Development of a Deep Learning Model for Hip Arthroplasty Templating Using Anteroposterior Hip Radiograph
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. DL Model Performance
3.2. Validation Phase
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HA | Hip Arthroplasty |
| DL | Deep Learning |
| AP | Anteroposterior |
| MAE | Mean Absolute Error |
| RMSE | Root Mean Square Error |
| AI | Artificial Intelligence |
| THA | Total Hip Arthroplasty |
| CT | Computed Tomography |
| DDH | Developmental Dysplasia of the Hip |
| BMI | Body Mass Index |
| CNN | Convolutional Neural Network |
| LOOCV | Leave-One-Out Cross-Validation |
| PACS | Picture Archiving and Communication System |
| ICC | Intraclass correlation coefficient |
| CI | Confidence Interval |
| ON | Osteonecrosis |
| OA | Osteoarthritis |
| OR | Odd Ratio |
| ML | Machine Learning |
References
- Alnahhal, A.; Aslam-Pervez, N.; Sheikh, H.Q. Templating Hip Arthroplasty. Open Access Maced. J. Med. Sci. 2019, 7, 672–685. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, L.E.; Culliford, D.; Monk, A.P.; Glyn-Jones, S.; Prieto-Alhambra, D.; Judge, A.; Cooper, C.; Carr, A.J.; Arden, N.K.; Beard, D.J.; et al. The effect of patient age at intervention on risk of implant revision after total replacement of the hip or knee: A population-based cohort study. Lancet 2017, 389, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Kamath, A.F.; Austin, D.C.; Derman, P.B.; Israelite, C.L. Unplanned hip arthroplasty imposes clinical and cost burdens on treating institutions. Clin. Orthop. Relat. Res. 2013, 471, 4012–4019. [Google Scholar] [CrossRef] [PubMed]
- Berhouet, J.; Samargandi, R. Emerging Innovations in Preoperative Planning and Motion Analysis in Orthopedic Surgery. Diagnostics 2024, 14, 1321. [Google Scholar] [CrossRef]
- Sinclair, V.F.; Wilson, J.; Jain, N.P.; Knowles, D. Assessment of accuracy of marker ball placement in pre-operative templating for total hip arthroplasty. J. Arthroplasty 2014, 29, 1658–1660. [Google Scholar] [CrossRef]
- Dragosloveanu, S.; Petre, M.-A.; Gherghe, M.E.; Nedelea, D.-G.; Scheau, C.; Cergan, R. Overall Accuracy of Radiological Digital Planning for Total Hip Arthroplasty in a Specialized Orthopaedics Hospital. J. Clin. Med. 2023, 12, 4503. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, B.; Li, W.; Huo, J.; Liu, S.; Wu, T.; Han, Y. Value of preoperative three-dimensional planning software (AI-HIP) in primary total hip arthroplasty: A retrospective study. J. Int. Med. Res. 2021, 49, 3000605211058874. [Google Scholar] [CrossRef]
- Gamble, P.; de Beer, J.; Petruccelli, D.; Winemaker, M. The accuracy of digital templating in uncemented total hip arthroplasty. J. Arthroplasty 2010, 25, 529–532. [Google Scholar] [CrossRef]
- Mirghaderi, S.P.; Sharifpour, S.; Moharrami, A.; Ahmadi, N.; Makuku, R.; Salimi, M.; Mortazavi, S.M.J. Determining the accuracy of preoperative total hip replacement 2D templating using the mediCAD((R)) software. J. Orthop. Surg. Res. 2022, 17, 222. [Google Scholar] [CrossRef]
- Shin, J.K.; Son, S.M.; Kim, T.W.; Shin, W.C.; Lee, J.S.; Suh, K.T. Accuracy and Reliability of Preoperative On-screen Templating Using Digital Radiographs for Total Hip Arthroplasty. Hip Pelvis 2016, 28, 201–207. [Google Scholar] [CrossRef]
- Hill, B.G.; Krogue, J.D.; Jevsevar, D.S.; Schilling, P.L. Deep Learning and Imaging for the Orthopaedic Surgeon: How Machines “Read” Radiographs. J. Bone Joint Surg. Am. 2022, 104, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Karnuta, J.M.; Haeberle, H.S.; Luu, B.C.; Roth, A.L.; Molloy, R.M.; Nystrom, L.M.; Piuzzi, N.S.; Schaffer, J.L.; Chen, A.F.; Iorio, R.; et al. Artificial Intelligence to Identify Arthroplasty Implants From Radiographs of the Hip. J. Arthroplasty 2021, 36, S290–S294.e1. [Google Scholar] [CrossRef] [PubMed]
- Mozafari, J.K.; Moshtaghioon, S.A.; Mahdavi, S.M.; Ghaznavi, A.; Behjat, M.; Yeganeh, A. The role of artificial intelligence in preoperative planning for Total Hip Arthroplasty: A systematic review. Front. Artif. Intell. 2024, 7, 1417729. [Google Scholar] [CrossRef] [PubMed]
- Gurung, B.; Liu, P.; Harris, P.D.R.; Sagi, A.; Field, R.E.; Sochart, D.H.; Tucker, K.; Asopa, V. Artificial intelligence for image analysis in total hip and total knee arthroplasty: A scoping review. Bone Joint J. 2022, 104-B, 929–937. [Google Scholar] [CrossRef]
- Rouzrokh, P.; Wyles, C.C.; Kurian, S.J.; Ramazanian, T.; Cai, J.C.; Huang, Q.; Zhang, K.; Taunton, M.J.; Kremers, H.M.; Erickson, B.J. Deep Learning for Radiographic Measurement of Femoral Component Subsidence Following Total Hip Arthroplasty. Radiol. Artif. Intell. 2022, 4, e210206. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Wang, Y.; Ma, R.; Zhu, S.; Li, S.; Li, S.; Dong, X.; Li, H.; Wang, G.; et al. Development and Validation of an Artificial Intelligence Preoperative Planning System for Total Hip Arthroplasty. Front. Med. 2022, 9, 841202. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, X.; Lu, Z.-D.; Yang, Y.; Ma, L.; Li, P. Accuracy analysis of artificial intelligence-assisted three-dimensional preoperative planning in total hip replacement. Jt. Dis. Relat. Surg. 2023, 34, 537–547. [Google Scholar] [CrossRef]
- Zhang, B.; Li, W.; Li, M.; Ding, X.; Huo, J.; Wu, T.; Han, Y. The role of 3-dimensional preoperative planning for primary total hip arthroplasty based on artificial intelligence technology to different surgeons: A retrospective cohort study. Medicine 2023, 102, e34113. [Google Scholar] [CrossRef]
- Huo, J.; Huang, G.; Han, D.; Wang, X.; Bu, Y.; Chen, Y.; Cai, D.; Zhao, C. Value of 3D preoperative planning for primary total hip arthroplasty based on artificial intelligence technology. J. Orthop. Surg. Res. 2021, 16, 156. [Google Scholar] [CrossRef]
- Lu, Z.; Yuan, C.; Xu, Q.; Feng, Y.; Xia, Q.; Wang, X.; Zhu, J.; Wu, J.; Wang, T.; Chen, J.; et al. AI-assisted 3D versus conventional 2D preoperative planning in total hip arthroplasty for Crowe type II-IV high hip dislocation: A two-year retrospective study. J. Orthop. Surg. Res. 2025, 20, 777. [Google Scholar] [CrossRef]
- Kim, M.; Oh, I.S.; Yoon, S.J. Deep Learning and Computer Vision Techniques for Automated Total Hip Arthroplasty Planning on 2-D Radiographs. IEEE Access 2022, 10, 94145–94157. [Google Scholar] [CrossRef]
- Madakannu, A.; Selvaraj, A. DIGI-Net: A deep convolutional neural network for multi-format digit recognition. Neural Comput. Appl. 2019, 32, 11373–11383. [Google Scholar] [CrossRef]
- Petretta, R.; Strelzow, J.; Ohly, N.E.; Misur, P.; Masri, B.A. Acetate templating on digital images is more accurate than computer-based templating for total hip arthroplasty. Clin. Orthop. Relat. Res. 2015, 473, 3752–3759. [Google Scholar] [CrossRef] [PubMed]
- Goyal, T.; Sethy, S.S.; Ansari, S.; Das, L.; Paul, S. Use of Acetate Templates Over Digital Radiographs for Templating in Total Hip Arthroplasty: Technique and Its Validation. Indian. J. Orthop. 2021, 55 (Suppl. 1), 81–87. [Google Scholar] [CrossRef] [PubMed]
- Petersen, E.; Holm, S.; Ganz, M.; Feragen, A. The path toward equal performance in medical machine learning. Patterns 2023, 4, 100790. [Google Scholar] [CrossRef]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef]
- Zampogna, B.; Torre, G.; Zampoli, A.; Parisi, F.; Ferrini, A.; Shanmugasundaram, S.; Franceschetti, E.; Papalia, R. Can machine learning predict the accuracy of preoperative planning for total hip arthroplasty, basing on patient-related factors? An explorative investigation on Supervised machine learning classification models. J. Clin. Orthop. Trauma. 2024, 53, 102470. [Google Scholar] [CrossRef]
- Lim, C.; Roh, Y.H.; Hong, J.E.; Nam, K.W. Differences in Acetabular Morphology Related to Sex and Side in South Korean Population. Clin. Orthop. Surg. 2022, 14, 486–492. [Google Scholar] [CrossRef]
- Yuan, D.; Zhang, H.; Tong, L.; Chen, D. Artificial Intelligence for Bone: Theory, Methods, and Applications. Adv. Intell. Discov. 2025. [Google Scholar] [CrossRef]
- Pham, T. Ethical and legal considerations in healthcare AI: Innovation and policy for safe and fair use. R. Soc. Open Sci. 2025, 12, 241873. [Google Scholar] [CrossRef]





| Parameters | Development Cohort (n = 688) | Validation Cohort (n = 98) | p-Value |
|---|---|---|---|
| Age (year) * | 69.3 (14.8) | 70.1 (13.9) | 0.58 |
| Gender ** | 0.94 | ||
| Male | 168 (24.4%) | 23 (23.5%) | |
| Female | 520 (75.6%) | 75 (76.5%) | |
| Height (cm.) * | 156.9 (8.3) | 155.4 (8.1) | 0.11 |
| Weight (kg.) * | 57.7 (12.4) | 58.0 (12.6) | 0.81 |
| BMI (kg/m2) * | 23.4 (4.4) | 23.9 (4.4) | 0.33 |
| Diagnosis ** | 0.22 | ||
| Osteoarthritis | 109 (15.9%) | 11 (11.2%) | |
| Osteonecrosis | 175 (25.4%) | 32 (32.7%) | |
| DDH | 44 (6.4%) | 9 (9.2%) | |
| Femoral neck fracture | 360 (52.3%) | 46 (46.9%) |
| Component | |||
|---|---|---|---|
| Acetabulum | Bipolar Head | Femoral Stem | |
| ICC | 0.90 (0.83–0.94) | 0.99 (0.99–1.00) | 0.95 (0.93–0.97) |
| Acetabulum (n = 54) | Bipolar Head (n = 44) | Femoral Stem (n = 98) | ||||
|---|---|---|---|---|---|---|
| DL Model | On-Screen | DL Model | On-Screen | DL Model | On-Screen | |
| Actual size | 24/44.4% (30.9% to 58.6%) | 23/42.6% (29.2% to 56.8%) | 19/43.2% (28.4% to 59.0%) | 27/61.4% (45.5% to 75.6%) | 33/33.7% (24.4% to 43.9%) | 40/40.8% (40.0% to 51.2%) |
| Accurate prediction | 48/88.9% (77.4% to 95.8%) | 45/83.3% (70.7% to 90.2%) | 32/72.7% (57.2% to 85.0%) | 41/93.2% (81.3% to 98.6%) | 84/85.7% (77.2% to 92.0%) | 80/81.6% (72.5% to 88.7%) |
| Component | Mean Absolute Error (MAE) | Root Mean Square Error (RMSE) | ||||
|---|---|---|---|---|---|---|
| DL Model | On-Screen Method | p-Value | DL Model | On-Screen Method | p-Value | |
| Acetabulum | 1.56 (1.04–2.15) | 1.56 (1.11–2.00) | 1.00 | 2.58 (1.59–3.51) | 2.24 (1.76–2.69) | 0.57 |
| Bipolar head | 2.25 (1.66–2.93) | 1.18 (0.91–1.45) | <0.01 * | 3.12 (2.18–4.06) | 1.49 (1.24–1.73) | 0.02 * |
| Femoral stem | 0.83 (0.68–0.97) | 0.82 (0.65–0.99) | 0.93 | 1.09 (0.94–1.24) | 1.17 (0.98–1.36) | 0.51 |
| Predictor | Univariate Analysis | Multivariate Analysis | ||||
|---|---|---|---|---|---|---|
| OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
| Female gender | 7.6 | 1.21–47.60 | 0.03 * | 3.03 | 0.30–30.26 | 0.35 |
| Height | 0.88 | 0.78–0.99 | 0.03 * | 0.91 | 0.80–1.05 | 0.21 |
| Weight | 1 | 0.93–1.07 | 0.95 | |||
| BMI | 1.18 | 0.92–1.51 | 0.19 | |||
| Predictor | Univariate Analysis | ||
|---|---|---|---|
| OR | 95% CI | p-Value | |
| Female gender | 2.04 | 0.61–6.84 | 0.25 |
| Height | 0.98 | 0.91–1.06 | 0.67 |
| Weight | 1.00 | 0.95–1.05 | 0.97 |
| BMI | 1.02 | 0.89–1.17 | 0.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongsak, S.; Janyawongchot, T.; Sri-Utenchai, N.; Owasirikul, D.; Jaovisidha, S.; Woratanarat, P.; Sa-Ngasoongsong, P. Development of a Deep Learning Model for Hip Arthroplasty Templating Using Anteroposterior Hip Radiograph. J. Clin. Med. 2025, 14, 8689. https://doi.org/10.3390/jcm14248689
Wongsak S, Janyawongchot T, Sri-Utenchai N, Owasirikul D, Jaovisidha S, Woratanarat P, Sa-Ngasoongsong P. Development of a Deep Learning Model for Hip Arthroplasty Templating Using Anteroposterior Hip Radiograph. Journal of Clinical Medicine. 2025; 14(24):8689. https://doi.org/10.3390/jcm14248689
Chicago/Turabian StyleWongsak, Siwadol, Tanapol Janyawongchot, Nithid Sri-Utenchai, Dhammathat Owasirikul, Suphaneewan Jaovisidha, Patarawan Woratanarat, and Paphon Sa-Ngasoongsong. 2025. "Development of a Deep Learning Model for Hip Arthroplasty Templating Using Anteroposterior Hip Radiograph" Journal of Clinical Medicine 14, no. 24: 8689. https://doi.org/10.3390/jcm14248689
APA StyleWongsak, S., Janyawongchot, T., Sri-Utenchai, N., Owasirikul, D., Jaovisidha, S., Woratanarat, P., & Sa-Ngasoongsong, P. (2025). Development of a Deep Learning Model for Hip Arthroplasty Templating Using Anteroposterior Hip Radiograph. Journal of Clinical Medicine, 14(24), 8689. https://doi.org/10.3390/jcm14248689

