Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Movement Assessment and Motor Outcome
2.3. Transcranial Magnetic Stimulation
2.4. Safety
2.5. Statistical Analysis
3. Results
3.1. Safety of Transcranial Magnetic Stimulation
3.2. Participant Characteristics
3.3. Motor Evoked Potentials and Age
3.4. Motor Evoked Potentials and Motor Outcomes
4. Discussion
4.1. Relationship between MEP Presence and Age
4.2. Relationship between MEP Presence and Motor Outcome
4.3. Clinical Relevance
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lehman, L.L.; Rivkin, M.J. Perinatal Arterial Ischemic Stroke: Presentation, Risk Factors, Evaluation, and Outcome. Pediatr. Neurol. 2014, 51, 760–768. [Google Scholar] [CrossRef] [PubMed]
- Herskind, A.; Greisen, G.; Nielsen, J.B. Early identification and intervention in cerebral palsy. Dev. Med. Child Neurol. 2015, 57, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Raju, T.N.; Nelson, K.B.; Ferriero, D.; Lynch, J.K. Ischemic perinatal stroke: Summary of a workshop sponsored by the National Institute of Child Health and Human Development and the National Institute of Neurological Disorders and Stroke. Pediatrics 2007, 120, 609–616. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Health and Human Services. C.D.C. Data & Statistics for Cerebral Palsy. Available online: https://www.cdc.gov/ncbddd/cp/data.html (accessed on 8 June 2019).
- Baumann, R.J. Capute and Accardo’s Neurodevelopmental Disabilities in Infancy and Childhood, 3rd ed.; Volume I: Neurodevelopmental Diagnosis and Treatment; Volume II: The Spectrum of Neurodevelopmental Disabilities (Book Review). Pediatr. Neurol. 2008, 39, 71. [Google Scholar] [CrossRef]
- Eyre, J.A.; Smith, M.; Dabydeen, L.; Clowry, G.J.; Petacchi, E.; Battini, R.; Guzzetta, A.; Cioni, G. Is hemiplegic cerebral palsy equivalent to amblyopia of the corticospinal system? Ann. Neurol. 2007, 62, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Holmefur, M.; Krumlinde-Sundholm, L.; Bergstrom, J.; Eliasson, A.C. Longitudinal development of hand function in children with unilateral cerebral palsy. Dev. Med. Child Neurol. 2010, 52, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Hubermann, L.; Boychuck, Z.; Shevell, M.; Majnemer, A. Age at Referral of Children for Initial Diagnosis of Cerebral Palsy and Rehabilitation: Current Practices. J. Child Neurol. 2016, 31, 364–369. [Google Scholar] [CrossRef]
- Golomb, M.R.; Garg, B.P.; Saha, C.; Azzouz, F.; Williams, L.S. Cerebral palsy after perinatal arterial ischemic stroke. J. Child Neurol. 2008, 23, 279–286. [Google Scholar] [CrossRef]
- Cusick, S.E.; Georgieff, M.K. The Role of Nutrition in Brain Development: The Golden Opportunity of the “First 1000 Days”. J. Pediatr. 2016, 175, 16–21. [Google Scholar] [CrossRef]
- Georgieff, M.K.; Brunette, K.E.; Tran, P.V. Early life nutrition and neural plasticity. Dev. Psychopathol. 2015, 27, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Wachs, T.D.; Georgieff, M.; Cusick, S.; McEwen, B.S. Issues in the timing of integrated early interventions: Contributions from nutrition, neuroscience, and psychological research. Ann. N. Y. Acad. Sci. 2014, 13081, 89–106. [Google Scholar] [CrossRef] [PubMed]
- Rossini, P.M.; Burke, D.; Chen, R.; Cohen, L.G.; Daskalakis, Z.; Di Iorio, R.; Di Lazzaro, V.; Ferreri, F.; Fitzgerald, P.B.; George, M.S.; et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin. Neurophysiol. 2015, 126, 1071–1107. [Google Scholar] [CrossRef] [PubMed]
- van der Aa, N.E.; Verhage, C.H.; Groenendaal, F.; Vermeulen, R.J.; de Bode, S.; van Nieuwenhuizen, O.; de Vries, L.S. Neonatal neuroimaging predicts recruitment of contralesional corticospinal tracts following perinatal brain injury. Dev. Med. Child Neurol. 2013, 55, 707–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackey, A.; Stinear, C.; Stott, S.; Byblow, W.D. Upper limb function and cortical organization in youth with unilateral cerebral palsy. Front. Neurol. 2014, 5, 117. [Google Scholar] [CrossRef] [PubMed]
- Smorenburg, A.R.; Gordon, A.M.; Kuo, H.C.; Ferre, C.L.; Brandao, M.; Bleyenheuft, Y.; Carmel, J.B.; Friel, K.M. Does Corticospinal Tract Connectivity Influence the Response to Intensive Bimanual Therapy in Children With Unilateral Cerebral Palsy? Neurorehabilit. Neural Repair 2017, 31, 250–260. [Google Scholar] [CrossRef] [PubMed]
- Baranello, G.; Rossi Sebastiano, D.; Pagliano, E.; Visani, E.; Ciano, C.; Fumarola, A.; Arnoldi, M.T.; Corlatti, A.; Foscan, M.; Marchi, A.; et al. Hand function assessment in the first years of life in unilateral cerebral palsy: Correlation with neuroimaging and cortico-spinal reorganization. Eur. J. Paediatr. Neurol. 2016, 20, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy: Advances in Diagnosis and Treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef] [PubMed]
- Springer, A.; Holzinger, S.D.; Andersen, J.; Buckley, D.; Fehlings, D.; Kirton, A.; Koclas, L.; Pigeon, N.; Van Rensburg, E.; Wood, E.; et al. Profile of children with cerebral palsy spectrum disorder and a normal MRI study. Neurology 2019. [Google Scholar] [CrossRef] [PubMed]
- Engle, W.A. Age terminology during the perinatal period. Pediatrics 2004, 114, 1362–1364. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Oestergaard, M.Z.; Chou, D.; Moller, A.B.; Narwal, R.; Adler, A.; Vera Garcia, C.; Rohde, S.; Say, L.; et al. National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: A systematic analysis and implications. Lancet 2012, 379, 2162–2172. [Google Scholar] [CrossRef]
- Chen, C.Y.; Georgieff, M.; Elison, J.; Chen, M.; Stinear, J.; Mueller, B.; Rao, R.; Rudser, K.; Gillick, B. Understanding Brain Reorganization in Infants With Perinatal Stroke Through Neuroexcitability and Neuroimaging. Pediatr. Phys. 2017, 29, 173–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, B.R.; Styner, M.A.; Gao, W.; Yap, P.T.; Wang, L.; Baluyot, K.; Yacoub, E.; Chen, G.; Potts, T.; Salzwedel, A.; et al. The UNC/UMN Baby Connectome Project (BCP): An overview of the study design and protocol development. Neuroimage 2019, 185, 891–905. [Google Scholar] [CrossRef] [PubMed]
- Nemanich, S.T.; Chen, C.Y.; Chen, M.; Zorn, E.; Mueller, B.; Peyton, C.; Elison, J.T.; Stinear, J.; Rao, R.; Georgieff, M.; et al. Safety and Feasibility of Transcranial Magnetic Stimulation as an Exploratory Assessment of Corticospinal Connectivity in Infants After Perinatal Brain Injury: An Observational Study. Phys. Ther. 2019, 99, 689–700. [Google Scholar] [CrossRef] [PubMed]
- Fleming, S.; Thompson, M.; Stevens, R.; Heneghan, C.; Pluddemann, A.; Maconochie, I.; Tarassenko, L.; Mant, D. Normal ranges of heart rate and respiratory rate in children from birth to 18 years of age: A systematic review of observational studies. Lancet 2011, 377, 1011–1018. [Google Scholar] [CrossRef]
- van Lieshout, P.; Candundo, H.; Martino, R.; Shin, S.; Barakat-Haddad, C. Onset factors in cerebral palsy: A systematic review. Neurotoxicology 2017, 61, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Colon, A.J.; Vredeveld, J.W.; Blaauw, G. Motor evoked potentials after transcranial magnetic stimulation support hypothesis of coexisting central mechanism in obstetric brachial palsy. J. Clin. Neurophysiol. 2007, 24, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Narayana, S.; Mudigoudar, B.; Babajani-Feremi, A.; Choudhri, A.F.; Boop, F.A. Successful motor mapping with transcranial magnetic stimulation in an infant: A case report. Neurology 2017, 89, 2115–2117. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.A.; Nelson, C.A. Developmental science and the media. Early brain development. Am. Psychol. 2001, 56, 5–15. [Google Scholar] [CrossRef]
- Chaudhury, S.; Sharma, V.; Kumar, V.; Nag, T.C.; Wadhwa, S. Activity-dependent synaptic plasticity modulates the critical phase of brain development. Brain Dev. 2016, 38, 355–363. [Google Scholar] [CrossRef]
- Hensch, T.K. Critical period regulation. Annu. Rev. Neurosci. 2004, 27, 549–579. [Google Scholar] [CrossRef]
- Buffelli, M.; Burgess, R.W.; Feng, G.; Lobe, C.G.; Lichtman, J.W.; Sanes, J.R. Genetic evidence that relative synaptic efficacy biases the outcome of synaptic competition. Nature 2003, 424, 430–434. [Google Scholar] [CrossRef]
- Lichtman, J.W.; Colman, H. Synapse elimination and indelible memory. Neuron 2000, 25, 269–278. [Google Scholar] [CrossRef]
- Sanes, J.R.; Lichtman, J.W. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 1999, 22, 389–442. [Google Scholar] [CrossRef]
- Huntley, G.W. Differential effects of abnormal tactile experience on shaping representation patterns in developing and adult motor cortex. J. Neurosci. 1997, 17, 9220–9232. [Google Scholar] [CrossRef]
- Kim, S.Y.; Hsu, J.E.; Husbands, L.C.; Kleim, J.A.; Jones, T.A. Coordinated Plasticity of Synapses and Astrocytes Underlies Practice-Driven Functional Vicariation in Peri-Infarct Motor Cortex. J. Neurosci. 2018, 38, 93–107. [Google Scholar] [CrossRef]
- Yasumoto, S.; Mitsudome, A. F-waves in neonates: Increased spinal anterior horn motor neuron excitability. Brain Dev. 2004, 26, 8–11. [Google Scholar] [CrossRef]
- Narayana, S.; Rezaie, R.; McAfee, S.S.; Choudhri, A.F.; Babajani-Feremi, A.; Fulton, S.; Boop, F.A.; Wheless, J.W.; Papanicolaou, A.C. Assessing motor function in young children with transcranial magnetic stimulation. Pediatr. Neurol. 2015, 52, 94–103. [Google Scholar] [CrossRef]
- Harmon, H.M.; Taylor, H.G.; Minich, N.; Wilson-Costello, D.; Hack, M. Early school outcomes for extremely preterm infants with transient neurological abnormalities. Dev. Med. Child Neurol. 2015, 57, 865–871. [Google Scholar] [CrossRef] [Green Version]
Infant | Sex | GA (Weeks) | Level of Prematurity | CA at TMS (Months) | Neuroradiology Findings | Motor Outcome |
---|---|---|---|---|---|---|
1 | M | 31 | Very preterm | 3 | Bilateral parieto-occipital cystic periventricular leukomalacia | Atypical (GMA) |
2 | M | 41 | Term | 4 | Left frontal lobe intraparenchymal hemorrhage with adjacent subdural and subarachnoid hemorrhage | Typical (GMA) |
3 | M | 22 | Extremely preterm | 4 | Grade 2 germinal matrix hemorrhage and multifocal cerebellar hemorrhage | Typical (GMA) |
4 | M | 26 | Extremely preterm | 5 | Bilateral cystic periventricular leukomalacia, ex vacuo dilatation of the lateral and third ventricles; left thinning of parietal and occipital lobes | Atypical (GMA) |
5 | F | 26 | Extremely preterm | 6 | Right grade III and left grade II intraventricular hemorrhage | Typical (GMA) |
6 | F | 25 | Extremely preterm | 7 | Bilateral cerebellar hemorrhages | Atypical (BSID-III) |
7 | F | 22 | Extremely preterm | 9 | Bilateral cerebellar hemorrhages, ex vacuo dilatation of the fourth ventricle | Atypical (BSID-III) |
8 | M | 39 | Term | 10 | Extensive bilateral ischemia in the right parietal, occipital, temporal, and posterior frontal lobes; basal ganglia and thalamus; and in left parietal, posterior temporal, posterior occipital, and frontal lobes | Atypical (BSID-III) |
9 | M | 36 | Moderate to late preterm | 12 | Left parietal encephalomalacic cleft, similar but milder cleft on right parietal vertex; hemosiderin deposits in left temporal, posterior left frontal, left parietal lobes | Typical (BSID-III) |
10 | M | 41 | Term | 12 | Gliosis and encephalomalacia along the right paracentral region, corona radiata, centrum semiovale, and posterior limb of internal capsule | Atypical (BSID-III) |
Hemisphere Stimulated | Corrected Age at TMS Assessment | Gestational Age | ||
---|---|---|---|---|
Younger Infants (3–6 Months CA) | Older Infants (7–12 Months CA) | Preterm (GA < 27 Weeks) | Term (GA ≥ 27 Weeks) | |
n = 5 | n = 5 | n = 7 | n = 3 | |
MAH LAH | 80% | 0% | 43% | 33% |
100% | 60% | 86% | 67% |
Infant | CA | MEP from MAH | MAH MSO | MEP from LAH | LAH MSO |
---|---|---|---|---|---|
1 | 3 | Contralateral | 80% | Contralateral | 75% |
2 | 4 | Contralateral and ipsilateral | 80% | Ipsilateral | 70% |
3 | 4 | Contralateral and ipsilateral | 85% | Contralateral and ipsilateral | 80% |
4 | 5 | Absent | - | Contralateral and ipsilateral | 70% |
5 | 6 | Contralateral | 75% | Ipsilateral | 85% |
6 | 7 | Absent | - | Contralateral and ipsilateral | 70% |
7 | 9 | Absent | - | Absent | - |
8 | 10 | Absent | - | Absent | - |
9 | 12 | Absent | - | Contralateral | 80% |
10 | 12 | Absent | - | Contralateral | 85% |
Motor Outcome | TMS Responses | |||
---|---|---|---|---|
Present MEP from MAH | Absent MEP from MAH | Present MEP from LAH | Absent MEP from LAH | |
n = 4 | n = 6 | n = 8 | n = 2 | |
Atypical movement | 25% | 83% | 63% | 50% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalski, J.L.; Nemanich, S.T.; Nawshin, T.; Chen, M.; Peyton, C.; Zorn, E.; Hickey, M.; Rao, R.; Georgieff, M.; Rudser, K.; et al. Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke. J. Clin. Med. 2019, 8, 1208. https://doi.org/10.3390/jcm8081208
Kowalski JL, Nemanich ST, Nawshin T, Chen M, Peyton C, Zorn E, Hickey M, Rao R, Georgieff M, Rudser K, et al. Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke. Journal of Clinical Medicine. 2019; 8(8):1208. https://doi.org/10.3390/jcm8081208
Chicago/Turabian StyleKowalski, Jesse L., Samuel T. Nemanich, Tanjila Nawshin, Mo Chen, Colleen Peyton, Elizabeth Zorn, Marie Hickey, Raghavendra Rao, Michael Georgieff, Kyle Rudser, and et al. 2019. "Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke" Journal of Clinical Medicine 8, no. 8: 1208. https://doi.org/10.3390/jcm8081208
APA StyleKowalski, J. L., Nemanich, S. T., Nawshin, T., Chen, M., Peyton, C., Zorn, E., Hickey, M., Rao, R., Georgieff, M., Rudser, K., & Gillick, B. T. (2019). Motor Evoked Potentials as Potential Biomarkers of Early Atypical Corticospinal Tract Development in Infants with Perinatal Stroke. Journal of Clinical Medicine, 8(8), 1208. https://doi.org/10.3390/jcm8081208