2015, 347, 44–49. [Google Scholar] [CrossRef]
- Mackey, D.A.; Oostra, R.J.; Rosenberg, T.; Nikoskelainen, E.; Bronte-Stewart, J.; Poulton, J.; Harding, A.E.; Govan, G.; Bolhuis, P.A.; Norby, S. Primary pathogenic mtdna mutations in multigeneration pedigrees with leber hereditary optic neuropathy. Am. J. Hum. Genet. 1996, 59, 481–485. [Google Scholar]
- Fernandez-Caggiano, M.; Barallobre-Barreiro, J.; Rego-Perez, I.; Crespo-Leiro, M.G.; Paniagua, M.J.; Grille, Z.; Blanco, F.J.; Domenech, N. Mitochondrial haplogroups h and j: Risk and protective factors for ischemic cardiomyopathy. PLoS ONE 2012, 7, e44128. [Google Scholar] [CrossRef] [PubMed]
- Castro, M.G.; Huerta, C.; Reguero, J.R.; Soto, M.I.; Domenech, E.; Alvarez, V.; Gomez-Zaera, M.; Nunes, V.; Gonzalez, P.; Corao, A.; et al. Mitochondrial DNA haplogroups in spanish patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2006, 112, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Cheng, X.; Li, D.; Meng, Q. Investigation of rifampicin-induced hepatotoxicity in rat hepatocytes maintained in gel entrapment culture. Cell Biol. Toxicol. 2009, 25, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, K.; Hassan, H.M.; Guo, H.; Ding, P.; Han, L.; He, Q.; Chen, W.; Hsiao, C.D.; Zhang, L.; et al. Liver fatty acid binding protein deficiency provokes oxidative stress, inflammation, and apoptosis-mediated hepatotoxicity induced by pyrazinamide in zebrafish larvae. Antimicrob. Agents Chemother. 2016, 60, 7347–7356. [Google Scholar] [PubMed]
Variable | Patients with DILI (n = 38) | Patients without DILI (n = 38) | p |
---|---|---|---|
Age (years) | 58.7 ± 18.9 | 55.5 ± 20.0 | 0.476 |
Female | 18 (47) | 18 (47) | 0.818 |
Body-mass index (kg/M2) | 20.9 ± 3.26 | 20.7 ± 2.80 | 0.881 |
Never smoker | 21 (55) | 23 (61) | 0.821 |
Co-existing diseases | |||
Diabetes mellitus | 6 (16) | 8 (21) | 0.764 |
Malignancy | 6 (16) | 8 (21) | 0.764 |
Heart failure | 4 (11) | 2 (5) | 0.678 |
CKD, stage 4 | 2 (5) | 0 | 0.469 |
CKD, post-renal transplant | 0 | 2 (5) | 0.469 |
Autoimmune disease | 3 (8) | 1 (3) | 0.602 |
NAT2 genotype*: n/total (%) | |||
Slow acetylator | 13/34 (38) | 12/38 (32) | 0.835 |
Intermediate acetylator | 11/34 (32) | 14/38 (37) | |
Rapid acetylator | 10/34 (29) | 12/38 (32) | |
Slow and intermediate acetylator | 24/34 (70) | 26/38 (68) | 0.948 |
DILI due to INH | 8/8 (1) | 0.154 | |
Days to peak ALT: M ± SD (Range) | 33.8 ± 23.6 (2–117) | 38.8 ± 27.4 (4–92) | 0.398 |
Peak ALT value (ULN): M ± SD (Range) | 12.5 ± 9.7 (3–47.3) | 1.33 ± 0.99 (0.3–4) | 0.000 |
Complete anti-TB Tx in 2 years: n/total (%) | 28/38 (74) | 36/38 (95) | 0.028 |
In patients with DILI due to INH | 5/8 (63) | 0.042 | |
In patients with DILI due to RIF | 8/14 (57) | 0.004 | |
In patients with DILI due to PZA | 15/16 (94) | 0.604 | |
90-day mortality rate: n/total (%) | 4/38 (11) | 2/38 (5) | 0.673 |
In patients with DILI due to INH | 1/8 (13) | 0.970 | |
In patients with DILI due to RIF | 2/14 (14) | 0.622 | |
In patients with DILI due to PZA | 1/16 (6) | 0.610 | |
2-year mortality rate: n/total (%) | 10#/38 (26) | 3§/38 (8) | 0.068 |
In patients with DILI due to INH | 3/8 (38) | 0.093 | |
In patients with DILI due to RIF | 6/14 (43) | 0.011 | |
In patients with DILI due to PZA | 1/16 (6) | 0.716 |
mtDNA Region/Gene | Total and Average No. of Variants Per Patient | p | |
---|---|---|---|
DILI (n = 38) | No DILI (n = 38) | ||
D-loop | 251 (6.6 ± 2.4) | 289 (7.6 ± 2.7) | 0.094 |
RRNS (12S ribosomal RNA) | 26 (0.7 ± 0.8) | 36 (1.0 ± 0.8) | 0.142 |
RRNL (16S ribosomal RNA) | 26 (0.7 ± 0.9) | 15 (0.4 ± 0.6) | 0.103 |
ND1 (NADH dehydrogenase subunit 1) | 54 (1.4 ± 1.1) | 46 (1.2 ± 1.0) | 0.425 |
DILI due to INH (n = 8) | 17 (2.1 ± 1.2) | 0.025 | |
DILI due to PZA (n = 16) | 17 (1.2 ± 1.3) | 0.947 | |
DILI due to RIF (n = 14) | 20 (1.4 ± 0.8) | 0.447 | |
ND2 (NADH dehydrogenase subunit 2) | 89 (2.3±1.2) | 94 (2.5 ± 1.3) | 0.644 |
DILI due to INH (n = 8) | 16 (2.0 ± 1.1) | 0.331 | |
DILI due to PZA (n = 16) | 42 (2.6 ± 1.3) | 0.684 | |
DILI due to RIF (n = 14) | 31 (2.2 ± 1.2) | 0.502 | |
COX1 (Cytochrome c oxidase subunit 1) | 44 (1.2 ± 1) | 44 (1.2 ± 1.1) | >0.999 |
COX2 (Cytochrome c oxidase subunit 2) | 18 (0.5 ± 0.7) | 23 (0.6 ± 0.9) | 0.462 |
ATP8 (ATP synthase F0 subunit 8) | 11 (0.3 ± 0.6) | 5 (0.1 ± 0.3) | 0.169 |
ATP6 (ATP synthase F0 subunit 6) | 48 (1.3 ± 0.9) | 50 (1.3 ± 1.1) | 0.815 |
COX3 (Cytochrome c oxidase subunit 3) | 36 (0.9 ± 0.9) | 34 (0.8 ± 1.0) | 0.524 |
ND3 (NADH dehydrogenase subunit 3) | 52 (1.4 ± 0.9) | 51 (1.3 ± 1.0) | 0.903 |
ND4L (NADH dehydrogenase subunit 4L) | 16 (0.4 ± 0.6) | 10 (0.3 ± 0.6) | 0.288 |
ND4 (NADH dehydrogenase subunit 4) | 47 (1.2 ± 1.2) | 40 (1.1 ± 1.0) | 0.427 |
ND5 (NADH dehydrogenase subunit 5) | 102 (2.6 ± 1.6) | 77 (2.0 ± 1.2) | 0.028 |
DILI due to INH (n = 8) | 28 (3.5 ± 1.6) | 0.005 | |
DILI due to PZA (n = 16) | 40 (2.6 ± 1.5) | 0.128 | |
DILI due to RIF (n = 14) | 39 (2.4 ± 1.6) | 0.332 | |
ND6 (NADH dehydrogenase subunit 6) (light strand) | 12 (0.3 ± 0.5) | 17 (0.4 ± 0.6) | 0.292 |
CYTB (Cytochrome b) | 124 (3.3 ± 1.9) | 114 (3 ± 1.7) | 0.528 |
tRNA genes | 14 (0.3 ± 0.7) | 19 (0.5 ± 0.7623) | 0.353 |
Introns | 2 (0.1 ± 0.2) | 13 (0.3 ± 0.5) | 0.001 |
All variants | 972 (25.6 ± 6.0) | 1013 (26.7 ± 7.9) | 0.504 |
mtDNA Gene | Total and Average No. (M ± SD) of NS Substitutions | p | |
---|---|---|---|
DILI (n = 38) | No DILI (n = 38) | ||
ND1 (NADH dehydrogenase subunit 1) | 16 (0.42 ± 0.60) | 16 (0.42 ± 0.55) | >0.999 |
ND2 (NADH dehydrogenase subunit 2) | 23 (0.60 ± 0.68) | 27 (0.71 ± 0.84) | 0.550 |
COX1 (Cytochrome c oxidase subunit 1) | 1 (0.03 ± 0.16) | 4 (0.11 ± 0.31) | 0.169 |
COX2 (Cytochrome c oxidase subunit 2) | 4 (0.11 ± 0.31) | 7 (0.18 ± 0.39) | 0.335 |
ATP8 (ATP synthase F0 subunit 8) | 6 (0.16 ± 0.37) | 5 (0.13 ± 0.34) | 0.749 |
ATP6 (ATP synthase F0 subunit 6) | 37 (0.97 ± 0.75) | 34 (0.90 ± 0.73) | 0.640 |
COX3 (Cytochrome c oxidase subunit 3) | 4 (0.11 ± 0.31) | 1 (0.03 ± 0.16) | 0.170 |
ND3 (NADH dehydrogenase subunit 3) | 19 (0.5 ± 0.51) | 22 (0.58 ± 0.55) | 0.520 |
ND4L (NADH dehydrogenase subunit 4L) | 5 (0.13 ± 0.34) | 3 (0.08 ± 0.36) | 0.515 |
ND4 (NADH dehydrogenase subunit 4) | 4 (0.11 ± 0.31) | 3 (0.08 ± 0.36) | 0.734 |
ND5 (NADH dehydrogenase subunit 5) | 39 (1.03 ± 1.26) | 25 (0.66 ± 0.81) | 0.135 |
DILI due to isoniazid (n = 8) | 12 (1.50 ± 1.60) | 0.033 | |
ND6 (NADH dehydrogenase subunit 6) | 7 (0.18 ± 0.39) | 9 (0.26 ± 0.45) | 0.415 |
CYTB (Cytochrome b) | 27 (0.71 ± 0.77) | 21 (0.55 ± 0.69) | 0.347 |
Total No. of NS substitutions | 192 (5.39 ± 1.73) | 177 (5.24 ± 2.09) | 0.735 |
Average ratio of NS substitutions/all variants | 0.20 ± 0.06 | 0.17 ± 0.06 | 0.045 |
DILI due to isoniazid (n = 8) | 0.24 ± 0.07 | 0.010 | |
DILI due to pyrazinamide (n = 16) | 0.20 ± 0.07 | 0.230 | |
DILI due to rifampin (n = 14) | 0.18 ± 0.05 | 0.595 |
mtDNA Region/Gene | Total and Average No. of Variants Per Patient | p | |
---|---|---|---|
DILI (n = 38) | No DILI (n = 38) | ||
D-loop | 3.7 ± 2.4 | 4.6 ± 2.2 | 0.063 |
RRNS (12S ribosomal RNA) | 0.5 ± 0.7 | 0.6 ± 0.9 | 0.557 |
RRNL (16S ribosomal RNA) | 0.4 ± 0.7 | 0.3 ± 0.5 | 0.186 |
ND1 (NADH dehydrogenase subunit 1) | 1.3 ± 1.1 | 1.1 ± 1.0 | 0.236 |
DILI due to INH (n = 8) | 2.1 ± 1.2 | 0.027 | |
DILI due to PZA (n = 16) | 1 ± 1.1 | 0.864 | |
DILI due to RIF (n = 14) | 1.3 ± 0.8 | 0.444 | |
ND2 (NADH dehydrogenase subunit 2) | 1.2 ± 1.2 | 1.3 ± 1.2 | 0.704 |
DILI due to INH (n = 8) | 0.8 ± 0.7 | 0.268 | |
DILI due to PZA (n = 16) | 1.6 ± 1.3 | 0.341 | |
DILI due to RIF (n = 14) | 0.9 ± 1.0 | 0.371 | |
COX1 (Cytochrome c oxidase subunit 1) | 1.1 ± 0.9 | 1.1 ± 1.1 | 0.825 |
COX2 (Cytochrome c oxidase subunit 2) | 0.4 ± 0.6 | 0.6 ± 0.9 | 0.292 |
ATP8 (ATP synthase F0 subunit 8) | 0.1 ± 0.4 | 0.1 ± 0.2 | 0.703 |
ATP6 (ATP synthase F0 subunit 6) | 1.3 ± 0.9 | 1.5 ± 1.1 | 0.252 |
COX3 (Cytochrome c oxidase subunit 3) | 0.1 ± 0.3 | 0.03 ± 0.2 | 0.311 |
ND3 (NADH dehydrogenase subunit 3) | 0.3 ± 0.5 | 0.4 ± 0.6 | 0.542 |
ND4L (NADH dehydrogenase subunit 4L) | 0.4 ± 0.5 | 0.2 ± 0.5 | 0.202 |
ND4 (NADH dehydrogenase subunit 4) | 0.7 ± 1.0 | 0.6 ± 0.8 | 0.902 |
ND5 (NADH dehydrogenase subunit 5) | 2.0 ± 1.6 | 1.2 ± 1.3 | 0.024 |
DILI due to INH (n = 8) | 2.8 ± 1.8 | 0.007 | |
DILI due to PZA (n = 16) | 1.7 ± 1.6 | 0.235 | |
DILI due to RIF (n = 14) | 1.9 ± 1.6 | 0.129 | |
NS substitutions | 0.9 ± 1.2 | 0.5 ± 0.8 | 0.073 |
DILI due to INH (n = 8) | 1.5 ± 1.6 | 0.011 | |
DILI due to PZA (n = 16) | 0.7 ± 1.1 | 0.534 | |
DILI due to RIF (n = 14) | 0.9 ± 1.1 | 0.138 | |
ND6 (NADH dehydrogenase subunit 6) (light strand) | 0.2 ± 0.4 | 0.4 ± 0.5 | 0.534 |
CYTB (Cytochrome b) | 0.7 ± 0.8 | 0.8 ± 1.1 | 0.811 |
All private variants: total (mean ± SD) | 644 (17.0 ± 3.8) | 704 (18.5 ± 5.6) | 0.153 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, L.-N.; Huang, C.-T.; Hsu, C.-L.; Chang, H.-C.; Jan, I.-S.; Liu, J.-L.; Sheu, J.-C.; Wang, J.-T.; Liu, W.-L.; Wu, H.-S.; et al. Mitochondrial DNA Variants in Patients with Liver Injury Due to Anti-Tuberculosis Drugs. J. Clin. Med. 2019, 8, 1207. https://doi.org/10.3390/jcm8081207
Lee L-N, Huang C-T, Hsu C-L, Chang H-C, Jan I-S, Liu J-L, Sheu J-C, Wang J-T, Liu W-L, Wu H-S, et al. Mitochondrial DNA Variants in Patients with Liver Injury Due to Anti-Tuberculosis Drugs. Journal of Clinical Medicine. 2019; 8(8):1207. https://doi.org/10.3390/jcm8081207
Chicago/Turabian StyleLee, Li-Na, Chun-Ta Huang, Chia-Lin Hsu, Hsiu-Ching Chang, I-Shiow Jan, Jia-Luen Liu, Jin-Chuan Sheu, Jann-Tay Wang, Wei-Lun Liu, Huei-Shu Wu, and et al. 2019. "Mitochondrial DNA Variants in Patients with Liver Injury Due to Anti-Tuberculosis Drugs" Journal of Clinical Medicine 8, no. 8: 1207. https://doi.org/10.3390/jcm8081207
APA StyleLee, L.-N., Huang, C.-T., Hsu, C.-L., Chang, H.-C., Jan, I.-S., Liu, J.-L., Sheu, J.-C., Wang, J.-T., Liu, W.-L., Wu, H.-S., Chang, C.-N., & Wang, J.-Y. (2019). Mitochondrial DNA Variants in Patients with Liver Injury Due to Anti-Tuberculosis Drugs. Journal of Clinical Medicine, 8(8), 1207. https://doi.org/10.3390/jcm8081207