Erythropoiesis In Vitro—A Research and Therapeutic Tool in Thalassemia
Abstract
:1. Introduction
Thalassemia
2. Erythropoiesis—In Vivo
3. Erythropoiesis—In Vitro
3.1. Erythroid Cells Lines
3.2. Erythroid Cultures Derived from Progenitor Cells
3.3. Erythroid Cultures Derived from Stem Cells
4. The Use of Erythroid Cultures for Research and Diagnosis
4.1. Clinical Diagnosis
4.2. Bio-Banking of Erythroid Cells
5. Developing Novel Therapeutic Modalities
5.1. Stimulation of HbF Production
5.2. Gene Therapy
6. Production of RBC for Transfusion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rund, D. Thalassemia 2016: Modern medicine battles an ancient disease. Am. J. Hematol. 2016, 91, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Rachmilewitz, E.A. Pathophysiology and treatment of patients with beta-thalassemia—An update. F1000Research 2017, 6, 2156. [Google Scholar] [CrossRef] [PubMed]
- Porter, J.B.; Garbowski, M. The pathophysiology of transfusional iron overload. Hematol. Oncol. Clin. N. Am. 2014, 28, 683–701. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, T.R.; Clegg, J.B.; Weatherall, D.J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature 1979, 280, 164–165. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Shah, S.; Wang, J.; Ye, Z.; Dowey, S.N.; Tsang, K.M.; Mendelsohn, L.G.; Kato, G.J.; Kickler, T.S.; Cheng, L. Extensive ex vivo expansion of functional human erythroid precursors established from umbilical cord blood cells by defined factors. Mol. Ther. 2014, 22, 451–463. [Google Scholar] [CrossRef] [PubMed]
- Clegg, J.B.; Weatherall, D.J. Thalassemia and malaria: New insights into an old problem. Proc. Assoc. Am. Physicians 1999, 111, 278–282. [Google Scholar] [CrossRef]
- Modell, B.; Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 2008, 86, 480–487. [Google Scholar] [CrossRef]
- McColl, B.; Vadolas, J. Animal models of beta-hemoglobinopathies: Utility and limitations. J. Blood Med. 2016, 7, 263–274. [Google Scholar] [CrossRef]
- Nandakumar, S.K.; Ulirsch, J.C.; Sankaran, V.G. Advances in understanding erythropoiesis: Evolving perspectives. Br. J. Haematol. 2016, 173, 206–218. [Google Scholar] [CrossRef]
- Bunn, H.F. Erythropoietin. Cold Spring Harb. Perspect. Med. 2013, 3, a011619. [Google Scholar] [CrossRef]
- Dussiot, M.; Maciel, T.T.; Fricot, A.; Chartier, C.; Negre, O.; Veiga, J.; Grapton, D.; Paubelle, E.; Payen, E.; Beuzard, Y.; et al. An activin receptor IIA ligand trap corrects ineffective erythropoiesis in beta-thalassemia. Nat. Med. 2014, 20, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Friend, C.; Patuleia, M.C.; De Harven, E. Erythrocytic maturation in vitro of murine (Friend) virus-induced leukemic cells. Natl. Cancer Inst. Monogr. 1966, 22, 505–522. [Google Scholar] [PubMed]
- Lozzio, B.B.; Lozzio, C.B. Properties of the K562 cell line derived from a patient with chronic myeloid leukemia. Int. J. Cancer 1977, 19, 136. [Google Scholar] [CrossRef] [PubMed]
- Friend, C.; Scher, W.; Holland, J.G.; Sato, T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: Stimulation of erythroid differentiation by dimethyl sulfoxide. Proc. Natl. Acad. Sci. USA 1971, 68, 378–382. [Google Scholar] [CrossRef] [PubMed]
- Aviv, H.; Voloch, Z.; Bastos, R.; Levy, S. Biosynthesis and stability of globin mRNA in cultured erythroleukemic friend cells. Cell 1976, 8, 495–503. [Google Scholar] [CrossRef]
- Pluznik, D.H.; Sachs, L. The cloning of normal “mast” cells in tissue culture. J. Cell. Comp. Physiol. 1965, 66, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Bradley, T.R.; Metcalf, D.; Robinson, W. Stimulation by leukaemic sera of colony formation in solid agar cultures by proliferation of mouse bone marrow cells. Nature 1967, 213, 926–927. [Google Scholar] [CrossRef]
- Pluznik, D.H.; Sachs, L. The induction of clones of normal mast cells by a substance from conditioned medium. Exp. Cell Res. 1966, 43, 553–563. [Google Scholar] [CrossRef]
- Iscove, N.N.; Sieber, F. Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp. Hematol. 1975, 3, 32–43. [Google Scholar]
- Ruppert, S.; Lohr, G.W.; Fauser, A.A. Characterization of stimulatory activity for human pluripotent stem cells (CFUGEMM). Exp. Hematol. 1983, 11, 154–161. [Google Scholar]
- Neumann, H.A.; Lohr, G.W.; Fauser, A.A. Radiation sensitivity of pluripotent hemopoietic progenitors (CFUGEMM) derived from human bone marrow. Exp. Hematol. 1981, 9, 742–744. [Google Scholar] [PubMed]
- Fibach, E.; Manor, D.; Oppenheim, A.; Rachmilewitz, E.A. Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 1989, 73, 100–103. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Prus, E. Differentiation of human erythroid cells in culture. Curr. Protoc. Immunol. 2005, 69, 22F. 7.1–22F. 7.10. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.L.; Hsu, S.C.; Hwang, S.M.; Lee, W.C.; Chiou, T.J. A stromal-free, serum-free system to expand ex vivo hematopoietic stem cells from mobilized peripheral blood of patients with hematologic malignancies and healthy donors. Cytotherapy 2013, 15, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Douay, L. Why industrial production of red blood cells from stem cells is essential for tomorrow’s blood transfusion. Regen. Med. 2018, 13, 627–632. [Google Scholar] [CrossRef]
- Miharada, K.; Hiroyama, T.; Sudo, K.; Nagasawa, T.; Nakamura, Y. Efficient enucleation of erythroblasts differentiated in vitro from hematopoietic stem and progenitor cells. Nat. Biotechnol. 2006, 24, 1255–1256. [Google Scholar] [CrossRef]
- Leberbauer, C.; Boulme, F.; Unfried, G.; Huber, J.; Beug, H.; Mullner, E.W. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood 2005, 105, 85–94. [Google Scholar] [CrossRef]
- Masiello, F.; Tirelli, V.; Sanchez, M.; van den Akker, E.; Gabriella, G.; Marconi, M.; Villa, M.A.; Rebulla, P.; Hashmi, G.; Whitsett, C.; et al. Mononuclear cells from a rare blood donor, after freezing under good manufacturing practice conditions, generate red blood cells that recapitulate the rare blood phenotype. Transfusion 2014, 54, 1059–1070. [Google Scholar] [CrossRef]
- Dexter, T.M. Haemopoiesis in long-term bone marrow cultures. A review. Acta Haematol. 1979, 62, 299–305. [Google Scholar] [CrossRef]
- Peled, T.; Landau, E.; Mandel, J.; Glukhman, E.; Goudsmid, N.R.; Nagler, A.; Fibach, E. Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34(+) cells and increases their engraftment potential in NOD/SCID mice. Exp. Hematol. 2004, 32, 547–555. [Google Scholar] [CrossRef]
- Prus, E.; Chandraratna, R.A.S.; Fibach, E. Retinoic acid receptor antagonist inhibits CD38 antigen expression on human hematopoietic cells in vitro. Leuk. Lymphoma 2004, 45, 1025–1035. [Google Scholar] [CrossRef] [PubMed]
- Peled, T.; Glukhman, E.; Adi, S.; Landau, E.; Hasson, N.; Lador, C.; Mandel, J.; Fibach, E. Antagonists to retinoid receptors down-regulate CD38 expression and inhibit in vitro differentiation of cord blood derived CD34+cells. Blood 2006, 108, 3652. [Google Scholar] [CrossRef]
- Peled, T.; Shoham, H.; Aschengrau, D.; Yackoubov, D.; Frei, G.; Rosenheimer, G.N.; Lerrer, B.; Cohen, H.Y.; Nagler, A.; Fibach, E.; et al. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp. Hematol. 2012, 40, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, D.S.; Hanson, E.T.; Lewis, R.L.; Auerbach, R.; Thomson, J.A. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 2001, 98, 10716–10721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, C.; Hanson, E.; Olivier, E.; Inada, M.; Kaufman, D.S.; Gupta, S.; Bouhassira, E.E. Differentiation of human embryonic stem cells into hematopoietic cells by coculture with human fetal liver cells recapitulates the globin switch that occurs early in development. Exp. Hematol. 2005, 33, 1450–1458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.C.; Kaba, M.; Iizuka, S.; Huynh, H.; Lodish, H.F. Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 2008, 111, 3415–3423. [Google Scholar] [CrossRef] [PubMed]
- Wagner, J.E., Jr.; Brunstein, C.G.; Boitano, A.E.; DeFor, T.E.; McKenna, D.; Sumstad, D.; Blazar, B.R.; Tolar, J.; Le, C.; Jones, J.; et al. Phase I/II trial of stemregenin-1 expanded umbilical cord blood hematopoietic stem cells supports testing as a stand-alone graft. Cell Stem Cell 2016, 18, 144–155. [Google Scholar] [CrossRef] [Green Version]
- Lapillonne, H.; Kobari, L.; Mazurier, C.; Tropel, P.; Giarratana, M.C.; Zanella-Cleon, I.; Kiger, L.; Wattenhofer-Donzé, M.; Puccio, H.; Hebert, N.; et al. Red blood cell generation from human induced pluripotent stem cells: Perspectives for transfusion medicine. Haematologica 2010, 95, 1651–1659. [Google Scholar] [CrossRef] [Green Version]
- Fibach, E.; Rachmilewitz, E.A. Stimulation of erythroid progenitors by high concentrations of erythropoietin results in normoblasts arrested in G2 phase of the cell cycle. Exp. Hematol. 1993, 21, 184–188. [Google Scholar] [CrossRef]
- Sharon, R.; Fibach, E. Quantitative flow cytometric analysis of ABO red cell antigens. Cytometry 1991, 12, 545–549. [Google Scholar] [CrossRef]
- Hanspal, M.; Hanspal, J.S.; Sahr, K.E.; Fibach, E.; Nachman, J.; Palek, J. Molecular basis of spectrin deficiency in hereditary pyropoikilocytosis. Blood 1993, 82, 1652–1660. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Dana, M. Oxidative stress in beta-Thalassemia. Mol. Diagn. Ther. 2019, 23, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Fibach, E.; Rachmilewitz, E.A. Iron overload in hematological disorders. Presse Med 2017, 46 Pt 2, e296–e305. [Google Scholar] [CrossRef]
- Freikman, I.; Fibach, E. Distribution and shedding of the membrane phosphatidylserine during maturation and aging of erythroid cells. Biochim. Biophys. Acta 2011, 1808, 2773–2780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fibach, E. Cell culture and animal models to screen for promising fetal hemoglobin-stimulating compounds. Semin. Hematol. 2001, 38, 374–381. [Google Scholar] [CrossRef]
- Breda, L.; Kleinert, D.A.; Casu, C.; Casula, L.; Cartegni, L.; Fibach, E.; Mancini, I.; Giardina, P.J.; Gambari, R.; Rivella, S. A preclinical approach for gene therapy of beta-thalassemia. Ann. N. Y. Acad. Sci. 2010, 1202, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breda, L.; Casu, C.; Gardenghi, S.; Bianchi, N.; Cartegni, L.; Narla, M.; Yazdanbakhsh, K.; Musso, M.; Manwani, D.; Little, J.; et al. Therapeutic hemoglobin levels after gene transfer in beta-thalassemia mice and in hematopoietic cells of beta-thalassemia and sickle cells disease patients. PLoS ONE 2012, 7, e32345. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, A.; Cesana, D.; Genovese, P.; Di Stefano, B.; Provasi, E.; Colombo, D.F.; Neri, M.; Magnani, Z.; Cantore, A.; Lo Riso, P.; et al. Site-specific integration and tailoring of cassette design for sustainable gene transfer. Nat. Methods 2011, 8, 861–869. [Google Scholar] [CrossRef]
- Mussolino, C.; Morbitzer, R.; Lutge, F.; Dannemann, N.; Lahaye, T.; Cathomen, T. A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. 2011, 39, 9283–9293. [Google Scholar] [CrossRef]
- Parent-Massin, D.; Hymery, N.; Sibiril, Y. Stem cells in myelotoxicity. Toxicology 2010, 267, 112–117. [Google Scholar] [CrossRef]
- Mossuz, P.; Groupe d’Etudes Multicentriques des Syndrome MyéloProlifératifs (GEMSMP). Influence of the assays of endogenous colony formation and serum erythropoietin on the diagnosis of polycythemia vera and essential thrombocythemia. Semin. Thromb. Hemost. 2006, 32, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Manor, D.; Rachmilewitz, E.A.; Fibach, E. Improved method for diagnosis of polycythemia vera based on flow cytometric analysis of autonomous growth of erythroid precursors in liquid culture. Am. J. Hematol. 1997, 54, 47–52. [Google Scholar] [CrossRef]
- Fibach, E.; Rachmilewitz, E.A. Proliferation and differentiation of erythroid progenitors in liquid culture: Analysis of progenitors derived from patients with polycythemia vera. Am. J. Hematol. 1990, 35, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Spivak, J.L. Polycythemia vera. Curr. Treat Options Oncol. 2018, 19, 12. [Google Scholar] [CrossRef]
- Casadevall, N. Antibodies against rHuEPO: Native and recombinant. Nephrol. Dial. Transplant. 2002, 17 (Suppl. 5), 42–47. [Google Scholar] [CrossRef] [Green Version]
- Issaragrisil, S.; U-pratya, Y.; Yimyam, M.; Pakdeesuwan, K.; Khuhapinant, A.; Muangsup, W.; Pattanapanyasat, K. Hematopoietic progenitor cells in the blood and bone marrow in various hematologic disorders. Stem Cells 1998, 16 (Suppl. 1), 123–128. [Google Scholar] [CrossRef]
- Riegman, P.H.; Morente, M.M.; Betsou, F.; de Blasio, P.; Geary, P.; Marble Arch International Working Group on Biobanking for Biomedical Research. Biobanking for better healthcare. Mol. Oncol. 2008, 2, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, R.E. Biobanking: The foundation of personalized medicine. Curr. Opin. Oncol. 2011, 23, 112–119. [Google Scholar] [CrossRef]
- Cosenza, L.C.; Breda, L.; Breveglieri, G.; Zuccato, C.; Finotti, A.; Lampronti, I.; Borgatti, M.; Chiavilli, F.; Gamberini, M.R.; Satta, S.; et al. A validated cellular biobank for beta-thalassemia. J. Transl. Med. 2016, 14, 255. [Google Scholar] [CrossRef] [Green Version]
- Bernecker, C.; Ackermann, M.; Lachmann, N.; Rohrhofer, L.; Zaehres, H.; Arauzo-Bravo, M.J.; van den Akker, E.; Schlenke, P.; Dorn, I. Enhanced ex vivo generation of erythroid cells from human induced pluripotent stem cells in a simplified cell culture system with low cytokine support. Stem Cells Dev. 2019. [Google Scholar] [CrossRef] [Green Version]
- Weatherall, D.J. Mechanisms for the heterogeneity of the thalassemias. Int. J. Pediatr. Hematol. Oncol. 1997, 4, 3–10. [Google Scholar]
- Noguchi, C.T.; Rodgers, G.P.; Serjeant, G.; Schechter, A.N. Levels of fetal hemoglobin necessary for treatment of sickle cell disease. N. Engl. J. Med. 1988, 318, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Sripichai, O.; Fucharoen, S. Fetal hemoglobin regulation in beta-thalassemia: Heterogeneity, modifiers and therapeutic approaches. Expert Rev. Hematol. 2016, 9, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Dalyot, N.; Fibach, E.; Rachmilewitz, E.A.; Oppenheim, A. Adult and neonatal patterns of human globin gene expression are recapitulated in liquid cultures. Exp. Hematol. 1992, 20, 1141–1145. [Google Scholar] [PubMed]
- Fibach, E.; Burke, L.P.; Schechter, A.N.; Noguchi, C.T.; Rodgers, G.P. Hydroxyurea increases fetal hemoglobin in cultured erythroid cells derived from normal individuals and patients with sickle cell anemia or beta-thalassemia. Blood 1993, 81, 1630–1635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fibach, E. Techniques for studying stimulation of fetal hemoglobin production in human erythroid cultures. Hemoglobin 1998, 22, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Gambari, R.; Fibach, E. Medicinal chemistry of fetal hemoglobin inducers for treatment of beta-thalassemia. Curr. Med. Chem. 2007, 14, 199–212. [Google Scholar] [CrossRef]
- Algiraigri, A.H.; Wright, N.A.M.; Paolucci, E.O.; Kassam, A. Hydroxyurea for lifelong transfusion-dependent beta-thalassemia: A meta-analysis. Pediatr. Hematol. Oncol. 2017, 34, 435–448. [Google Scholar] [CrossRef]
- Smith, E.C.; Orkin, S.H. Hemoglobin genetics: Recent contributions of GWAS and gene editing. Hum. Mol. Genet. 2016, 25, R99–R105. [Google Scholar] [CrossRef]
- Wilber, A.; Hargrove, P.W.; Kim, Y.S.; Riberdy, J.M.; Sankaran, V.G.; Papanikolaou, E.; Georgomanoli, M.; Anagnou, N.P.; Orkin, S.H.; Nienhuis, A.W.; et al. Therapeutic levels of fetal hemoglobin in erythroid progeny of beta-thalassemic CD34(+) cells after lentiviral vector-mediated gene transfer. Blood 2011, 117, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Auvinen, M.K.; Rautonen, J. The aging population poses a global challenge for blood services. Transfusion 2010, 50, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Matteocci, A.; Pierelli, L. Red blood cell alloimmunization in sickle cell disease and in thalassaemia: Current status, future perspectives and potential role of molecular typing. Vox Sang. 2014, 106, 197–208. [Google Scholar] [CrossRef] [PubMed]
- Reesink, H.W.; Engelfriet, C.P.; Schennach, H.; Gassner, C.; Wendel, S.; Fontao-Wendel, R.; de Brito, M.A.; Sistonen, P.; Matilainen, J.; Peyrard, T.; et al. Donors with a rare pheno (geno) type. Vox Sang. 2008, 95, 236–253. [Google Scholar] [CrossRef] [PubMed]
- Alter, H.J.; Klein, H.G. The hazards of blood transfusion in historical perspective. Blood 2008, 112, 2617–2626. [Google Scholar] [CrossRef] [Green Version]
- Shyamala, V. Transfusion transmitted infections in thalassaemics: Need for reappraisal of blood screening strategy in India. Transfus. Med. 2014, 24, 79–88. [Google Scholar] [CrossRef]
- Nakamura, S.; Takayama, N.; Nakauchi, H.; Eto, K. Platelet production system using an immortalized magakaryoctic cell line derived from human pluripotent stem cells. Blood 2011, 118, 1820. [Google Scholar] [CrossRef]
- Nakamura, Y.; Hiroyama, T.; Miharada, K.; Kurita, R. Red blood cell production from immortalized progenitor cell line. Int. J. Hematol. 2011, 93, 5–9. [Google Scholar] [CrossRef]
- Ono, Y.; Wang, Y.; Suzuki, H.; Okamoto, S.; Ikeda, Y.; Murata, M.; Poncz, M.; Matsubara, Y. Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 2012, 120, 3812–3821. [Google Scholar] [CrossRef] [Green Version]
- England, S.J.; McGrath, K.E.; Frame, J.M.; Palis, J. Immature erythroblasts with extensive ex vivo self-renewal capacity emerge from the early mammalian fetus. Blood 2011, 117, 2708–2717. [Google Scholar] [CrossRef] [Green Version]
- Wada, H.; Suda, T.; Miura, Y.; Kajii, E.; Ikemoto, S.; Yawata, Y. Expression of major blood group antigens on human erythroid cells in a two phase liquid culture system. Blood 1990, 75, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Varricchio, L.; Fabucci, M.E.; Alfani, E.; Godbold, J.; Migliaccio, A.R. Compensated variability in the expression of globin-related genes in erythroblasts generated ex vivo from different donors. Transfusion 2010, 50, 672–684. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, C.O.; Duarte, A.S.; Saad, S.T.; Costa, F.F. Expression of alpha-hemoglobin stabilizing protein gene during human erythropoiesis. Exp. Hematol. 2004, 32, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Migliaccio, A.R. Erythroblast enucleation. Haematologica 2010, 95, 1985–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chasis, J.A.; Mohandas, N. Erythroblastic islands: Niches for erythropoiesis. Blood 2008, 112, 470–478. [Google Scholar] [CrossRef] [Green Version]
- Yeo, J.H.; Lam, Y.W.; Fraser, S.T. Cellular dynamics of mammalian red blood cell production in the erythroblastic island niche. Biophys. Rev. 2019, 11, 873–894. [Google Scholar] [CrossRef]
- Ubukawa, K.; Guo, Y.M.; Takahashi, M.; Hirokawa, M.; Michishita, Y.; Nara, M.; Tagawa, H.; Takahashi, N.; Komatsuda, A.; Nunomura, W.; et al. Enucleation of human erythroblasts involves non-muscle myosin IIB. Blood 2012, 119, 1036–1044. [Google Scholar] [CrossRef] [Green Version]
- Keerthivasan, G.; Small, S.; Liu, H.; Wickrema, A.; Crispino, J.D. Vesicle trafficking plays a novel role in erythroblast enucleation. Blood 2010, 116, 3331–3340. [Google Scholar] [CrossRef] [Green Version]
- Ji, P.; Yeh, V.; Ramirez, T.; Murata-Hori, M.; Lodish, H.F. Histone deacetylase 2 is required for chromatin condensation and subsequent enucleation of cultured mouse fetal erythroblasts. Haematologica 2010, 95, 2013–2021. [Google Scholar] [CrossRef] [Green Version]
- Li, L.B.; Leung, D.Y.; Martin, R.J.; Goleva, E. Inhibition of histone deacetylase 2 expression by elevated glucocorticoid receptor beta in steroid-resistant asthma. Am. J. Respir. Crit. Care Med. 2010, 182, 877–883. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, G.; Sanchez, M.; Masiello, F.; Tirelli, V.; Varricchio, L.; Whitsett, C.; Migliaccio, A.R. Humanized culture medium for clinical expansion of human erythroblasts. Cell Transplant. 2010, 19, 453–469. [Google Scholar] [CrossRef] [Green Version]
- Neildez-Nguyen, T.M.; Wajcman, H.; Marden, M.C.; Bensidhoum, M.; Moncollin, V.; Giarratana, M.C.; Kobari, L.; Thierry, D.; Douay, L. Human erythroid cells produced ex vivo at large scale differentiate into red blood cells in vivo. Nat. Biotechnol. 2002, 20, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Hiroyama, T.; Miharada, K.; Sudo, K.; Danjo, I.; Aoki, N.; Nakamura, Y. Establishment of mouse embryonic stem cell-derived erythroid progenitor cell lines able to produce functional red blood cells. PLoS ONE 2008, 3, e1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatoyannopoulos, G.; Schroeder, W.A.; Huisman, T.H.; Shelton, J.R.; Shelton, J.B.; Apell, G.; Bouver, N. Nature of foetal haemoglobin in F-thalassaemia. Br. J. Haematol. 1971, 21, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Weatherall, D.J.; Clegg, J.B. Hereditary persistence of fetal haemoglobin. Br. J. Haematol. 1975, 29, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Giarratana, M.C.; Rouard, H.; Dumont, A.; Kiger, L.; Safeukui, I.; Le Pennec, P.Y.; François, S.; Trugnan, G.; Peyrard, T.; Marie, T.; et al. Proof of principle for transfusion of in vitro-generated red blood cells. Blood 2011, 118, 5071–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fibach, E. Erythropoiesis In Vitro—A Research and Therapeutic Tool in Thalassemia. J. Clin. Med. 2019, 8, 2124. https://doi.org/10.3390/jcm8122124
Fibach E. Erythropoiesis In Vitro—A Research and Therapeutic Tool in Thalassemia. Journal of Clinical Medicine. 2019; 8(12):2124. https://doi.org/10.3390/jcm8122124
Chicago/Turabian StyleFibach, Eitan. 2019. "Erythropoiesis In Vitro—A Research and Therapeutic Tool in Thalassemia" Journal of Clinical Medicine 8, no. 12: 2124. https://doi.org/10.3390/jcm8122124
APA StyleFibach, E. (2019). Erythropoiesis In Vitro—A Research and Therapeutic Tool in Thalassemia. Journal of Clinical Medicine, 8(12), 2124. https://doi.org/10.3390/jcm8122124