The Epigenetic Landscape of Borderline Personality Disorder: Insights from a Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Study Selection
3.2. Quality Assessment
3.3. Intervention Characteristics
| Study | Selection | Comparability | Exposition | Sum | Quality |
|---|---|---|---|---|---|
| Gescher et al. [30] | ★ | ★★ | ★ | 4/9 | Moderate |
| Edelmann et al. [24] | ★ | ★★ | ★ | 4/9 | Moderate |
| Prados et al. [25] | ★★ | - | ★ | 3/9 | Low |
| Perroud et al. [18] | ★★★ | ★★ | ★ | 6/9 | Moderate |
| Flasbeck et al. [17] | ★★ | ★ | ★ | 4/9 | Moderate |
| Martín-Blanco et al. [16] | ★ | ★★ | - | 3/9 | Low |
| Perroud et al. [34] | ★★ | ★★ | ★ | 5/9 | Moderate |
| Steiger et al. [28] | ★★★ | ★★ | ★ | 6/9 | Moderate |
| Groleau et al. [20] | ★★★ | ★★ | ★ | 6/9 | Moderate |
| Arranz et al. [23] | ★★★ | ★★ | ★ | 6/9 | Moderate |
| Perroud et al. [15] | ★★ | - | ★ | 3/9 | Low |
| Jamshidi et al. [19] | ★★ | ★★ | ★ | 5/9 | Moderate |
| Moser et al. [26] | ★★ | - | ★ | 3/9 | Low |
| Damman et al. [21] | ★ | ★ | ★ | 3/9 | Low |
| Teschler et al. [27] | ★ | ★ | ★ | 3/9 | Low |
| Teschler et al. [22] | ★ | ★ | ★ | 3/9 | Low |
| Thomas et al. [33] | ★★ | ★★ | ★ | 5/9 | Moderate |
| Thomas et al. [29] | ★★ | ★★ | ★ | 5/9 | Moderate |
| Knoblich et al. [31] | ★★ | ★★ | ★ | 5/9 | Moderate |
| Study | Year | Sample | DNA Source | Trauma Measure | Clinical Measures | Genes (CpGs) | Main Findings | ||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| N | Females | Age | BPD Comorbidities | Medication | |||||||
| Gescher et al. [30] | 2024 | BPD = 47, HC = 48 | BPD = 47, HC = 48 | BPD 25.21 ± 4.21, HC 24.71 ± 3.96 | Not reported | BPD = 0, HC = 0 | whole blood samples | CTQ | BSL-23, BIS, DES -FDS, ZAN-BPD | OPRK1 | Identified a novel OPRK1 promoter region (five CpGs, a DMR) with lower mean methylation in BPD vs. controls. Lower methylation of this OPRK1 region also correlated with higher BPD symptom severity and with greater trait impulsivity and was significantly associated with higher childhood emotional neglect. |
| Edelmann et al. [24] | 2024 | BPD = 40, HC = 53, MDD = 64, HC = 64, SAD = 65, HC = 72 | BPD = 33, MDD = 26, SAD = 45, HC (BPD) = 46, HC (MDD) = 17, HC (SAD) = 34 | BPD: 31.6, MDD: 38.6, SAD: 25.9, HC(BPD): 28.3, HC(MDD): 25.9, HC(SAD): 24.71 | Not reported | Not reported | whole blood samples | CTQ | ELA | PXDN exon cg10888111 (chr:2 1,632,996–1,633,597) | In BPD patients with high early-life adversity (ELA), methylation at a PXDN gene CpG (cg10888111) was significantly lower than in BPD with low ELA or controls. |
| Prados et al. [25] | 2015 | BPD = 95, MDD = 93 | BPD = 88, MDD = 59 | BPD: 32.17 ± 0.99, MDD: 41.39 ± 1.37 | AUD = 52, SUD = 43 | BPD = 73, MDD = 70 | whole blood samples | CTQ | None | genome-wide methylation analysis | The top hit (cg04927004, near miR-124-3) was significantly hypomethylated in BPD (0.22 in BPD vs. 0.35 in controls). Other significant sites (e.g., near WDR60, FAM163A) also had lower methylation in BPD. Many top DMRs were on the X chromosome (more methylated in BPD) and on chromosome 6. |
| Perroud et al. [18] | 2013 | BPD = 115, HC = 52 | BPD = 108, HC = 24 | BPD: 30.36 ± 9.19, HC: 40.65 ± 12.04 | BD = 22, MDD = 84, SchAD = 9 | BPD = 55 (Antidepressants) | peripheral blood leukocytes | CTQ | BDI, BHS, BIS-10, SCID-II BPD part | BDNF CpG exons I and IV | BPD patients had higher methylation of BDNF promoters (exons I and IV), and individuals with more severe childhood trauma had higher methylation. After 12 weeks of DBT, mean BDNF methylation increased overall, driven by non-responders, while therapy responders showed a decrease. |
| Flasbeck et al. [17] | 2021 | BPD = 45, HC = 44 | BPD = 45, HC = 44 | BPD: 26.3 ± 5.7, HC: 24.0 ± 3.1 | DE = 23, PTSD = 8, AnxD = 2, SUD = 13 | Antidepressant = 18, Antipsychotic = 2, Antidepressant and Antipsychotic = 8, Anticonvulsants = 2, Other psychoactive drugs = 1 | mouthwash samples, saliva | CTQ | IRI, SCI-90-R | 1F promoter of NR3C1 and the intron 7 of FKBP5 | Significantly lower mean exon 1F methylation in BPD compared to HC. Still, despite statistical significance, the difference between groups was smaller than the sensitivity of the methylation analysis method used |
| Martín-Blanco et al. [16] | 2014 | BPD = 281, HC = 0 | BPD = 239 | BPD: 29.4 ± 7 | SUD = 155, AnxD = 131, AUD = 100, ED = 81 | BPD = 247 | peripheral blood leukocytes | CTQ-SF | None | exon 1F of NR3C1 | NR3C1 promoter methylation (exon 1F) correlated positively with childhood abuse and with illness severity. Specifically, patients with more severe physical abuse and higher severity scores and hospitalizations showed higher NR3C1 methylation. |
| Perroud et al. [34] | 2016 | BPD = 116, ADHD = 111, BD = 122 | BPD = 106, ADHD = 33, BD = 65 | BPD: 31.5 ± 9.74, ADHD: 37.65 ± 10.36, BD: 45.25 ± 11.7 | PME = 33, SAD = 67 AUD = 65, MDD = 75, BD = 25 | Not reported | peripheral blood leukocytes | CTQ | None | 5HT3AR (CpG1 I, CpG2 II, CpG3 II, CpG1 III, CpG2 III, CpG3 III, CpG4 III, CpG5 III) | Altered HTR3A methylation in BPD, with lower levels at CpG1_I and CpG5_III and higher levels at several other sites. In BPD, methylation at specific CpGs correlated with childhood trauma, particularly physical abuse, and CpG2_III and CpG5_III methylation mediated the link between abuse severity and suicidality, hospitalizations, and mood episodes. |
| Steiger et al. [28] | 2013 | BN + BPD = 14, BN-nBPD = 47, HC = 32 | BN = 64, (BN + BPD = 14, BN-nBPD = 47), NED = 32 | BN: 26.05 ± 6.59, NED: 23.67 ± 5.70 | Not reported | BN = 33 NED = 0 | whole blood samples | CTI | SCID-I, DIS4, CAPS, SCID-II BPD part | NR3C1 promoters 1B, 1C, 1F, and 1H | Significantly lower mean exon 1H methylation in the BN + BPD group compared to the BN only and HC groups, and one CpG in exon 1C (chr5:142763355–142763361) showed significantly higher methylation in the BN + BPD group compared to HC |
| Groleau et al. [20] | 2014 | BN = 52 (BN + BPD = 8, HC = 19) | BN = 52 (BN + BPD = 8), HC = 19 | BN: 24.67 ± 5.68, HC: 23.68 ± 4.57 | Not reported | BN = 35, HC = 0 | whole blood samples | CTI | SCID II BPD | DRD2 | Significantly higher mean methylation across the first 10 CpGs of DRD exon 1 (chr11:113346140–113346389) in BN + BPD compared to HC, with a trend toward higher methylation compared to BN alone |
| Arranz et al. [23] | 2021 | BPD = 96, HC = 44, replication cohort BPD = 293, HC = 114 | BPD = 96, HC = 44, replication cohort BPD = 293, HC = 114 | Replication sample BPD: 30.93 ± 7.2, HC—Not reported | No current episode of any Axis I disorder no severe physical conditions, neurological disease, or mental deficiency | BPD = Not reported, HC = 0 | whole blood samples | CTQ-SF | SCID II, DIB-R, MSI-BPD, | genome-wide methylation analysis | Several X-chromosomal CpGs (e.g., in PQBP1, ZNF41, RPL10) and one on chr6 (TAP2) lower methylation in BPD. Hypomethylation differences were amplified in BPD subjects with childhood trauma. Additionally, four autosomal genes (e.g., POU5F1, GGT6) were differentially methylated depending on trauma history. |
| Perroud et al. [15] | 2011 | BPD = 101, MDD = 99, MDD + PTSD = 15 | BPD = 95, MDD = 64, MDD + PTSD = 11 | BPD: 30.76 ± 9.74, MDD: 41.63 ± 12.81, MDD + PTSD: 37.33 ± 10.46 | MDD = 74, BP I = 4, BP II = 15, SChAD = 8, AUD = 57, SUD = 48, PTSD = 25 | Antidepressant: BPD = 3 9, MDD = 70, MDD + PTSD = 6, Neuroleptics: BPD = 40, MDD = 4, MDD + PTSD = 1, Mood stabilizers: BPD = 14, MDD = 1, MDD + PTSD = 0, None: BPD = 17, MDD = 28, MDD + PTSD = 9 | whole blood samples | CTQ | BDI-SF, SCID II, French version of DIGS | exon 1F NR3C1 promoter (CpGs 6–13) | Among BPD subjects, those with childhood maltreatment (especially sexual abuse) had increased methylation of the NR3C1 promoter, with methylation levels positively correlating with abuse severity. Higher NR3C1 methylation also tended to associate with greater clinical severity. |
| Jamshidi et al. [19] | 2023 | Discovery cohort: BPD = 97, HC = 32, Validation cohort: 60 | Discovery cohort: BPD = 97, HC = 32, Validation cohort: 60 | BPD: 29.4 ± 7.6, HC: 37.2 ± 6.0, SA: HR 35.67 ± 13.2, LR 34.0 ± 12.4 | Active MDD = 41, Severe MDD = 13, BD = 8, AnxD = 59, AUD = 32, SUD = 26 | HC = 0, BPD: SSRI = 32, non-SSRI antidepressants = 20, Mood stabilizers = 4, Benzodiazepines = 35, Neuroleptics = 12 | peripheral blood leukocytes | None | SCID I, SCID II | BDNF 16 individual CpG-sites | In women with BPD and severe suicide attempts, mean methylation of a targeted BDNF locus was higher than in controls This elevation was replicated in an independent cohort of female suicide attempters with Borderline/EUPD. |
| Moser et al. [26] | 2020 | BPD = 45, HC = 45 | BPD = 45, HC = 45 | BPD: 26.3 ± 5.7, HC 24.5 ± 4.4 | Not reported | Not reported | saliva samples | CTQ | None | 42 CpGs from the NR3C1 1 F promoter, 84 CpGs of the SLC6A4, 5 CpGs in FKBP5 intron 7, 12 CpGs intron 3 of the OXTR | No biologically relevant differences in mean methylation were found between groups. |
| Dammann et al. [21] | 2011 | BPD = 26, HC = 11 | BPD = 24, HC = 11 | BPD: 33 ± 11, HC 32 ± 7 | AUD = 6, SUD = 4, Mental and Compulsions = 1, MDD = 3, AnxD = 1, Anorexia = 1, Narcissistic personality disorder = 1, ADHD = 1 | Not reported | whole blood samples | None | None | 14 neuropsychiatric genes (COMT, DAT1, GABRA1, GNB3, GRIN2B, HTR1B, HTR2A, 5-HTT, MAOA, MAOB, NOS1, NR3C1, TPH1 and TH) | A broad hypermethylation pattern in BPD: on average higher methylation across neuropsychiatric genes. In particular, BPD patients had increased promoter methylation at HTR2A, NR3C1, MAOA and the S-COMT locus. |
| Teschler et al. [27] | 2013 | BPD = 24, HC = 11 | BPD = 24, HC = 11 | BPD: 33 + 11, HC: 32 ± 7 | As in Damman (2011) | Not reported | whole blood samples | None | None | genome-wide methylation analysis | Significantly higher methylation of APBA3 (cg20366831), KCNQ1 (cg17820828), MCF2 (cg21557231), and NINJ2 (cg20781967) in BPD compared to HC, and confirmed these findings with pyrosequencing |
| Teschler et al. [22] | 2016 | BPD = 24, HC = 11 | BPD = 24 HC = 11 | BPD: 33 + 11, HC: 32 ± 7 | As in Damman (2011) | BPD = 24, HC not reported | whole blood samples | None | None | rDNA promoter region, promoter of PRIMA) | In female BPD patients, the PRIMA1 promoter showed hypermethylation and the ribosomal RNA (rDNA) gene showed hypomethylation. |
| Thomas et al. [33] | 2018 | BPD = 41, HC = 41 | BPD = 3, HC = 35 | BPD: 30.4 ± 8.6, HC: 30.7 ± 9.3 | Habitual smokers = 22, AUD = 35 | BPD = 35, HC = 0 | saliva, whole blood samples | CTQ | GSI score (SCL90R), PST score (SCL90R), BSL-23 | BDNF IV promoter | BPD patients showed higher methylation at four CpGs in the BDNF exon-IV promoter in saliva (but not in blood) relative to controls. Moreover, after a 12-week psychotherapeutic intervention, salivary BDNF methylation decreased significantly in the patient group. |
| Thomas et al. [29] | 2019 | BPD = 44, HC = 44 | BPD = 37, HC = 37 | BPD: 29.5 ± 8.4, HC: 29.7 ± 8.8 | Not reported | BPD = 40, HC = 0 | whole blood samples | CTQ | GSI score (SCL90R), PST score (SCL90R), BSL-23, AUDIT, FT | COMT | BPD patients had significantly lower methylation at one CpG (cg19962541) than controls, independent of genotype. |
| Knoblich et al. [31] | 2018 | BPD = 44, HC = 44 | BPD = 37, HC = 37 | BPD: 29.5 ± 8.4, HC: 29.7 ± 8.8 | Not reported | Not reported | whole blood samples | CTQ | SCL90R, BSL223 | two CpG sites within APBA3 and one CpG site within MCF2 | No case–control differences in APBA3 or MCF2 methylation were observed. However, among BPD patients undergoing DBT, those who responded to therapy had significantly higher baseline methylation of APBA3 and MCF2 than non-responders, suggesting these marks predicted treatment outcome. |
3.4. Psychometric and Childhood Adversity Measures
3.5. NR3C1 and FKBP5
3.6. BDNF
3.7. Other Genes
3.8. Epigenome-Wide Association Studies
4. Discussion
| Loci | BPD vs. HC | Global Severity | BPD Symptoms | Depressive Symptoms | Anxiety Symptoms | Impulsivity | Dissociative Symptoms | Emotional Abuse | Physical Abuse | Sexual Abuse | Emotional Neglect | Physical Neglect | Total Trauma Score | Number of Adversities |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| NR3C1 (exon 1F) | *↓/↑* | ↑ | (=) | (=) | *↓/(=)* | *↑/(=)* | *↑/(=)* | *↑(/=)* | *↑/(=)* | *(=)* | ↑ | |||
| NR3C1 (exon 1H) | ↓ | |||||||||||||
| NR3C1 (exon 1C) | ↑ | |||||||||||||
| FKBP5 (intron 7) | (=) | ↑ | (=) | ↑ | (=) | (=) | (=) | (=) | (=) | (=) | ||||
| BDNF (exon 1) | *↑* | ↑ | ↑ | |||||||||||
| BDNF (exon 4) | *↑/(=) blood ↑ saliva* | ↑ | ↑ | (=) | ||||||||||
| OPRK1 | ↓ | ↓ | ↓ | (=) | (=) | (=) | (=) | ↓ | ↓ | |||||
| MAOA | ↑ | |||||||||||||
| MAOB | (=) | |||||||||||||
| COMT | *↓/↑* | (=) | ||||||||||||
| ABPA3 | (=) | (=) | ||||||||||||
| MCF2 | (=) | ↓ | ||||||||||||
| PXDN | (=) | (=) | (=) | (=) | (=) | (=) | (=) | |||||||
| 5HTR2A | (=) | |||||||||||||
| 5HT3AR (response element) | (=) | (=) | (=) | ↓ | (=) | ↓ | ||||||||
| 5HT3AR (promotor) | (=) | ↑ | (=) | (=) | (=) | ↑ | ||||||||
| 5HT3AR (body) | (=) | ↑ | (=) | (=) | (=) | (=) | (=) | |||||||
| DRD2 | ↑ | |||||||||||||
| PRIMA1 | ↑ | |||||||||||||
| rDNA | ↓ |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
| BPD | Borderline Personality Disorder |
| HPA | Hypothalamic–pituitary–adrenal axis |
| BDNF | Brain-derived neurotrophic factor |
| MeSH | Medical Subject Headings |
| EWAS | Epigenome-wide association studies |
| HC | Healthy controls |
| MDD | Major Depressive Disorder |
| SAD | Social Anxiety Disorder |
| DE | Depressive Episode |
| ME | Mood Episode |
| PME | Psychotic Mood Episode |
| CTQ | Childhood Trauma Questionnaire |
| CTI | Childhood Trauma Adversities |
| FT | Fagerstrom Test |
| COBRA | Combined Bisulfite Restriction Analysis |
| BN | Bulimia Nervosa |
| ED | Eating Disorder |
| PTSD | Posttraumatic Stress Disorder |
| GR | Glucocorticoid Receptor |
| DBT | Dialectical-Behavioral Therapy |
References
- Leichsenring, F.; Fonagy, P.; Heim, N.; Kernberg, O.F.; Leweke, F.; Luyten, P.; Salzer, S.; Spitzer, C.; Steinert, C. Borderline Personality Disorder: A Comprehensive Review of Diagnosis and Clinical Presentation, Etiology, Treatment, and Current Controversies. World Psychiatry 2024, 23, 4–25. [Google Scholar] [CrossRef]
- Bohus, M.; Stoffers-Winterling, J.; Sharp, C.; Krause-Utz, A.; Schmahl, C.; Lieb, K. Borderline Personality Disorder. Lancet 2021, 398, 1528–1540. [Google Scholar] [CrossRef]
- Katrinli, S.; Wani, A.H.; Maihofer, A.X.; Ratanatharathorn, A.; Daskalakis, N.P.; Montalvo-Ortiz, J.; Núñez-Ríos, D.L.; Zannas, A.S.; Zhao, X.; Aiello, A.E.; et al. Epigenome-Wide Association Studies Identify Novel DNA Methylation Sites Associated with PTSD: A Meta-Analysis of 23 Military and Civilian Cohorts. Genome Med. 2024, 16, 147. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Bo, H.-H.; Liu, B.-P.; Jia, C.-X. The Associations between DNA Methylation and Depression: A Systematic Review and Meta-Analysis. J. Affect. Disord. 2023, 327, 439–450. [Google Scholar] [CrossRef]
- Yao, X.; Glessner, J.T.; Li, J.; Qi, X.; Hou, X.; Zhu, C.; Li, X.; March, M.E.; Yang, L.; Mentch, F.D.; et al. Integrative Analysis of Genome-Wide Association Studies Identifies Novel Loci Associated with Neuropsychiatric Disorders. Transl. Psychiatry 2021, 11, 69. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Yang, T.-H.O.; Dorie, V.; Zheng, T.; Anastassiou, D. Meta-Analysis of Expression and Methylation Signatures Indicates a Stress-Related Epigenetic Mechanism in Multiple Neuropsychiatric Disorders. Transl. Psychiatry 2019, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Porter, C.; Palmier-Claus, J.; Branitsky, A.; Mansell, W.; Warwick, H.; Varese, F. Childhood Adversity and Borderline Personality Disorder: A Meta-analysis. Acta Psychiatr. Scand. 2020, 141, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Thomas, N.; Gurvich, C.; Hudaib, A.-R.; Gavrilidis, E.; Kulkarni, J. Systematic Review and Meta-Analysis of Basal Cortisol Levels in Borderline Personality Disorder Compared to Non-Psychiatric Controls. Psychoneuroendocrinology 2019, 102, 149–157. [Google Scholar] [CrossRef]
- Khoury, J.E.; Enlow, M.B.; Plamondon, A.; Lyons-Ruth, K. The Association between Adversity and Hair Cortisol Levels in Humans: A Meta-Analysis. Psychoneuroendocrinology 2019, 103, 104–117. [Google Scholar] [CrossRef]
- Drews, E.; Fertuck, E.A.; Koenig, J.; Kaess, M.; Arntz, A. Hypothalamic-Pituitary-Adrenal Axis Functioning in Borderline Personality Disorder: A Meta-Analysis. Neurosci. Biobehav. Rev. 2019, 96, 316–334. [Google Scholar] [CrossRef]
- Watkeys, O.J.; Kremerskothen, K.; Quidé, Y.; Fullerton, J.M.; Green, M.J. Glucocorticoid Receptor Gene (NR3C1) DNA Methylation in Association with Trauma, Psychopathology, Transcript Expression, or Genotypic Variation: A Systematic Review. Neurosci. Biobehav. Rev. 2018, 95, 85–122. [Google Scholar] [CrossRef]
- Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a Biomarker for Successful Treatment of Mood Disorders: A Systematic & Quantitative Meta-Analysis. J. Affect. Disord. 2015, 174, 432–440. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Tu, M.; Ye, Y.; Li, M.; Ran, R.; Zou, Z. Brain-Derived Neurotrophic Factor Levels across Psychiatric Disorders: A Systemic Review and Network Meta-Analysis. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2024, 131, 110954. [Google Scholar] [CrossRef]
- Herhaus, B.; Heni, M.; Bloch, W.; Petrowski, K. Dynamic Interplay of Cortisol and BDNF in Males under Acute and Chronic Psychosocial Stress—A Randomized Controlled Study. Psychoneuroendocrinology 2024, 170, 107192. [Google Scholar] [CrossRef]
- Perroud, N.; Paoloni-Giacobino, A.; Prada, P.; Olié, E.; Salzmann, A.; Nicastro, R.; Guillaume, S.; Mouthon, D.; Stouder, C.; Dieben, K.; et al. Increased Methylation of Glucocorticoid Receptor Gene (NR3C1) in Adults with a History of Childhood Maltreatment: A Link with the Severity and Type of Trauma. Transl. Psychiatry 2011, 1, e59. [Google Scholar] [CrossRef] [PubMed]
- Martín-Blanco, A.; Ferrer, M.; Soler, J.; Salazar, J.; Vega, D.; Andión, O.; Sanchez-Mora, C.; Arranz, M.J.; Ribases, M.; Feliu-Soler, A.; et al. Association between Methylation of the Glucocorticoid Receptor Gene, Childhood Maltreatment, and Clinical Severity in Borderline Personality Disorder. J. Psychiatr. Res. 2014, 57, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Flasbeck, V.; Brüne, M. Association between Childhood Maltreatment, Psychopathology and DNA Methylation of Genes Involved in Stress Regulation: Evidence from a Study in Borderline Personality Disorder. PLoS ONE 2021, 16, e0248514. [Google Scholar] [CrossRef] [PubMed]
- Perroud, N.; Salzmann, A.; Prada, P.; Nicastro, R.; Hoeppli, M.-E.; Furrer, S.; Ardu, S.; Krejci, I.; Karege, F.; Malafosse, A. Response to Psychotherapy in Borderline Personality Disorder and Methylation Status of the BDNF Gene. Transl. Psychiatry 2013, 3, e207. [Google Scholar] [CrossRef]
- Jamshidi, E.; Boström, A.E.D.; Wilczek, A.; Nilsonne, Å.; Åsberg, M.; Jokinen, J. Increased Methylation of Brain-Derived Neurotrophic Factor (BDNF) Is Related to Emotionally Unstable Personality Disorder and Severity of Suicide Attempt in Women. Cells 2023, 12, 350. [Google Scholar] [CrossRef]
- Groleau, P.; Joober, R.; Israel, M.; Zeramdini, N.; DeGuzman, R.; Steiger, H. Methylation of the Dopamine D2 Receptor (DRD2) Gene Promoter in Women with a Bulimia-Spectrum Disorder: Associations with Borderline Personality Disorder and Exposure to Childhood Abuse. J. Psychiatr. Res. 2014, 48, 121–127. [Google Scholar] [CrossRef]
- Dammann, G.; Teschler, S.; Haag, T.; Altmüller, F.; Tuczek, F.; Dammann, R.H. Increased DNA Methylation of Neuropsychiatric Genes Occurs in Borderline Personality Disorder. Epigenetics 2011, 6, 1454–1462. [Google Scholar] [CrossRef] [PubMed]
- Teschler, S.; Gotthardt, J.; Dammann, G.; Dammann, R.H. Aberrant DNA Methylation of rDNA and PRIMA1 in Borderline Personality Disorder. Int. J. Mol. Sci. 2016, 17, 67. [Google Scholar] [CrossRef] [PubMed]
- Arranz, M.J.; Gallego-Fabrega, C.; Martín-Blanco, A.; Soler, J.; Elices, M.; Dominguez-Clavé, E.; Salazar, J.; Vega, D.; Briones-Buixassa, L.; Pascual, J.C. A Genome-Wide Methylation Study Reveals X Chromosome and Childhood Trauma Methylation Alterations Associated with Borderline Personality Disorder. Transl. Psychiatry 2021, 11, 5. [Google Scholar] [CrossRef]
- Edelmann, S.; Balaji, J.; Pasche, S.; Wiegand, A.; Nieratschker, V. DNA Methylation of PXDN Is Associated with Early-Life Adversity in Adult Mental Disorders. Biomolecules 2024, 14, 976. [Google Scholar] [CrossRef]
- Prados, J.; Stenz, L.; Courtet, P.; Prada, P.; Nicastro, R.; Adouan, W.; Guillaume, S.; Olié, E.; Aubry, J.-M.; Dayer, A.; et al. Borderline Personality Disorder and Childhood Maltreatment: A Genome-wide Methylation Analysis. Genes Brain Behav. 2015, 14, 177–188. [Google Scholar] [CrossRef]
- Moser, D.A.; Müller, S.; Hummel, E.M.; Limberg, A.S.; Dieckmann, L.; Frach, L.; Pakusch, J.; Flasbeck, V.; Brüne, M.; Beygo, J.; et al. Targeted Bisulfite Sequencing: A Novel Tool for the Assessment of DNA Methylation with High Sensitivity and Increased Coverage. Psychoneuroendocrinology 2020, 120, 104784. [Google Scholar] [CrossRef]
- Teschler, S.; Bartkuhn, M.; Künzel, N.; Schmidt, C.; Kiehl, S.; Dammann, G.; Dammann, R. Aberrant Methylation of Gene Associated CpG Sites Occurs in Borderline Personality Disorder. PLoS ONE 2013, 8, e84180. [Google Scholar] [CrossRef]
- Steiger, H.; Labonté, B.; Groleau, P.; Turecki, G.; Israel, M. Methylation of the Glucocorticoid Receptor Gene Promoter in Bulimic Women: Associations with Borderline Personality Disorder, Suicidality, and Exposure to Childhood Abuse. Int. J. Eat. Disord. 2013, 46, 246–255. [Google Scholar] [CrossRef]
- Thomas, M.; Banet, N.; Wallisch, A.; Glowacz, K.; Becker-Sadzio, J.; Gundel, F.; Nieratschker, V. Differential COMT DNA Methylation in Patients with Borderline Personality Disorder: Genotype Matters. Eur. Neuropsychopharmacol. 2019, 29, 1295–1300. [Google Scholar] [CrossRef]
- Gescher, D.M.; Schanze, D.; Vavra, P.; Wolff, P.; Zimmer-Bensch, G.; Zenker, M.; Frodl, T.; Schmahl, C. Differential Methylation of OPRK1 in Borderline Personality Disorder Is Associated with Childhood Trauma. Mol. Psychiatry 2024, 29, 3734–3741. [Google Scholar] [CrossRef]
- Knoblich, N.; Gundel, F.; Brückmann, C.; Becker-Sadzio, J.; Frischholz, C.; Nieratschker, V. DNA Methylation of APBA3 and MCF2 in Borderline Personality Disorder: Potential Biomarkers for Response to Psychotherapy. Eur. Neuropsychopharmacol. 2018, 28, 252–263. [Google Scholar] [CrossRef]
- Gescher, D.M.; Kahl, K.G.; Hillemacher, T.; Frieling, H.; Kuhn, J.; Frodl, T. Epigenetics in Personality Disorders: Today’s Insights. Front. Psychiatry 2018, 9, 579. [Google Scholar] [CrossRef]
- Thomas, M.; Knoblich, N.; Wallisch, A.; Glowacz, K.; Becker-Sadzio, J.; Gundel, F.; Brückmann, C.; Nieratschker, V. Increased BDNF Methylation in Saliva, but Not Blood, of Patients with Borderline Personality Disorder. Clin. Epigenetics 2018, 10, 109. [Google Scholar] [CrossRef] [PubMed]
- Perroud, N.; Zewdie, S.; Stenz, L.; Adouan, W.; Bavamian, S.; Prada, P.; Nicastro, R.; Hasler, R.; Nallet, A.; Piguet, C.; et al. Methylation of Serotonin Receptor 3a in ADHD, Borderline Personality, and Bipolar Disorders: Link with Severity of the Disorders and Childhood Maltreatment. Dépress. Anxiety 2016, 33, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dalan, E.; Carless, M.A. Analysis of DNA methylation using pyrosequencing. Epigenet. Methods 2020, 18, 37–62. [Google Scholar] [CrossRef]
- Nakabayashi, K. The Illumina Infinium methylation assay for genome-wide methylation analyses. Epigenet. Methods 2020, 18, 117–140. [Google Scholar] [CrossRef]
- Humphreys, K.L.; LeMoult, J.; Wear, J.G.; Piersiak, H.A.; Lee, A.; Gotlib, I.H. Child Maltreatment and Depression: A Meta-Analysis of Studies Using the Childhood Trauma Questionnaire. Child Abus. Negl. 2020, 102, 104361. [Google Scholar] [CrossRef]
- Bernstein, D.P.; Stein, J.A.; Newcomb, M.D.; Walker, E.; Pogge, D.; Ahluvalia, T.; Stokes, J.; Handelsman, L.; Medrano, M.; Desmond, D.; et al. Development and Validation of a Brief Screening Version of the Childhood Trauma Questionnaire. Child Abus. Negl. 2003, 27, 169–190. [Google Scholar] [CrossRef]
- Vrshek-Schallhorn, S.; Wolitzky-Taylor, K.; Doane, L.D.; Epstein, A.; Sumner, J.A.; Mineka, S.; Zinbarg, R.E.; Craske, M.G.; Isaia, A.; Hammen, C.; et al. Validating New Summary Indices for the Childhood Trauma Interview: Associations with First Onsets of Major Depressive Disorder and Anxiety Disorders. Psychol. Assess. 2014, 26, 730–740. [Google Scholar] [CrossRef]
- Davies, T.H.; Ning, Y.-M.; Sánchez, E.R. A New First Step in Activation of Steroid Receptors Hormone-Induced Switching of Fkbp51 and Fkbp52 Immunophilins. J. Biol. Chem. 2002, 277, 4597–4600. [Google Scholar] [CrossRef]
- Schiene-Fischer, C.; Yu, C. Receptor Accessory Folding Helper Enzymes: The Functional Role of Peptidyl Prolyl Cis/Trans Isomerases. FEBS Lett. 2001, 495, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Wochnik, G.M.; Rüegg, J.; Abel, G.A.; Schmidt, U.; Holsboer, F.; Rein, T. FK506-Binding Proteins 51 and 52 Differentially Regulate Dynein Interaction and Nuclear Translocation of the Glucocorticoid Receptor in Mammalian Cells*. J. Biol. Chem. 2005, 280, 4609–4616. [Google Scholar] [CrossRef] [PubMed]
- Zannas, A.S.; Wiechmann, T.; Gassen, N.C.; Binder, E.B. Gene–Stress–Epigenetic Regulation of FKBP5: Clinical and Translational Implications. Neuropsychopharmacology 2016, 41, 261–274. [Google Scholar] [CrossRef]
- Giannoulis, E.; Nousis, C.; Sula, I.-J.; Georgitsi, M.-E.; Malogiannis, I. Understanding the Borderline Brain: A Review of Neurobiological Findings in Borderline Personality Disorder (BPD). Biomedicines 2025, 13, 1783. [Google Scholar] [CrossRef] [PubMed]
- McGowan, P.O.; Sasaki, A.; D’Alessio, A.C.; Dymov, S.; Labonté, B.; Szyf, M.; Turecki, G.; Meaney, M.J. Epigenetic Regulation of the Glucocorticoid Receptor in Human Brain Associates with Childhood Abuse. Nat. Neurosci. 2009, 12, 342–348. [Google Scholar] [CrossRef]
- Labonte, B.; Yerko, V.; Gross, J.; Mechawar, N.; Meaney, M.J.; Szyf, M.; Turecki, G. Differential Glucocorticoid Receptor Exon 1B, 1C, and 1H Expression and Methylation in Suicide Completers with a History of Childhood Abuse. Biol. Psychiatry 2012, 72, 41–48. [Google Scholar] [CrossRef]
- Daskalakis, N.P.; Yehuda, R. Site-Specific Methylation Changes in the Glucocorticoid Receptor Exon 1F Promoter in Relation to Life Adversity: Systematic Review of Contributing Factors. Front. Neurosci. 2014, 8, 369. [Google Scholar] [CrossRef]
- Zheleznyakova, G.Y.; Cao, H.; Schiöth, H.B. BDNF DNA Methylation Changes as a Biomarker of Psychiatric Disorders: Literature Review and Open Access Database Analysis. Behav. Brain Funct. 2016, 12, 17. [Google Scholar] [CrossRef]
- Kim, T.Y.; Kim, S.J.; Chung, H.G.; Choi, J.H.; Kim, S.H.; Kang, J.I. Epigenetic Alterations of the BDNF Gene in Combat-related Post-traumatic Stress Disorder. Acta Psychiatr. Scand. 2017, 135, 170–179. [Google Scholar] [CrossRef]
- Mitchelmore, C.; Gede, L. Brain Derived Neurotrophic Factor: Epigenetic Regulation in Psychiatric Disorders. Brain Res. 2014, 1586, 162–172. [Google Scholar] [CrossRef]
- Magallón-Neri, E.M.; Forns, M.; Canalda, G.; Fuente, J.E.D.L.; García, R.; González, E.; Lara, A.; Castro-Fornieles, J. Usefulness of the International Personality Disorder Examination Screening Questionnaire for Borderline and Impulsive Personality Pathology in Adolescents. Compr. Psychiatry 2013, 54, 301–308. [Google Scholar] [CrossRef]
- Wall, K.; Sharp, C.; Ahmed, Y.; Goodman, M.; Zanarini, M.C. Parent–Adolescent Concordance on the Revised Diagnostic Interview for Borderlines (DIB-R) and the Childhood Interview for Borderline Personality Disorder (CI-BPD). Pers. Ment. Health 2017, 11, 179–188. [Google Scholar] [CrossRef]
- Semaan, F.; Croarkin, P.E. The McLean Screening Instrument for Borderline Personality Disorder: A Review. J. Psychiatr. Pract. 2025, 31, 20–23. [Google Scholar] [CrossRef] [PubMed]
- Kleindienst, N.; Jungkunz, M.; Bohus, M. A Proposed Severity Classification of Borderline Symptoms Using the Borderline Symptom List (BSL-23). Borderline Pers. Disord. Emot. Dysregulation 2020, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-P.; Gorenstein, C. Psychometric Properties of the Beck Depression Inventory-II: A Comprehensive Review. Rev. Bras. Psiquiatr. 2013, 35, 416–431. [Google Scholar] [CrossRef]
- Kocalevent, R.-D.; Finck, C.; Pérez-Trujillo, M.; Sautier, L.; Zill, J.; Hinz, A. Standardization of the Beck Hopelessness Scale in the General Population. J. Ment. Health 2017, 26, 516–522. [Google Scholar] [CrossRef]
- Barratt, E.S. Factor Analysis of Some Psychometric Measures of Impulsiveness and Anxiety. Psychol. Rep. 1965, 16, 547–554. [Google Scholar] [CrossRef]
- Kostaras, P.; Martinaki, S.; Asimopoulos, C.; Maltezou, M.; Papageorgiou, C. The Use of the Symptom Checklist 90-R in Exploring the Factor Structure of Mental Disorders and the Neglected Fact of Comorbidity. Psychiatry Res. 2020, 294, 113522. [Google Scholar] [CrossRef]
- Ross, M. THE PREDICTION OF SUICIDE Edited by Aaron T. Beck, M.D., Harvey L. P. Resnik, M.D., and Dan J. Lettieri, Ph.d.; Charles Press, Bowie, Maryland, 1974, 249 Pages, $12.95. Psychiatr. Serv. 1975, 26, 45–46. [Google Scholar] [CrossRef]
- Ward, M.F.; Wender, P.H.; Reimherr, F.W. The Wender Utah Rating Scale: An Aid in the Retrospective Diagnosis of Childhood Attention Deficit Hyperactivity Disorder [Published Erratum Appears in Am J Psychiatry 1993 Aug;150(8):1280]. Am. J. Psychiatry 1993, 150, 885–890. [Google Scholar] [CrossRef]
- Zanarini, M.C.; Vujanovic, A.A.; Parachini, E.A.; Boulanger, J.L.; Frankenburg, F.R.; Hennen, J. Zanarini Rating Scale For Borderline Personality Disorder (ZAN-BPD): A Continuous Measure of DSM-IV Borderline Psychopathology. J. Pers. Disord. 2003, 17, 233–242. [Google Scholar] [CrossRef]
- Forgays, D.G.; Forgays, D.K.; Spielberger, C.D. Factor Structure of the State-Trait Anger Expression Inventory. J. Pers. Assess. 1997, 69, 497–507. [Google Scholar] [CrossRef]
- Åsberg, M.; Montgomery, S.A.; Perris, C.; Schalling, D.; Sedvall, G. A Comprehensive Psychopathological Rating Scale. Acta Psychiatr. Scand. 1978, 57, 5–27. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. MetaArXiv 2020. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawidowski, B.; Franczak, Ł.; Podwalski, P.; Michalczyk, A.; Łupkowska-Grygorcewicz, A.; Piotrowska, O.; Samochowiec, J. The Epigenetic Landscape of Borderline Personality Disorder: Insights from a Systematic Review. J. Clin. Med. 2025, 14, 8182. https://doi.org/10.3390/jcm14228182
Dawidowski B, Franczak Ł, Podwalski P, Michalczyk A, Łupkowska-Grygorcewicz A, Piotrowska O, Samochowiec J. The Epigenetic Landscape of Borderline Personality Disorder: Insights from a Systematic Review. Journal of Clinical Medicine. 2025; 14(22):8182. https://doi.org/10.3390/jcm14228182
Chicago/Turabian StyleDawidowski, Bartosz, Łukasz Franczak, Piotr Podwalski, Anna Michalczyk, Aleksandra Łupkowska-Grygorcewicz, Oliwia Piotrowska, and Jerzy Samochowiec. 2025. "The Epigenetic Landscape of Borderline Personality Disorder: Insights from a Systematic Review" Journal of Clinical Medicine 14, no. 22: 8182. https://doi.org/10.3390/jcm14228182
APA StyleDawidowski, B., Franczak, Ł., Podwalski, P., Michalczyk, A., Łupkowska-Grygorcewicz, A., Piotrowska, O., & Samochowiec, J. (2025). The Epigenetic Landscape of Borderline Personality Disorder: Insights from a Systematic Review. Journal of Clinical Medicine, 14(22), 8182. https://doi.org/10.3390/jcm14228182

