Clinical Impact of Empiric Ceftriaxone for Hospitalized Patients with Community-Onset Healthcare-Associated UTIs
Abstract
1. Introduction
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mengistu, D.A.; Alemu, A.; Abdukadir, A.A.; Mohammed Husen, A.; Ahmed, F.; Mohammed, B. Incidence of Urinary Tract Infection Among Patients: Systematic Review and Meta-Analysis. Inquiry 2023, 60, 469580231168746. [Google Scholar] [CrossRef]
- Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef]
- Carcamo, P.; Walter, E.; Frei, C.R.; Yang, L.; Cadena, J.; Hopkins, T. A comparison of empiric therapy with cefazolin versus ceftriaxone for patients with complicated urinary tract infections in a tertiary care veterans affairs medical center. BMC Infect. Dis. 2025, 25, 302. [Google Scholar] [CrossRef]
- Gomez-Zorrilla, S.; Becerra-Aparicio, F.; Sendra, E.; Zamorano, L.; Grau, I.; Pintado, V.; Padilla, B.; Benito, N.; Boix-Palop, L.; Farinas, M.C.; et al. Risk factors and clinical impact of multidrug resistance in healthcare-associated bacteraemic urinary tract infections: A post-hoc analysis of a multicentre prospective cohort in Spain. J. Hosp. Infect. 2024, 151, 173–185. [Google Scholar] [CrossRef]
- Zilberberg, M.D.; Nathanson, B.H.; Sulham, K.; Shorr, A.F. Multiple antimicrobial resistance and outcomes among hospitalized patients with complicated urinary tract infections in the US, 2013–2018: A retrospective cohort study. BMC Infect. Dis. 2021, 21, 159. [Google Scholar] [CrossRef]
- Madrazo, M.; Esparcia, A.; Alberola, J.; Ferrer, A.; Eiros, J.M.; Nogueira, J.M.; Artero, A. Predictive factors for Enterococcus faecalis in complicated community-acquired urinary tract infections in older patients. Geriatr. Gerontol. Int. 2020, 20, 183–186. [Google Scholar] [CrossRef]
- Zhanel, G.G.; DeCorby, M.; Adam, H.; Mulvey, M.R.; McCracken, M.; Lagace-Wiens, P.; Nichol, K.A.; Wierzbowski, A.; Baudry, P.J.; Tailor, F.; et al. Prevalence of antimicrobial-resistant pathogens in Canadian hospitals: Results of the Canadian Ward Surveillance Study (CANWARD 2008). Antimicrob. Agents Chemother. 2010, 54, 4684–4693. [Google Scholar] [CrossRef]
- Horcajada, J.P.; Shaw, E.; Padilla, B.; Pintado, V.; Calbo, E.; Benito, N.; Gamallo, R.; Gozalo, M.; Rodriguez-Bano, J.; ITUBRAS Group; et al. Healthcare-associated, community-acquired and hospital-acquired bacteraemic urinary tract infections in hospitalized patients: A prospective multicentre cohort study in the era of antimicrobial resistance. Clin. Microbiol. Infect. 2013, 19, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Friedman, D.; Kaye, K.; Stout, J.; McGarry, S.; Trivette, S.; Briggs, J.; Lamm, W.; Clark, C.; MacFaquhar, J.; Walton, A.; et al. Health care-associated bloodstream infections in adults: A reason to change the accepted definition of community-acquired infections. Ann. Intern. Med. 2002, 137, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Madrazo, M. Aplicación de Los Criterios de Sepsis-3 En La Infección Urinaria. Ph.D. Thesis, University of València, València, Spain, 2020. [Google Scholar]
- Shimoni, Z.; Salama, H.; Finn, T.; Froom, P. Is It Safe to Treat Stable Patients with Bacteremic Urinary Tract Infections with High-Resistant-Rate Antibiotics? Diagnostics 2024, 14, 1620. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Charlson, M.; Szatrowski, T.; Peterson, J.; Gold, J. Validation of a combined comorbidity index. J. Clin. Epidemiol. 1994, 47, 1245–1251. [Google Scholar] [CrossRef] [PubMed]
- Knaus, W.; Draper, E.; Wagner, D.; Zimmerman, J. APACHE II. A severity of disease classification system. Crit. Care Med. 1985, 13, 818–829. [Google Scholar] [CrossRef]
- Artero, A.; Esparcia, A.; Eiros, J.M.; Madrazo, M.; Alberola, J.; Nogueira, J.M. Effect of Bacteremia in Elderly Patients with Urinary Tract Infection. Am. J. Med. Sci. 2016, 352, 267–271. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drut-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Trautner, B.W.; Cortés-Penfield, N.W.; Gupta, K.; Hirsch, E.B.; Horstman, M.; Moran, G.J.; Colgan, R.; O’Horo, J.C.; Ashraf, M.S.; Connolly, S.; et al. 2025 Guideline on Management and Treatment of Complicated Urinary Tract Infections: Selection of Antibiotic Therapy for Complicated UTI; IDSA, Ed.; Infectious Diseases Society of America: Arlington, TX, USA, 2025. [Google Scholar]
- Mark, D.G.; Hung, Y.Y.; Salim, Z.; Tarlton, N.J.; Torres, E.; Frazee, B.W. Third-Generation Cephalosporin Resistance and Associated Discordant Antibiotic Treatment in Emergency Department Febrile Urinary Tract Infections. Ann. Emerg. Med. 2021, 78, 357–369. [Google Scholar] [CrossRef]
- Kadri, S.S.; Lai, Y.L.; Warner, S.; Strich, J.R.; Babiker, A.; Ricotta, E.E.; Demirkale, C.Y.; Dekker, J.P.; Palmore, T.N.; Rhee, C.; et al. Inappropriate empirical antibiotic therapy for bloodstream infections based on discordant in-vitro susceptibilities: A retrospective cohort analysis of prevalence, predictors, and mortality risk in US hospitals. Lancet Infect. Dis. 2021, 21, 241–251. [Google Scholar] [CrossRef]
- Greenhouse, I.; Babushkin, F.; Finn, T.; Shimoni, Z.; Aliman, M.; Ben-Ami, R.; Cohen, R. Long-term outcomes of inappropriate antibiotic therapy for upper urinary tract infections caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae: A retrospective cohort study. Diagn. Microbiol. Infect. Dis. 2017, 89, 222–229. [Google Scholar] [CrossRef]
- Eliakim-Raz, N.; Babitch, T.; Shaw, E.; Addy, I.; Wiegand, I.; Vank, C.; Torre-Vallejo, L.; Joan-Miquel, V.; Steve, M.; Grier, S.; et al. Risk Factors for Treatment Failure and Mortality Among Hospitalized Patients with Complicated Urinary Tract Infection: A Multicenter Retrospective Cohort Study (RESCUING Study Group). Clin. Infect. Dis. 2019, 68, 29–36. [Google Scholar] [CrossRef]
- Kayaaslan, B.; Oktay, Z.; Hasanoglu, I.; Kalem, A.K.; Eser, F.; Ayhan, M.; Guner, R. Increasing rates of extended-spectrum B-lactamase-producing Escherichia coli and Klebsiella pneumoniae in uncomplicated and complicated acute pyelonephritis and evaluation of empirical treatments based on culture results. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 421–430. [Google Scholar] [CrossRef]
- Nocua-Báez, L.C.; Reyes, P.; Cortes, J.A. Effect of inadequate treatment in adult patients with community-acquired acute pyelonephritis due to Enterobacterales under empirical management with cefazolin. Antibiotics 2025, 14, 197. [Google Scholar] [CrossRef]
- Bosch-Nicolau, P.; Falcó, V.; Viñado, B.; Andreu, A.; Len, O.; Almirante, B.; Pigrau, C. A Cohort Study of Risk Factors That Influence Empirical Treatment of Patients with Acute Pyelonephritis. Antimicrob. Agents Chemother. 2017, 61, e01317-17. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Cortes, L.E.; Delgado-Valverde, M.; Moreno-Mellado, E.; Goikoetxea Aguirre, J.; Guio Carrion, L.; Blanco Vidal, M.J.; Lopez Soria, L.M.; Perez-Rodriguez, M.T.; Martinez Lamas, L.; Arnaiz de Las Revillas, F.; et al. Efficacy and safety of a structured de-escalation from antipseudomonal beta-lactams in bloodstream infections due to Enterobacterales (SIMPLIFY): An open-label, multicentre, randomised trial. Lancet Infect. Dis. 2024, 24, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.C.; Wang, J.L.; Lee, C.H.; Hung, Y.P.; Hong, M.Y.; Tang, H.J.; Ko, W.C. Clinical benefits of antimicrobial de-escalation in adults with community-onset monomicrobial Escherichia coli, Klebsiella species and Proteus mirabilis bacteremia. Int. J. Antimicrob. Agents 2017, 50, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Gomez, J.; Perez-Nadales, E.; Gutierrez-Gutierrez, B.; Machuca, I.; Martinez-Martinez, L.; Rivera, F.; Cano, A.; Caston, J.J.; Robles, J.C.; de la Fuente, C.; et al. Prognosis of urinary tract infection caused by KPC-producing Klebsiella pneumoniae: The impact of inappropriate empirical treatment. J. Infect. 2019, 79, 245–252. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Y.; Hang, Y.; Luo, H.; Fang, X.; Xiao, Y.; Cao, X.; Zou, S.; Hu, X.; Hu, L.; et al. Impact of inappropriate empirical antibiotic treatment on clinical outcomes of urinary tract infections caused by Escherichia coli: A retrospective cohort study. J. Glob. Antimicrob. Resist. 2021, 26, 148–153. [Google Scholar] [CrossRef]
- Anderson, D.T.; Albrecht, B.; Jones, K.A.; Jacob, J.T.; Sexton, M.E.; Wiley, Z.; Dube, W.C.; Lee, B.; Suchindran, S. Efficacy of Noncarbapenem β-Lactams Compared to Carbapenems for Extended-Spectrum β-Lactamase–Producing Enterobacterales Urinary Tract Infections. Open Forum Infect. Dis. 2022, 9, ofac034. [Google Scholar] [CrossRef]
- Stapleton, A.E.; Wagenlehner, F.M.E.; Mulgirigama, A.; Twynholm, M. Escherichia coli Resistance to Fluoroquinolones in Community-Acquired Uncomplicated Urinary Tract Infection in Women: A Systematic Review. Antimicrob. Agents Chemother. 2020, 64, e00862-20. [Google Scholar] [CrossRef]
- Sastre-Femenia, M.A.; Fernandez-Munoz, A.; Gomis-Font, M.A.; Taltavull, B.; Lopez-Causape, C.; Arca-Suarez, J.; Martinez-Martinez, L.; Canton, R.; Larrosa, N.; Oteo-Iglesias, J.; et al. Pseudomonas aeruginosa antibiotic susceptibility profiles, genomic epidemiology and resistance mechanisms: A nation-wide five-year time lapse analysis. Lancet Reg. Health Eur. 2023, 34, 100736. [Google Scholar] [CrossRef]
- Serwacki, P.; Gajda, M.; Swiatek-Kwapniewska, W.; Walaszek, M.; Nowak, K.; Wojkowska-Mach, J. Re-evaluating the suitability of using fluoroquinolones in the treatment of infections in the context of FQ consumption and correlating changes to microorganism resistance levels in EU/EEA countries between 2016 and 2021. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 397, 795–805. [Google Scholar] [CrossRef]
- Lopez, M.; Cercenado, E.; Tenorio, C.; Ruiz-Larrea, F.; Torres, C. Diversity of clones and genotypes among vancomycin-resistant clinical Enterococcus isolates recovered in a Spanish hospital. Microb. Drug Resist. 2012, 18, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Lucas, C.; Fernandez, J.; Raya, C.; Bahamonde, A.; Quiroga, A.; Munoz, R.; Rodicio, M.R. Establishment and Persistence of Glycopeptide-Resistant Enterococcus faecium ST80 and ST117 Clones Within a Health Care Facility Located in a Low-Prevalence Geographical Region. Microb. Drug Resist. 2022, 28, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Malmros, K.; Huttner, B.D.; McNulty, C.; Rodriguez-Bano, J.; Pulcini, C.; Tangden, T.; Group, E.U.W. Comparison of antibiotic treatment guidelines for urinary tract infections in 15 European countries: Results of an online survey. Int. J. Antimicrob. Agents 2019, 54, 478–486. [Google Scholar] [CrossRef] [PubMed]


| Total N 235 | EAT Ceftriaxone N 118 (50.2) | EAT Non-Ceftriaone N 117 (49.8) | p | |
|---|---|---|---|---|
| Female sex, n (%) | 111 (47.2) | 60 (50.8) | 51 (43.6) | 0.265 |
| Age (years), median [IQR] | 79 [72–86] | 80 [73–88] | 79 [72–85] | 0.149 |
| Charlson Index ≥ 3, n (%) | 217 (92.3) | 107 (90.7) | 110 (94) | 0.336 |
| Barthel < 40, n (%) | 95 (40.4) | 52 (44.1) | 43 (36.8) | 0.253 |
| Comorbidities | ||||
| Dementia, n (%) | 79 (33.6) | 48 (40.7) | 31 (26.5) | 0.021 |
| Diabetes mellitus, n (%) | 80 (34) | 42 (35.6) | 38 (32.5) | 0.614 |
| COPD, n (%) | 42 (17.9) | 21 (17.8) | 21 (18.1) | 0.951 |
| CKD, n (%) | 77 (33) | 40 (34.2) | 37 (31.9) | 0.710 |
| Cancer, n (%) | 57 (24.3) | 27 (22.9) | 30 (25.6) | 0.622 |
| Clinical characteristics | ||||
| APACHE II, median [IQR] | 11 [8–15] | 11 [7–14] | 11 [8–15] | 0.258 |
| APN, n (%) | 161 (68.5) | 79 (66.9) | 82 (70.1) | 0.605 |
| Altered mental status, n (%) | 95 (40.4) | 45 (38.1) | 50 (42.7) | 0.473 |
| RR ≥ 22 bpm, n (%) | 41 (17.4) | 19 (16.1) | 22 (18.8) | 0.585 |
| qSOFA ≥ 2, n (%) | 44 (18.7) | 20 (16.9) | 24 (20.5) | 0.484 |
| Sepsis (SOFA ≥ 2), n (%) | 84 (35.7) | 38 (32.2) | 46 (39.3) | 0.255 |
| Urinary catheter, n (%) | 65 (27.7) | 29 (24.6) | 36 (30.8) | 0.289 |
| Albumin, median [IQR] | 3.3 [3–3.6] | 3.3 [3–3.6] | 3.3 [2.9–3.7] | 0.787 |
| White blood cell count × 109/L, median [IQR] | 12,850 [8900–17,075] | 13,000 [9100–17,600] | 12,500 [8600–16,000] | 0.455 |
| Bacteremia: Positive BC/Total BC (%) | 47/128 (36.7) | 20/56 (35.7) | 27/72 (37.5) | 0.982 |
| Polymicrobial UTI, n (%) | 17 (7.2) | 6 (5.1) | 11 (9.4) | 0.201 |
| IEAT, n (%) | 63 (26.8) | 43 (36.4) | 20 (17.1) | 0.001 |
| Antimicrobial changes in the first 24–48 h, n (%) | 108 (45.9) | 62 (52.5) | 46 (39.3) | 0.057 |
| Scalation | 80 (34) | 51 (43.2) | 29 (24.8) | 0.045 |
| De-escalation | 28 (11.9) | 11 (9.3) | 17 (14.5) | 0.303 |
| No changes | 127 (54) | 56 (47.5) | 71 (60.7) | 0.057 |
| Total N 253 | EAT Ceftriaxone N 124 (49.1) | EAT Non-Ceftriaxone N 129 (50.9) | p | |
|---|---|---|---|---|
| Gram-negative bacteria | ||||
| Escherichia coli | 133(52.6) | 70 (56.5) | 63 (48.8) | 0.277 |
| Klebsiella pneumoniae | 36 (14.2) | 17 (13.7) | 19 (14.7) | 0.959 |
| Klebsiella oxytoca | 8 (3.2) | 4 (3.2) | 4 (3.1) | 0.762 |
| Proteus mirabilis | 6 (2.4) | 3 (2.4) | 3 (2.3) | 0.716 |
| Pseudomonas aeruginosa | 23 (9.1) | 8 (6.5) | 15 (11.6) | 0.225 |
| Other Gram-negative bacteria | 22 (8.7) | 9 (7.3) | 13 (10.1) | 0.567 |
| Gram-positive bacteria | ||||
| Enterococcus faecalis | 20 (7.9) | 10 (8.1) | 10 (7.8) | 0.888 |
| Enterococcus faecium | 3 (1.2) | 2 (1.6) | 1 (0.7) | 0.973 |
| Enterococcus gallinarum | 2 (0.8) | 1 (0.8) | 1 (0.7) | 0.495 |
| Total N 253 | EAT Ceftriaxone N 124 | EAT Non-Ceftriaxone N 129 | p | |
|---|---|---|---|---|
| MDRB, N (%) | 108 (42.7) | 49 (39.5) | 59 (45.7) | 0.171 |
| ESBL-E, N (%) | 45 (17.8) | 20 (16.1) | 25 (19.4) | 0.389 |
| Resistant/tested (%) | ||||
| Ampicillin | 185/235 (78.7) | 91/118 (77.12) | 94/117 (80.34) | 0.657 |
| Amoxicillin-clavulanate | 43/210 (20.5) | 17/105 (16.2) | 26/105 (24.8) | 0.171 |
| Piperacillin-tazobactam | 3/225 (1.3) | 0/111 (0) | 3/114 (2.6) | 0.255 |
| Cephazolin | 77/204 (37.7) | 31/103 (30.1) | 46/101 (45.6) | 0.053 |
| Ceftriaxone | 61/205 (29.8) | 28/103 (27.2) | 33/102 (32.4) | 0.512 |
| Ceftazidime | 52/227 (22.9) | 24/111 (21.6) | 28/116 (24.1) | 0.769 |
| Ertapenem | 5/204 (2.5) | 2/102 (1.9) | 3/102 (2.9) | 1 |
| Meropenem | 4/225 (1.8) | 1/110 (0.9) | 3/115 (2.6) | 0.646 |
| Gentamicin | 57/252 (22.6) | 26/124 (20.9) | 31/128 (24.2) | 0.641 |
| Ciprofloxacin | 118/253 (46.6) | 57/124 (45.9) | 61/129 (47.3) | 0.933 |
| Trimethoprim/sulfamethoxazole | 101/229 (44.1) | 40/112 (35.7) | 61/117 (52.1) | 0.057 |
| Fosfomycin | 30/219 (13.7) | 13/109 (11.9) | 17/110 (15.5) | 0.573 |
| Vancomycin | 1/33 (3) | 0/14 (0) | 1/19 (5.3) | 0.876 |
| Univariate p | Multivariate p | OR (95% CI) | AUC (95% CI) | |
|---|---|---|---|---|
| 30-day mortality * | ||||
| Ceftriaxone | 0.694 | 0.752 | 1.17 (0.49–3.04) | 0.480 (0.362–0.597) |
| IEAT | 0.923 | 0.898 | 0.93 (0.33–2.68) | 0.504 (0.396–0.612) |
| Age ≥ 80 years | 0.001 | 0.109 | 2.52 (0.82–7.77) | 0.341 (0.245–0.437) |
| Barthel ≤ 40 | <0.001 | 0.146 | 2.33 (0.75–7.25) | 0.332 (0.233–0.431) |
| Dementia | 0.002 | 0.248 | 1.85 (0.65–5.25) | 0.359 (0.252–0.466) |
| Diabetes | 0.013 | 0.066 | 2.35 (0.94–5.87) | 0.388 (0.280–0.495) |
| qSOFA ≥ 2 | <0.001 | 0.001 | 4.92 (1.86–12.98) | 0.717 (0.622–0.813) |
| SOFA ≥ 2 | <0.001 | - | - | - |
| Readmission * | ||||
| Ceftriaxone | 0.880 | 0.709 | 1.15 (0.55–2.43) | 0.493 (0.392–0.595) |
| IEAT | 0.733 | 0.249 | 0.59 (0.24–1.44) | 0.496 (0.388–0.604) |
| Barthel ≤ 40 | 0.023 | 0.007 | 2.84 (1.33–6.04) | 0.668 (0.569–0.767) |
| CKD | 0.047 | 0.059 | 0.44 (0.18–1.03) | 0.535 (0.424–0.647) |
| Urinary catheter | 0.042 | 0.068 | 2.06 (0.95–4.47) | 0.464 (0.359–0.568) |
| Length of Stay ** | Univariate p | Multivariate p | IRR (expβ) (95% CI) | |
| Ceftriaxone | 0.019 | 0.037 | 0.87 (0.67–0.94) | |
| IEAT | 0.141 | 0.187 | 1.23 (0.90–1.67) | |
| Charlson ≥ 3 | 0.008 | 0.219 | 1.32 (0.85–2.06) | |
| Age ≥ 80 years | 0.039 | 0.759 | 1.06 (0.75–1.50) | |
| Barthel ≤ 40 | 0.011 | 0.040 | 1.37 (1.01–1.86) | |
| Dementia | 0.039 | - | - | |
| qSOFA ≥ 2 | 0.002 | 0.169 | 1.27 (0.90–1.78) | |
| SOFA ≥ 2 | <0.001 | - | - | |
| ESBL-Enterobacterales | 0.049 | 0.409 | 1.14 (0.83–1.54) | |
| Change of antimicrobials in the first 24–48 h | 0.005 | 0.391 | 1.12 (0.86–1.45) | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Madrazo, M.; López-Cruz, I.; Piles, L.; Civera, M.; Eiros, J.M.; Alberola, J.; Artero, A. Clinical Impact of Empiric Ceftriaxone for Hospitalized Patients with Community-Onset Healthcare-Associated UTIs. J. Clin. Med. 2025, 14, 8761. https://doi.org/10.3390/jcm14248761
Madrazo M, López-Cruz I, Piles L, Civera M, Eiros JM, Alberola J, Artero A. Clinical Impact of Empiric Ceftriaxone for Hospitalized Patients with Community-Onset Healthcare-Associated UTIs. Journal of Clinical Medicine. 2025; 14(24):8761. https://doi.org/10.3390/jcm14248761
Chicago/Turabian StyleMadrazo, Manuel, Ian López-Cruz, Laura Piles, María Civera, José María Eiros, Juan Alberola, and Arturo Artero. 2025. "Clinical Impact of Empiric Ceftriaxone for Hospitalized Patients with Community-Onset Healthcare-Associated UTIs" Journal of Clinical Medicine 14, no. 24: 8761. https://doi.org/10.3390/jcm14248761
APA StyleMadrazo, M., López-Cruz, I., Piles, L., Civera, M., Eiros, J. M., Alberola, J., & Artero, A. (2025). Clinical Impact of Empiric Ceftriaxone for Hospitalized Patients with Community-Onset Healthcare-Associated UTIs. Journal of Clinical Medicine, 14(24), 8761. https://doi.org/10.3390/jcm14248761

