Non-Invasive Diagnostic Algorithm in Transthyretin Cardiac Amyloidosis: Is Bone Scintigraphy Always Enough?
Abstract
1. Introduction
2. ATTR-CM: Diagnostic Algorithm and Early Detection
3. Typical Characteristics of Patients with ATTR-CM
4. Myocardial Uptake: When and Why
5. Pitfalls and False Positives in Bone Tracer Scintigraphy
- ✓
- Select proper timing for image acquisition
- ✓
- Integrate SPECT in case of positive myocardial uptake
- ✓
- Correlated hot spots with anatomy
- ✓
- Monoclonal component
- ✓
- Rapidly worsening HF
- ✓
- Hypotension
- ✓
- Severe neuropathy
- ✓
- Nephrotic syndrome
- ✓
- Refractory pleural and pericardial effusion
- ✓
- Macroglossia
- -
- Exclude blood pool activity (delayed imaging and SPECT);
- -
- Correlate any hot spots with the anatomy (to check for valvular or rib uptake);
- -
- Verify that the uptake is diffuse in the myocardium rather than regional.
6. Role of Cardiac MRI in Differential Diagnosis
7. Discussion
8. Conclusions
9. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ATTR-CM | Transthyretin cardiac amyloidosis |
| LV | Left ventricular |
| AL-CA | Light-chain cardiac amyloidosis |
| ATTRv | Hereditary transthyretin amyloidosis |
| GLS | Global longitudinal strain |
| TTR | Transthyretin |
| SPECT | Single-photon emission computed tomography |
| 99mTc-PYP | 99mTc-pyrophosphate |
| 99mTc-DPD | 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid |
| 99mTc-HMDP | 99mTc-hydroxymethylene-diphosphonate |
| CMR | Cardiac magnetic resonance |
| LGE | Late gadolinium enhancement |
| ECV | Extracellular volume fraction |
References
- Merlini, G.; Bellotti, V. Molecular Mechanisms of Amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef]
- Aimo, A.; Merlo, M.; Porcari, A.; Georgiopoulos, G.; Pagura, L.; Vergaro, G.; Sinagra, G.; Emdin, M.; Rapezzi, C. Redefining the epidemiology of cardiac amyloidosis. A systematic review and meta-analysis of screening studies. Eur. J. Heart Fail. 2022, 24, 2342–2351. [Google Scholar] [CrossRef]
- Dorbala, S.; Ando, Y.; Bokhari, S.; Dispenzieri, A.; Falk, R.H.; Ferrari, V.A.; Fontana, M.; Gheysens, O.; Gillmore, J.D.; Glaudemans, A.W.J.M.; et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: Part 1 of 2—Evidence Base and Standardized Methods of Imaging. Circ. Cardiovasc. Imaging 2021, 14, e000029. [Google Scholar]
- Kittleson, M.M.; Ruberg, F.L.; Ambardekar, A.V.; Brannagan, T.H.; Cheng, R.K.; Dember, L.M.; Grazzini Frant, J.; Hershberger, R.E.; Maurer, M.S.; et al.; Writing Committee 2023 ACC Expert Consensus Decision Pathway on Comprehensive Multidisciplinary Care for the Patient With Cardiac Amyloidosis: A Report of the American College of Cardiology Solution Set Oversight Committee. JACC 2023, 81, 1076–1126. [Google Scholar] [CrossRef] [PubMed]
- Arbelo, E.; Protonotarios, A.; Gimeno, J.R.; Arbustini, E.; Barriales-Villa, R.; Basso, C.; Bezzina, C.R.; Biagini, E.; Blom, N.A.; de Boer, R.A.; et al. 2023 ESC Guidelines for the management of cardiomyopathies: Developed by the task force on the management of cardiomyopathies of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3503–3626. [Google Scholar] [CrossRef]
- Gillmore, J.D.; Maurer, M.S.; Falk, R.H.; Merlini, G.; Damy, T.; Dispenzieri, A.; Wechalekaar, A.D.; Berk, J.L.; Quarta, C.C.; Grogan, M.; et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016, 133, 2404–2412. [Google Scholar] [CrossRef]
- Garcia-Pavia, P.; Rapezzi, C.; Adler, Y.; Arad, M.; Basso, C.; Brucato, A.; Burazor, I.; Caforio, A.L.P.; Gillmore, J.D.; Gonzalez-Lopez, E.; et al. Diagnosis and treatment of cardiac amyloidosis: A position statement of the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 2021, 42, 1554–1568. [Google Scholar] [CrossRef]
- Ahluwalia, N.; Roshankar, G.; Draycott, L.; Jimenez-Zepeda, V.; Fine, N.; Chan, D.; Han, D.; Miller, R.J.H. Diagnostic accuracy of bone scintigraphy imaging for transthyretin cardiac amyloidosis: Systematic review and meta-analysis. J. Nucl. Cardiol. 2023, 30, 2464–2476. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Saez, M.D.C.; Feijoo-Massó, C.; Bravo Ferrer, Z.D.C.; Oliva Morera, J.C.; Balado González, A.M.; Palau-Domínguez, A.; Guillamon Tora, L.; Monte, R.C.; Fernandez-Codina, A. Trends in diagnosis of cardiac transthyretin amyloidosis: 3-year analysis of scintigraphic studies: Prevalence of myocardial uptake and its predictor factors. Int. J. Cardiovasc. Imaging 2023, 39, 1397–1404. [Google Scholar] [CrossRef]
- Bianco, M.; Parente, A.; Biolè, C.; Righetti, C.; Spirito, A.; Luciano, A.; Destefanis, P.; Nangeroni, G.; Angusti, T.; Anselmino, M.; et al. The prevalence of TTR cardiac amyloidosis among patients undergoing bone scintigraphy. J. Nucl. Cardiol. 2021, 28, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Nebhwani, M.; Chaibekava, K.; Achten, A.; Oerlemans, M.I.F.J.; Michels, M.; van der Meer, P.; Nienhuis, H.L.A.; Weerts, J.; Van Empel, V.; Brunner-La Rocca, H.P.; et al. Detection of cardiac amyloidosis on routine bone scintigraphy: An important gatekeeper role for the nuclear medicine physician. Int. J. Cardiovasc. Imaging 2024, 40, 1183–1192. [Google Scholar] [CrossRef]
- Maurer, M.S.; Bokhari, S.; Damy, T.; Dorbala, S.; Drachman, B.M.; Fontana, M.; Grogan, M.; Kristen, A.V.; Lousada, I.; Nativi-Nicolau, J.; et al. Expert Consensus Recommendations for the Suspicion and Diagnosis of Transthyretin Cardiac Amyloidosis. Circ. Heart Fail. 2019, 12, e006075. [Google Scholar] [CrossRef]
- Ruberg, F.L.; Berk, J.L. Transthyretin (TTR) Cardiac Amyloidosis. Circulation 2012, 126, 1286–1300. [Google Scholar] [CrossRef]
- Kittleson, M.M.; Maurer, M.S.; Ambardekar, A.V.; Bullock-Palmer, R.P.; Chang, P.P.; Eisen, H.J.; Nair, A.P.; Nativi-Nicolau, J.; Ruberg, F.L. Cardiac Amyloidosis: Evolving Diagnosis and Management: A Scientific Statement From the American Heart Association. Circulation 2020, 142, e7–e22. [Google Scholar] [CrossRef]
- Ioannou, A.; Patel, R.K.; Razvi, Y.; Porcari, A.; Knight, D.; Martinez-Naharro, A.; Kotecha, T.; Venneri, L.; Chacko, L.; Brown, J.; et al. Multi-Imaging Characterization of Cardiac Phenotype in Different Types of Amyloidosis. JACC Cardiovasc. Imaging 2023, 16, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Rapezzi, C.; Fontana, M. Relative Left Ventricular Apical Sparing of Longitudinal Strain in Cardiac Amyloidosis: Is it Just Amyloid Infiltration? JACC Cardiovasc. Imaging 2019, 12, 1174–1176. [Google Scholar] [CrossRef] [PubMed]
- Phelan, D.; Collier, P.; Thavendiranathan, P.; Popović, Z.B.; Hanna, M.; Plana, J.C.; Marwick, T.H.; Thomas, J.D. Relative apical sparing of longitudinal strain using two-dimensional speckle-tracking echocardiography is both sensitive and specific for the diagnosis of cardiac amyloidosis. Heart 2012, 98, 1442–1448. [Google Scholar] [CrossRef]
- Cappelli, F.; Vignini, E.; Martone, R.; Perlini, S.; Mussinelli, R.; Sabena, A.; Morini, S.; Gabriele, M.; Taborchi, G.; Bartolini, S.; et al. Baseline ECG Features and Arrhythmic Profile in Transthyretin Versus Light Chain Cardiac Amyloidosis. Circ. Heart Fail. 2020, 13, e006619. [Google Scholar] [CrossRef]
- Silvetti, E.; Lanza, O.; Romeo, F.; Martino, A.; Fedele, E.; Lanzillo, C.; Crescenzi, C.; Fanisio, F.; Calò, L. The pivotal role of ECG in cardiomyopathies. Front. Cardiovasc. Med. 2023, 10, 1178163. [Google Scholar] [CrossRef]
- Aimo, A.; Milandri, A.; Barison, A.; Pezzato, A.; Morfino, P.; Vergaro, G.; Merlo, M.; Agirò, A.; Olivotto, J.; Emdin, M.; et al. Electrocardiographic abnormalities in patients with cardiomyopathies. Heart Fail. Rev. 2024, 29, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Sinigiani, G.; De Michieli, L.; Mussinelli, R.; Perazzolo Marra, M.; Iliceto, S.; Zorzi, A.; Perlini, S.; Corrado, D.; Cipriani, D. Electrocardiographic features and rhythm disorders in cardiac amyloidosis. Trends Cardiovasc. Med. 2024, 34, 257–264. [Google Scholar] [CrossRef]
- Castiglione, V.; Franzini, M.; Aimo, A.; Carecci, A.; Lombardi, C.M.; Passino, C.; Rapezzi, C.; Emdin, M.; Vergaro, G. Use of biomarkers to diagnose and manage cardiac amyloidosis. Eur. J. Heart Fail. 2021, 23, 217–230. [Google Scholar] [CrossRef]
- Perfetto, F.; Zampieri, M.; Fumagalli, C.; Allinovi, M.; Cappelli, F. Circulating biomarkers in diagnosis and management of cardiac amyloidosis: A review for internist. Intern. Emerg. Med. 2022, 17, 957–969. [Google Scholar] [CrossRef] [PubMed]
- Saro, R.; Pavan, D.; Porcari, A.; Sinagra, G.; Mojoli, M. Lights and Shadows of Clinical Applications of Cardiac Scintigraphy with Bone Tracers in Suspected Amyloidosis. J. Clin. Med. 2023, 12, 7605. [Google Scholar] [CrossRef] [PubMed]
- Perugini, E.; Guidalotti, P.L.; Salvi, F.; Cooke, R.M.T.; Pettinato, C.; Riva, L.; Leone, O.; Farsad, M.; Ciliberti, P.; Bacchi-Reggiani, L.; et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. JACC 2005, 46, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Thelander, U.; Westermark, G.T.; Antoni, G.; Estrada, S.; Zancanaro, A.; Ihse, E.; Westermark, P. Cardiac microcalcifications in transthyretin (ATTR) amyloidosis. Int. J. Cardiol. 2022, 352, 84–91. [Google Scholar] [CrossRef]
- Stats, M.A.; Stone, J.R. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: Implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc. Pathol. 2016, 25, 413–417. [Google Scholar] [CrossRef]
- Pilebro, B.; Suhr, O.B.; Näslund, U.; Westermark, P.; Lindqvist, P.; Sundström, T. 99mTc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Upsala J. Med. Sci. 2016, 121, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Rapezzi, C.; Gagliardi, C.; Milandri, A. Analogies and disparities among scintigraphic bone tracers in the diagnosis of cardiac and non-cardiac ATTR amyloidosis. J. Nucl. Cardiol. 2019, 26, 1638–1641. [Google Scholar] [CrossRef]
- Sperry, B.W.; Gonzalez, M.H.; Brunken, R.; Cerqueira, M.D.; Hanna, M.; Jaber, W.A. Non-cardiac uptake of technetium-99m pyrophosphate in transthyretin cardiac amyloidosis. J. Nucl. Cardiol. 2019, 26, 1630–1637. [Google Scholar] [CrossRef]
- Hutt, D.F.; Gilbertson, J.; Quigley, A.M.; Wechalekar, A.D. 99mTc-DPD scintigraphy as a novel imaging modality for identification of skeletal muscle amyloid deposition in light-chain amyloidosis. Amyloid 2016, 23, 134–135. [Google Scholar] [CrossRef]
- Singh, V.; Falk, R.; Di Carli, M.F.; Kijewski, M.; Rapezzi, C.; Dorbala, S. State-of-the-art radionuclide imaging in cardiac transthyretin amyloidosis. J. Nucl. Cardiol. 2019, 26, 158–173. [Google Scholar] [CrossRef]
- Imakhanova, A.; Ideguchi, R.; Kawano, H.; Maemura, K.; Kudo, T. Optimizing cardiac amyloidosis assessment: Utility of 1-h and 3-h 99mTc-PYP imaging. Eur. J. Med. Res. 2024, 29, 32. [Google Scholar] [CrossRef]
- Gherghe, M.; Lazar, A.M.; Sterea, M.-C.; Spiridon, P.M.; Motas, N.; Gales, L.N.; Coriu, D.; Badelita, S.N.; Mutuleanu, M.-D. Quantitative SPECT/CT Parameters in the Assessment of Transthyretin Cardiac Amyloidosis—A New Dimension of Molecular Imaging. J. Cardiovasc. Dev. Dis. 2023, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Kessler, L.; Fragoso Costa, P.; Kersting, D.; Jentzen, W.; Weber, M.; Lüdike, P.; Carpinteiro, A.; Oubari, S.; Hagenacker, T.; Thimm, A.; et al. Quantitative 99mTc-DPD-SPECT/CT assessment of cardiac amyloidosis. J. Nucl. Cardiol. 2023, 30, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Takaishi, T.; Kisohara, M.; Horino, R.; Kaneko, H.; Hotta, N.; Mizuno, K.; Ezaka, T.; Kitagawa, Y.; Okochi, S.; Kobayashi, S.; et al. A quantitative SPECT/CT metric for diagnosing transthyretin cardiac amyloidosis: Multicenter study on biopsy-confirmed cases. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 4233–4241. [Google Scholar] [CrossRef] [PubMed]
- Meristoudis, G.; Ilias, I.; Keramida, G. Potential diagnostic pitfalls of bone scintigraphy in transthyretin-related amyloidosis. World J. Nucl. Med. 2020, 19, 313–314. [Google Scholar] [CrossRef]
- Musumeci, M.B.; Cappelli, F.; Russo, D.; Tini, G.; Canepa, M.; Milandri, A.; Bonfiglioli, R.; Di Bella, G.; My, F.; Luigetti, M.; et al. Low Sensitivity of Bone Scintigraphy in Detecting Phe64Leu Mutation-Related Transthyretin Cardiac Amyloidosis. JACC Cardiovasc. Imaging 2020, 13, 1314–1321. [Google Scholar] [CrossRef]
- Azevedo Coutinho, M.C.; Cortez-Dias, N.; Cantinho, G.; Gonçalves, S.; Menezes, M.N.; Guimarães, T.; da Silvia, G.L.; Francisco, A.R.; Agostinho, J.; Santos, L.; et al. The sensitivity of DPD scintigraphy to detect transthyretin cardiac amyloidosis in V30M mutation depends on the phenotypic expression of the disease. Amyloid 2020, 27, 174–183. [Google Scholar] [CrossRef]
- Rodrigues, P.; Dias Frias, A.; Gouveia, P.; Trêpa, M.; Fontes Oliveira, M.; Costa, R.; Reis, H.; Amorim, I.; Palma, P.; Carvalho, H.C.; et al. Radionuclide Imaging in the Diagnosis of Transthyretin Cardiac Amyloidosis: Different Sensitivity in Early-Onset V30M Mutation? JACC Cardiovasc. Imaging 2021, 14, 1072–1074. [Google Scholar] [CrossRef]
- Rahim, M.A.; Jani, V.; Gupta, V.; Zampino, S.; Tsottles, D.; Saad, E.; Brown, E.; Halushka, M.K.; Steenbergen, C.; Ranek, M.; et al. High rate of false negative 99mTc-pyrophosphate scintigraphy scans in patients with Leu58His transthyretin amyloid cardiomyopathy. Amyloid 2025, 32, 280–282. [Google Scholar] [CrossRef]
- Fraix, A.; Itti, E.; Zaroui, A.; Kharoubi, M.; Poullot, E.; Lerman, L.; Guendouz, S.; Huttin, O.; Damy, T.; Galat, A. A series of cases of transthyretin amyloid cardiomyopathy with negative bone scintigraphy but a confirmed positive endomyocardial biopsy. Orphanet J. Rare Dis. 2024, 19, 381. [Google Scholar] [CrossRef] [PubMed]
- Martini, N.; Rizzo, S.; Sarais, C.; Cipriani, A. Negative bone scintigraphy in wild-type transthyretin cardiac amyloidosis. BMC Cardiovasc. Disord. 2020, 20, 466. [Google Scholar] [CrossRef] [PubMed]
- Grasso, M.; Cavaliere, C.; Vilardo, V.; Tagliani, M.; Di Toro, A.; Urtis, M.; Paganini, C.; Buccieri, E.; Tescari, A.; Ferrari, M.; et al. Present and future of endomyocardial biopsy in cardiac amyloidosis. Eur. Heart J. Suppl. 2025, 27 (Suppl. S3), iii7–iii12. [Google Scholar] [CrossRef]
- Vrana, J.A.; Gamez, J.D.; Madden, B.J.; Theis, J.D.; Bergen, H.R., 3rd; Dogan, A. Classification of amyloidosis by laser microdissection and mass spectrometry-based proteomic analysis in clinical biopsy specimens. Blood 2009, 114, 4957–4959. [Google Scholar] [CrossRef]
- Alexander, K.M.; Masri, A. Recipe for Success in Transthyretin Cardiomyopathy: Monoclonal Protein Rule Out, SPECT Imaging, and Genetic Testing. JACC Cardiovasc. Imaging 2021, 14, 1232–1234. [Google Scholar] [CrossRef]
- Poterucha, T.J.; Elias, P.; Bokhari, S.; Einstein, A.J.; DeLuca, A.; Kinkhabwala, M.; Johnson, L.L.; Flaherty, K.R.; Saith, S.E.; Griffin, J.M.; et al. Diagnosing Transthyretin Cardiac Amyloidosis by Technetium Tc 99m Pyrophosphate: A Test in Evolution. JACC Cardiovasc. Imaging 2021, 14, 1221–1231. [Google Scholar] [CrossRef]
- Peters, S.M.B.; van der Werf, N.R.; Segbers, M.; van Velden, F.H.P.; Wierts, R.; Blokland, K.J.A.K.; Lazarenko, S.V.; Visser, E.P.; Gotthardt, M. Towards standardization of absolute SPECT/CT quantification: A multi-center and multi-vendor phantom study. EJNMMI Phys. 2019, 6, 29. [Google Scholar] [CrossRef]
- Rudolphi Solero, T.; Feriche Aragón, M.; Amrani Raissouni, T.; Delgado-García, A.; Cañada-Rodríguez, M.J.; Sanz Viedma, S. False Positive in [99m Tc]Tc-DPD Scintigraphy for Cardiac Amyloidosis Due to Intravenous Iron Administration. Clin. Nucl. Med. 2024, 49, e65–e67. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, A.T.; Alexander, K.M. Mistaken Identity. JACC Cardio Oncol. 2021, 3, 594–597. [Google Scholar] [CrossRef]
- Quarta, C.C.; Obici, L.; Guidalotti, P.L.; Pieroni, M.; Longhi, S.; Perlini, S.; Verga, L.; Merlini, G.; Rapezzi, C. High 99mTc-DPD myocardial uptake in a patient with apolipoprotein AI-related amyloidotic cardiomyopathy. Amyloid 2013, 20, 48–51. [Google Scholar] [CrossRef]
- Saleem, M.; Balla, S.; Amin, M.S.; Farid, S.; Caccamo, M.; Sokos, G.; Bianco, C.M. Hereditary Apolipoprotein A-I-Associated Cardiac Amyloidosis: Importance of Endomyocardial Biopsy When Suspicion Remains High. JACC Case Rep. 2021, 3, 1032–1037. [Google Scholar] [CrossRef]
- Murray, J.P.; Jones, M.; O’Beirn, D. Rectilinear scanning in the detection of acute myocardial infarction. Br. J. Radiol. 1976, 49, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Buja, L.M.; Parkey, R.W.; Stokely, E.M.; Bonte, F.J.; Willerson, J.T. Pathophysiology of technetium-99m stannous pyrophosphate and thallium-201 scintigraphy of acute anterior myocardial infarcts in dogs. J. Clin. Investig. 1976, 57, 1508–1522. [Google Scholar] [CrossRef]
- Codini, M.A.; Turner, D.A.; Battle, W.E.; Hassan, P.; Ali, A.; Messer, J.V. Value and limitations of technetium-99m stannous pyrophosphate in the detection of acute myocardial infarction. Am. Heart J. 1979, 98, 752–762. [Google Scholar] [CrossRef]
- Nunes, A.R.P.; Alves, V.M. Mitral Annular Calcification as a Potential False-Positive for Cardiac Amyloidosis in 99m Tc-DPD Scintigraphy Accurately Identified by SPECT/CT. Clin. Nucl. Med. 2024, 49, e179–e181. [Google Scholar] [CrossRef]
- Singh, A.; Kadosh, B.S.; Grossman, K.; Donnino, R.; Narula, N.; Zhou, F.; DiVita, M.; Smith, D.E.; Moazami, N.; Chang, S.H.; et al. Nonischemic Cardiomyopathy With Myocardial Calcinosis Masquerading as Cardiac Amyloidosis. Circ. Heart Fail. 2023, 16, e010338. [Google Scholar] [CrossRef]
- Chang, I.C.Y.; Bois, J.P.; Bois, M.C.; Maleszewski, J.J.; Johnson, G.B.; Grogan, M. Hydroxychloroquine-Mediated Cardiotoxicity With a False-Positive 99mTechnetium-Labeled Pyrophosphate Scan for Transthyretin-Related Cardiac Amyloidosis. Circ. Cardiovasc. Imaging 2018, 11, e007059. [Google Scholar] [CrossRef]
- Martinez-Naharro, A.; Treibel, T.A.; Abdel-Gadir, A.; Bulluck, H.; Zumbo, G.; Knight, D.S.; Kotecha, T.; Francis, R.; Hutt, D.F.; Rezk, T.; et al. Magnetic Resonance in Transthyretin Cardiac Amyloidosis. JACC 2017, 70, 466–477. [Google Scholar] [CrossRef] [PubMed]
- Maceira, A.M.; Joshi, J.; Prasad, S.K.; Moon, J.C.; Perugini, E.; Harding, I.; Sheppard, M.N.; Poole-Wilson, P.A.; Hawkins, P.N.; Pennell, D.J. Cardiovascular Magnetic Resonance in Cardiac Amyloidosis. Circulation 2005, 111, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Pandey, T.; Jambhekar, K.; Shaikh, R.; Lensing, S.; Viswamitra, S. Utility of the inversion scout sequence (TI scout) in diagnosing myocardial amyloid infiltration. Int. J. Cardiovasc. Imaging 2013, 29, 103–112. [Google Scholar] [CrossRef]
- Chatzantonis, G.; Bietenbeck, M.; Elsanhoury, A.; Tschope, C.; Pieske, B.; Tauscher, G.; Vietheer, J.; Shomanova, Z.; Mahrholdt, H.; Rolf, A.; et al. Diagnostic value of cardiovascular magnetic resonance in comparison to endomyocardial biopsy in cardiac amyloidosis: A multi-centre study. Clin. Res. Cardiol. 2021, 110, 555–568. [Google Scholar] [CrossRef]
- Zhao, L.; Tian, Z.; Fang, Q. Diagnostic accuracy of cardiovascular magnetic resonance for patients with suspected cardiac amyloidosis: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2016, 16, 129. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.A.; Kerwin, M.J.; Salerno, M. Native T1 Mapping, Extracellular Volume Mapping, and Late Gadolinium Enhancement in Cardiac Amyloidosis: A Meta-Analysis. JACC Cardiovasc. Imaging 2020, 13, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Fontana, M.; Banypersad, S.M.; Treibel, T.A.; Maestrini, V.; Sado, D.; White, K.S.; Castelletti, S.; Herrey, A.S.; Hawkins, P.N.; Moon, J. Native T1 mapping in ATTR cardiac amyloidosis—Comparison with AL cardiac amyloidosis—A 200 patient study. J. Cardiovasc. Magn. Reson. 2014, 16 (Suppl. S1), O4. [Google Scholar] [CrossRef]
- Dungu, J.N.; Valencia, O.; Pinney, J.H.; Gibbs, S.D.; Rowczenio, D.; Gilbertson, J.A.; Lachmann, H.J.; Wechalekar, A.; Gillmore, J.D.; Whelan, C.J.; et al. CMR-based differentiation of AL and ATTR cardiac amyloidosis. JACC Cardiovasc. Imaging 2014, 7, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Brownrigg, J.; Lorenzini, M.; Lumley, M.; Elliott, P. Diagnostic performance of imaging investigations in detecting and differentiating cardiac amyloidosis: A systematic review and meta-analysis. ESC Heart Fail. 2019, 6, 1041–1051. [Google Scholar] [CrossRef]
- White, S.K.; Sado, D.M.; Fontana, M.; Banypersad, S.M.; Maestrini, V.; Flett, A.S.; Piechnik, S.K.; Robson, M.D.; Hausenloy, D.J.; Sheikh, A.M.; et al. T1 mapping for myocardial extracellular volume measurement by CMR: Bolus only versus primed infusion technique. JACC Cardiovasc. Imaging 2013, 6, 955–962. [Google Scholar] [CrossRef]
- Fontana, M.; Martinez-Naharro, A.; Chacko, L.; Rowczenio, D.; Gilbertson, J.A.; Whelan, C.J.; Strehina, S.; Lane, T.; Moon, J.; Hutt, D.F.; et al. Reduction in CMR Derived Extracellular Volume With Patisiran Indicates Cardiac Amyloid Regression. JACC Cardiovasc. Imaging 2021, 14, 189–199. [Google Scholar] [CrossRef]
- Ioannou, A.; Patel, R.; Martinez-Naharro, A.; Razvi, Y.; Porcari, A.; Hutt, D.F.; Bandera, F.; Kotech, T.; Venneri, L.; Chacko, L.; et al. Tracking Multiorgan Treatment Response in Systemic AL-Amyloidosis with Cardiac Magnetic Resonance Derived Extracellular Volume Mapping. JACC Cardiovasc. Imaging 2023, 16, 1038–1052. [Google Scholar] [CrossRef]
- Patel, R.K.; Ioannou, A.; Sheikh, A.; Razvi, Y.; Mansell, J.; Martinez-Naharro, A.; Knight, D.; Kotecha, T.; Porcari, A.; Chacko, L.; et al. Transthyretin amyloid cardiomyopathy: Natural history and treatment response assessed by cardiovascular magnetic resonance. Eur. Heart J. 2025, ehaf412. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Naharro, A.; Patel, R.; Kotecha, T.; Karia, N.; Ioannou, A.; Petrie, A.; Chacko, L.A.; Razvi, Y.; Ravichandran, S.; Brown, J.; et al. Cardiovascular magnetic resonance in light-chain amyloidosis to guide treatment. Eur. Heart J. 2022, 43, 4722–4735. [Google Scholar] [CrossRef] [PubMed]
- Razvi, Y.; Porcari, A.; Hutt, D.F.; Lazari, J.; Ioannou, A.; Patel, R.K.; Rauf, M.U.; Rezk, T.; Hague, O.; Filisetti, S.; et al. Uncertain Clinical Relevance of Serial Bone Scintigraphy Findings in Treated Transthyretin Amyloid Cardiomyopathy. JACC Cardiovasc. Imaging 2025, 18, 899–908. [Google Scholar] [CrossRef] [PubMed]



| Category | Red Flags |
|---|---|
| Cardiovascular manifestations | HF with preserved ejection fraction LVH not explained by abnormal loading conditions Intolerance to standard HF drugs (ACEi, ARNI, ARB, BB) Orthostatic hypotension or syncope Atypical angina with normal coronaries |
| Extracardiac findings | Bilateral carpal tunnel syndrome (often precedes cardiac involvement) Lumbar spinal stenosis Peripheral neuropathy Biceps tendon rupture Autonomic dysfunction (ortostatic hypotension, GI symptoms, erectile dysfunction) |
| ECG | Low QRS voltages despite LVH on echocardiography Pseudo-infarction pattern in septal leads (QS complex) Conduction disease (AV blocks) Atrial fibrillation |
| Echocardiography | Concentric LVH without dilation Severe diastolic dysfunction Left atrial enlargement and dysfunction Reduced longitudinal strain with apical sparing Right ventricular hypertrophy |
| Cardiac MRI | Diffuse subendocardial or transmural LGE Abnormal nulling of myocardium Elevated ECV |
| Biomarkers | Persistently elevated natriuretic peptides and troponins disproportionate to symptoms |
| Monoclonal component | Normal serum kappa/lambda FLC ratio (0.26–1.65) Absence of monoclonal protein in serum/urine IFE |
| TTR Variant | Phenotype | Diagnostic Approach |
|---|---|---|
| Val30Met | Mixed (late onset) Predominantly neurologic (early onset) | CMR Neurological evaluation Cardiac/non-cardiac biopsy |
| Phe64Leu | Predominantly neurologic | CMR Neurological evaluation Cardiac/non-cardiac biopsy |
| Ser77Tyr | Predominantly neurologic | CMR Neurological evaluation Cardiac/non-cardiac biopsy |
| V122I | Predominantly cardiac | CMR Cardiac/non-cardiac biopsy |
| Glu122Lys | Predominantly cardiac | CMR Cardiac/non-cardiac biopsy |
| Leu58His | Mixed | CMR Neurological evaluation Cardiac/non-cardiac biopsy |
| Clinical Suspicion for ATTR-CM | Monoclonality | Scintigraphy | EMB |
|---|---|---|---|
| High 1 | + | + 2 | Needed to exclude AL-CA; non-cardiac sites can be considered first |
| High 1 | - | + 2 | Not needed except if dual pathology is suspected (i.e., HCM + ATTR-CM) |
| High 1 | - | - | Needed to confirm clinical suspicion and to initiate appropriate therapy |
| Low | - | + 2 | Needed if nuclear imaging result appears to be accurate and the clinical picture is unclear |
| High 1 | + | - | Needed to confirm AL-CA; non-cardiac sites can be considered first |
| Cardiac MRI Findings | ||||
|---|---|---|---|---|
| nT1 Values | ECV | LGE | Abnormal Myocardial Nulling | |
| Sarcomeric HCM | ↑ | ↑ colocalized with fibrosis | Patchy, mainly within hypertrophic segments | Absent |
| Anderson–Fabry disease | ↓↓ (=/↑when replacement fibrosis develops) | = (↑ when fibrosis develops) | Inferolateral wall | Absent |
| Cardiac amyloidosis | ↑↑↑ | ↑↑↑↑ | Diffused subendocardial or transmural | Present |
| Athletes’ heart | = | =/low | /, Rarely junctional | / |
| Hypertensive heart | = | = | Rarely present in lone systemic hypertension | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marchionni, G.; Pecci, G.; Alfarano, M.; Costantino, J.; Ballatore, F.; Ciccarelli, F.; Lattanzio, A.; Galea, N.; De Vincentis, G.; Chimenti, C. Non-Invasive Diagnostic Algorithm in Transthyretin Cardiac Amyloidosis: Is Bone Scintigraphy Always Enough? J. Clin. Med. 2025, 14, 8458. https://doi.org/10.3390/jcm14238458
Marchionni G, Pecci G, Alfarano M, Costantino J, Ballatore F, Ciccarelli F, Lattanzio A, Galea N, De Vincentis G, Chimenti C. Non-Invasive Diagnostic Algorithm in Transthyretin Cardiac Amyloidosis: Is Bone Scintigraphy Always Enough? Journal of Clinical Medicine. 2025; 14(23):8458. https://doi.org/10.3390/jcm14238458
Chicago/Turabian StyleMarchionni, Giulia, Giulia Pecci, Maria Alfarano, Jacopo Costantino, Federico Ballatore, Federico Ciccarelli, Antonio Lattanzio, Nicola Galea, Giuseppe De Vincentis, and Cristina Chimenti. 2025. "Non-Invasive Diagnostic Algorithm in Transthyretin Cardiac Amyloidosis: Is Bone Scintigraphy Always Enough?" Journal of Clinical Medicine 14, no. 23: 8458. https://doi.org/10.3390/jcm14238458
APA StyleMarchionni, G., Pecci, G., Alfarano, M., Costantino, J., Ballatore, F., Ciccarelli, F., Lattanzio, A., Galea, N., De Vincentis, G., & Chimenti, C. (2025). Non-Invasive Diagnostic Algorithm in Transthyretin Cardiac Amyloidosis: Is Bone Scintigraphy Always Enough? Journal of Clinical Medicine, 14(23), 8458. https://doi.org/10.3390/jcm14238458

