Predictive Value of Adiponectin for Long-Term MACEs in Non-Diabetic STEMI Patients
Abstract
1. Introduction
2. Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Risk Factors and MACEs
3.3. Adiponectin and MACEs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nguyen, T.M. Adiponectin: Role in physiology and pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [CrossRef]
- Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 1995, 270, 26746–26749. [Google Scholar] [CrossRef]
- Maeda, K.; Okubo, K.; Shimomura, I.; Funahashi, T.; Matzusawa, Y. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem. Biophys. Res. Commun. 1996, 221, 286–289. [Google Scholar] [CrossRef]
- Nakano, Y.; Tobe, T.; Choi-Miura, N.H.; Mazda, T.; Tomita, M. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. J. Biochem. 1996, 120, 803–812. [Google Scholar] [CrossRef]
- Pineiro, R.; Iglesias, M.J.; Gallego, R.; Raghay, K.; Eliras, S.; Rubio, J.; Diéguez, C.; Gualillo, O.; Gonzalez-Juanatey, J.R.; Lago, F. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS Lett. 2005, 579, 5163–5169. [Google Scholar] [CrossRef] [PubMed]
- Crosson, S.M.; Marques, A.; Dib, P.; Dotson, C.D.; Munger, S.D.; Zolotukhin, S. Taste receptor cells in mice express receptors for the hormone adiponectin. Chem. Senses 2019, 44, 409–422. [Google Scholar] [CrossRef]
- Yamauchi, T.; Kamon, J.; Ito, Y.; Tsuchida, A.; Yokomizo, T.; Kita, S.; Sugiyama, T.; Miyagishi, M.; Hara, K.; Tsunoda, M.; et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003, 423, 762–769. [Google Scholar] [CrossRef]
- Hug, C.H.; Wang, J.; Ahmad, N.S.; Bogan, J.S.; Tsao, T.S.; Lodish, H.F. T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. USA 2004, 101, 10308–10313. [Google Scholar] [CrossRef]
- Obata, Y.; Kita, S.; Koyama, Y.; Fukuda, S.; Takeda, H.; Takahashi, M.; Fujishima, Y.; Nagao, H.; Masuda, S.; Tanaka, Y.; et al. Adiponectin/T-cadherin system enhances exosome biogenesis and decreases cellular ceramides by exosomal release. JCI Insight 2018, 3, e99680. [Google Scholar] [CrossRef]
- Denzel, M.S.; Scimia, M.; Zumstein, P.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-catherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Investig. 2010, 120, 4342–4352. [Google Scholar] [CrossRef]
- Jung, H.N.; Jung, C.H. The role of anti-inflammatory adipokines in cardiometabolic disorders: Moving beyond adiponectin. Int. J. Mol. Sci. 2021, 22, 13529. [Google Scholar] [CrossRef]
- Krasniqi, X.; Vincelj, J.; Kocinaj, D.; Bakalli, A. Evaluative Value of Apelin-12 in Acute Myocardial Infarction. Int. Cardiovasc. Res. J. 2023, 17, e139796. [Google Scholar]
- Han, L.; Shen, W.J.; Bittner, S.; Kraemer, F.B.; Azhar, S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part I PPAR-α. Future Cardiol. 2017, 13, 259–278. [Google Scholar] [CrossRef]
- Marfella, R.; D’Amico, M.; Di Filippo, C.; Piegari, E.; Nappo, F.; Esposito, K.; Berrino, L.; Rossi, F.; Giugliano, D. Myocardial infarction in diabetic rats: Role of hyperglycemia on infarct size and early expression of hypoxia-inducible factor 1. Diabetologia 2002, 45, 1172–1181. [Google Scholar]
- Nicholls, S.J.; Uno, K. Peroxisome proliferator-activated receptor (PPARα/γ) agonists as a potential target to reduce cardiovascular risk in diabetes. Diab Vasc. Dis. Res. 2012, 9, 89–94. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, L.; Zhong, N.; Wen, D.; Liu, L. Multifaced roles of adipokines in endothelial cell function. Front. Endocrinol. 2024, 15, 1490143. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Maeda, K.; Kuryama, H.; Okamoto, Y.; Hotta, K.; Nishida, M.; Takahashi, M.; Nakamura Tet, a.l. Novel modulator for endothelial adhesion molecules adipocyte- derived plasma protein adiponectin. Circulation 1999, 100, 2473–2476. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Okamoto, Y.; Maeda, K.; Kuriyama, H.; Hotta, K.; Nishida, M.; Takahashi, M.; Muraguchi, M.; et al. Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kB signaling through a cAMP-dependent pathway. Circulation 2000, 102, 1296–1301. [Google Scholar] [CrossRef]
- Roy, I.; Jover, E.; Matilla, L.; Alvarez, V.; Fernández-Celis, A.; Beunza, M.; Escribano, E.; Gainza, A.; Sádaba, R.; López-Andrés, N. Soluble ST2 as a new oxidative stress and inflammation marker in metabolic syndrome. Int. J. Environ. Res. Public Health 2023, 20, 2579. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Y.; Luo, L.; Wu, D.; Ding, X.; Zheng, H.; Wu, H.; Liu, B.; Yang, X.; Silva, F.; et al. Adiponectin restrains ILC2 activation by AMPK-mediated feedback inhibi-tion of IL-33 signaling. J. Exp. Med. 2021, 218, e20191054. [Google Scholar] [CrossRef] [PubMed]
- Cersosimo, E.; Xu, X.; Terasawa, T.; Dong, L.Q. Anti-inflammatory and anti-proliferative action of adiponectin mediated by insulin signaling cascade in human vascular smooth muscle cells. Mol. Biol. Rep. 2020, 47, 6561–6572. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Qiu, S.; Yang, G.; Wu, Q. Adiponectin and metabolic cardiovascular diseases: Therapeutic opportunities and challenges. Genes. Dis. 2023, 10, 1525–1536. [Google Scholar] [CrossRef]
- Okamoto, Y.; Kihara, S.; Ouchi, N.; Nishida, M.; Arita, Y.; Kumada, M.; Ohashi, K.; Sakai, N.; Shimomura, I.; Kobayashi, H.; et al. Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 2002, 10, 2767–2770. [Google Scholar] [CrossRef]
- Diez, J.J.; Iglesias, P. The role of the novel adipocite-derived hormone adiponectin in human disease. Eur. J. Endocrinol. 2003, 148, 293–300. [Google Scholar] [CrossRef]
- Kakino, A.; Fujita, Y.; Ke, L.Y.; Chan, H.C.; Tsai, M.H.; Dai, C.Y.; Chen, C.-H.; Sawamura, T. Adiponectin forms a complex with atherogenic LDL and inhibits its downstream effects. J. Lipid Res. 2021, 62, 100001. [Google Scholar] [CrossRef]
- Steinberg, D.; Witztum, J.L. Lipoproteins and atherogenesis: Current concepts. JAMA 1990, 264, 3047–3052. [Google Scholar] [CrossRef]
- Tsimikas, S. Oxidized low-density lipoprotein. Curr. Atheroscler. Rep. 2006, 8, 55–61. [Google Scholar] [CrossRef]
- Penny, W.F.; Ben-Yehuda, O.; Kuroe, K.; Long, J.; Bond, A.; Bhargava, V.; Peterson, J.F.; McDaniel, M.; Juliano, J.; Witztum, J.L.; et al. Improvement of coronary artery endothelial dysfunction with lipid-lowering therapy: Heterogeneity of segmental response and correlation with plasma-oxidized low density lipoprotein. J. Am. Coll. Cardiol. 2001, 37, 766–774. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Romeo, F.; Sawamura, T.; Saldeen, T.; Mehta, J. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: Role of LOX-1. J. Pharmacol. Exp. Ther. 2002, 302, 601–605. [Google Scholar] [CrossRef]
- Shatrov, V.A.; Sumbayev, V.V.; Zhou, J.; Brüne, B. Oxidized low-density lipoprotein (oxLDL) triggers hypoxia-inducible factor-1α (HIF-1α) accumulation via redox-dependent mechanisms. Blood J. 2003, 101, 4847–4849. [Google Scholar] [CrossRef]
- Sargolzaei, J.; Chamani, E.; Kazemi, T.; Fallah, S.; Soori, H. The role of adiponectin and adipolin as anti-inflammatory adipokines in the formation of macrophage foam cells and their association with cardiovascular diseases. Clin. Biochem. 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Ouchi, N.; Kihara, S.; Arita, Y.; Nishida, M.; Matsuyama, A.; Okamoto, Y.; Ishigami, M.; Kuriyama, H.; Kishida, K.; Nishizawa, H. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 2001, 103, 1057–1063. [Google Scholar] [CrossRef]
- Tabari, F.S.; Karimian, A.; Parsian, H.; Rameshknia, V.; Mahmoodpour, A.; Majidinia, M.; Maniati, M.; Yousefi, B. The roles of FGF21 in atherosclerosis pathogenesis. Rev. Endocr. Metab. Disord. 2019, 20, 103–114. [Google Scholar] [CrossRef]
- Hui, X.; Feng, T.; Liu, Q.; Gao, Y.; Xu, A. The FGF21–adiponectin axis in controlling energy and vascular homeostasis. J. Mol. Cell Biol. 2016, 8, 110–119. [Google Scholar] [CrossRef]
- Lin, Z.; Pan, X.; Wu, F.; Ye, D.; Zhang, Y.; Wang, Y.; Jin, L.; Lian, Q.; Huang, Y.; Ding, H.; et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory element-binding protein-2 and induction of adiponectin in mice. Circulation 2015, 131, 1861–1871. [Google Scholar] [CrossRef]
- Shibata, R.; Sato, K.; Pimentel, D.R.; Takemura, Y.; Kihara, S.; Ohashi, K.; Funahashi, T.; Ouchi, N.; Walsh, K. Adiponectin protects against myocardial ischemia–reperfusion injury through AMPK- and COX-2 dependent mechanism. Nat. Med. 2005, 11, 1096–1103. [Google Scholar] [CrossRef]
- Kalisz, M.; Baranowska, B.; Wolińska-Witort, E.; Mączewski, M.; Mackiewicz, U.; Tułacz, D.; Gora, M.; Martyńska, L.; Bik, W. Total and high molecular weight adiponectin levels in the rat model of post-myocardial infarction heart failure. J. Physiol. Pharmacol. 2015, 66, 673–680. [Google Scholar]
- Zaidi, H.; Aksnes, T.; Åkra, S.; Eggesbø, H.B.; Byrkjeland, R.; Seljeflot, I.; Opstad, T.B. Abdominal adipose tissue associates with adiponectin and TNFα in middle-aged healthy men. Front. Endocrinol. 2022, 13, 874977. [Google Scholar] [CrossRef]
- Bryant, D.; Becker, L.; Richardson, J.; Shelton, J.; Franco, F.; Peschock, R.; Thompson, M.; Giroir, B. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor-alpha. Circulation 1998, 97, 1375–1381. [Google Scholar] [CrossRef]
- Sugano, M.; Hata, T.; Tsuchida, K.; Suematsu, N.; Oyama, J.; Satoh, S.; Makino, N. Local delivery of soluble TNF-α receptor 1gene reduces infarct size following ischemia/reperfusion injury in rats. Mol. Cell Biochem. 2004, 266, 127–132. [Google Scholar] [CrossRef]
- Shibata, R.; Izumiya, Y.; Sato, K.; Papanicolaou, K.; Kihara, S.; Colluci, W.; Sam, F.; Ouchi, N.; Walsh, K. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. J. Mol. Cell Cardiol. 2007, 42, 1065–1074. [Google Scholar] [CrossRef]
- Norvik, J.V.; Schirmer, H.; Ytrehus, K.; Jenssen, T.G.; Zykova, S.N.; Eggen, A.E.; Eriksen, B.O.; Solbu, M.D. Low adiponectin is associated with diastolic dysfunction in women: A cross-sectional study from the Tromsø Study. BMC Cardiovasc. Disord. 2017, 17, 79. [Google Scholar] [CrossRef]
- Cavusoglu, E.; Chobra, V.; Battala, V.; Ruwende, C.; Yanamadala, S.; Eng, C.; Pinsky, D.J.; Marmur, J.D. Baseline plasma adiponectin levels as a predictor of left ventricular dysfunction in patient referred for coronary angiography. Am. J. Cardiol. 2008, 101, 1073–1078. [Google Scholar] [CrossRef]
- Pappachan, J.M.; Varughese, G.I.; Sriraman, R.; Arunagirinathan, G. Diabetic cardiomyopathy: Pathophysiology, diagnostic evaluation and management. World J. Diabetes 2013, 4, 177–189. [Google Scholar] [CrossRef]
- Joki, Y.; Ohashi, K.; Yuasa, D.; Shibata, R.; Ito, M.; Matsuo, K.; Kambara, T.; Uemura, Y.; Hayakawa, S.; Hiramatsu-Ito, M.; et al. FGF21 attenuates pathological myo-cardial remodeling following myocardial infarction through the adiponectin-dependent mecha-nism. Biochem. Biophys. Res. Commun. 2015, 459, 124–130. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Spadafora, L.; Pastena, P.; Cacciatore, S.; Betti, M.; Biondi-Zoccai, G.; D’Ascenzo, F.; De Ferrari, G.M.; De Filippo, O.; Versaci, F.; Sciarretta, S.; et al. One-Year Prognostic Differences and Management Strategies between ST-Elevation and Non-ST-Elevation Myocardial Infarction: Insights from the PRAISE Registry. Am. J. Cardiovasc. Drugs 2025, 25, 681–691. [Google Scholar] [CrossRef]
- Sousa-Uva, M.; Neumann, F.J.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. J. Cardiothorac. Surg. 2019, 55, 4–90. [Google Scholar] [CrossRef]
- Krasniqi, X.; Bakalli, A.; Vincelj, J.; Berisha, B.; Sejdiu Basri Zijabeg, D. Predictive value of adiponectin on long term MACE in STEMI patients. Anatol. J. Cardiol. 2024, 28 (Suppl. 1), S1–S185. [Google Scholar]
- Nakamura, N.; Naruse, K.; Matsuki, T.; Hamada, Y.; Nakashima, E.; Kamiya, H.; Matsubara, T.; Enomoto, A.; Takahashi, M.; Oiso, Y.; et al. Adiponectin promotes migration activities of endothelial progenitor cells via Cdc42/Rac1. FEBS Lett. 2009, 583, 2457–2463. [Google Scholar] [CrossRef]
- Wang, S.; Miao, J.; Qu, M.; Yang, G.Y.; Shen, L. Adiponectin modulates the function of endothelial progenitor cells via AMPK/eNOS signaling pathway. Biochem. Biophys. Res. Commun. 2017, 493, 64–70. [Google Scholar] [CrossRef]
- Refaat, H.; Tantawy, A. Low plasma adiponectin levels are associated with vulnerable plaque features in patients with acute coronary syndrome: An optical coherence tomography study. Cardiovasc. Revasc Med. 2021, 25, 63–71. [Google Scholar] [CrossRef]
- Parker-Duffen, J.L.; Nakamura, K.; Silver, M.; Zuriaga, M.A.; MacLauchlan, S.; Aprahamian, T.R.; Walsh, K. Divergent roles for adiponectin receptor 1 (AdipoR1) and AdipoR2 in mediating revascularization and metabolic dysfunction in vivo. J. Biol. Chem. 2014, 289, 16200–16213. [Google Scholar] [CrossRef]
- Lim, S.; Quon, M.J.; Koh, K.K. Modulation of adiponectin as a potential therapeutic strategy. Atherosclerosis 2014, 233, 721–728. [Google Scholar] [CrossRef]
- Puglisi, M.J.; Fernandez, M.L. Modulation of C-reactive protein, tumor necrosis factor-α, and adiponectin by diet, exercise, and weight loss. J. Nutr. 2008, 138, 2293–2296. [Google Scholar] [CrossRef]
- Coughlin, C.C.; Finck, B.N.; Eagon, J.C.; Halpin, V.J.; Magkos, F.; Mohammed, B.S.; Klein, S. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity 2007, 15, 640–645. [Google Scholar] [CrossRef]
- Sasso, F.C.; Pafundi, P.C.; Marfella, R.; Calabrò, P.; Piscione, F.; Furbatto, F.; Esposito, G.; Galiero, R.; Gragnano, F.; Rinaldi, L.; et al. Adiponectin and insulin resistance are related to restenosis and overall new PCI in subjects with normal glucose tolerance: The prospective AIRE Study. Cardiovasc. Diabetol. 2019, 18, 24. [Google Scholar] [CrossRef]
- Ouchi, N.; Kobayashi, H.; Kihara, S.; Kumada, M.; Sato, K.; Inoue, T.; Funahashi, T.; Walsh, K. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 2004, 279, 1304–1309. [Google Scholar] [CrossRef]
- Chen, H.; Montagnani, M.; Funahashi, T.; Shimomura, I.; Quon, M.J. Adiponectin stimulates production of nitric oxide in vascular endothelial cells. J. Biol. Chem. 2003, 278, 45021–45026. [Google Scholar] [CrossRef]
- Yuhanna, I.S.; Zhu, Y.; Cox, B.E.; Hahner, L.D.; Osborne-Lawrence, S.; Lu, P.; Marcel, Y.L.; Anderson, R.G.; Mendelsohn, M.E.; Hobbs, H.H.; et al. High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat. Med. 2001, 7, 853–857. [Google Scholar] [CrossRef]
- Nofer, J.R.; van der Giet, M.; Tolle, M.; Wolinska, I.; von Wnuck Lipinski, K.; Baba, H.; Tietge, U.J.; Gödecke, A.; Ishii, I.; Kleuser, B. HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J. Clin. Investig. 2004, 113, 569–581. [Google Scholar] [CrossRef]
- Drew, B.G.; Fidge, N.H.; Gallon-Beaumier, G.; Kemp, B.; Kingwell, B. High-density lipoprotein and apolipoprotein AI increase endothelial NO synthase activity by protein association and multisite phosphorylation. Proc. Natl. Acad. Sci. USA 2004, 101, 6999–7004. [Google Scholar] [CrossRef]
- Katsiki, N.; Mantzoros, C.S. Statins in relation to adiponectin: A significant association with clinical implications. Atherosclerosis 2016, 253, 270–272. [Google Scholar] [CrossRef]
- Celermajer, D.; Chow, C.; Marijon, E.; Anstey, N.; Woo, K. Cardiovascular Disease in the Developing World: Prevalences, Patterns, and the potential of Early Disease Detection. J. Am. Coll. Cardiol. 2012, 60, 1207–1216. [Google Scholar] [CrossRef] [PubMed]
- Omelchenko, E.; Gavish, D.; Shargorodsky, M. Adiponectin is better predictor of subclinical atherosclerosis than liver function tests in patients with nonalcoholic fatty liver disease. J. Am. Soc. Hypertens. 2014, 8, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Zusi, C.; Csermely, A.; Rinaldi, E.; Bertoldo, K.; Bonetti, S.; Boselli, M.L.; Travia, D.; Bonora, E.; Bonadonna, R.C.; Trombetta, M. Crosstalk between genetic variability of adiponectin and leptin, glucose--insulin system and subclinical atherosclerosis in patients with newly diagnosed type 2 diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study 14. Diabetes Obes. Metab. 2023, 25, 2650–2658. [Google Scholar] [CrossRef]
- Berezin, A.E.; Berezin, A.A. Adverse Cardiac Remodelling after Acute Myocardial Infarction: Old and New Biomarkers. Dis. Markers 2020, 2020, 1215802. [Google Scholar] [CrossRef]
- Kercheva, M.; Ryabova, T.; Gusakova, A.; Suslova, T.E.; Ryabov, V.; Karpov, R.S. Serum Soluble ST2 and Adverse Left Ventricular Remodeling in Patients with ST-Segment Elevation Myocardial Infarction. Clin. Med. Insights Cardiol. 2019, 13, 1179546819842804. [Google Scholar] [CrossRef]
- Barbarash, O.; Gruzdeva, O.; Uchasova, E.; Dyleva, Y.; Belik, E.; Akbasheva, O.; Karetnikova, V.; Shilov, A. Prognostic Value of Soluble ST2 During Hospitalization for ST-Segment Elevation Myocardial Infarction. Ann. Lab. Med. 2016, 36, 313–319. [Google Scholar] [CrossRef]
- Bahit, M.C.; Kochar, A.; Granger, C.B. Post-Myocardial Infarction Heart Failure. JACC Heart Fail. 2018, 6, 179–186. [Google Scholar] [CrossRef]
- Mehran, R.; Steg, P.G.; Pfeffer, M.A.; Jering, K.; Claggett, B.; Lewis, E.F.; Granger, C.; Køber, L.; Maggioni, A.; Mann, D.L.; et al. The Effects of Angiotensin Receptor-Neprilysin Inhibition on Major Coronary Events in Patients with Acute Myocardial Infarction: Insights from the PARADISE-MI Trial. Circulation 2022, 146, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Berisha, B. Influence of Adiponectin and Glycated Hemoglobin in Prediction of Major Adverse Cardiac Events in Non-Diabetic Patients After ST-Segment Elevation Myocardial Infarction. Ph.D. Thesis, University of Zagreb, School of Medicine, Zagreb, Croatia, 2022. [Google Scholar]
- Krasniqi, X.; Bakalli, A.; Kocinaj, D.; Krasniqi, F.; Vincelj, J. Identifying biomarkers and establishing their threshold values concordantly with LV remodeling for predicting long-term MACE following STEMI. Eur. Heart J. Cardiovasc. Imaging 2025, 26 (Suppl. 1), jeae333.088. [Google Scholar] [CrossRef]






| Characteristics | Adiponectin ≤ 1.8 ng/mL (n = 41) | Adiponectin > 1.8 ng/mL (n = 32) | p-Value |
|---|---|---|---|
| Age, years | 59.68 (±10.68) | 60.14 (±11.75) | 0.78 |
| Gender, n (%) | 20 (27.39) | 25 (34.24) | 0.42 |
| BMI (kg/m2) | 26.66 (3.57) | 29.00 (4.05) | 0.003 |
| Hypertension, n (%) | 18 (24.65) | 25 (34.24) | 0.99 |
| Smoking, n (%) | 16 (21.91) | 21 (28.76) | 0.91 |
| Ejection fraction, % | 51.59 (±9.19) | 53.34 (±8.69) | 0.64 |
| Adverse diastolic remodeling (Diastolic function grade ≥ 1, n (%) | 25 (34.24) | 28 (38.35) | <0.001 |
| Heart failure (Killip > 1), n (%) | 14 (19.17) | 3 (4.1) | <0.001 |
| MACEs, n (%) | 19 (26.02) | 5 (6.84) | 0.013 |
| Hemoglobin (mg/dL) | 137.68 (±14.82) | 135.61 (±14.41) | 0.80 |
| Creatine kinase (U/I) | 1502.0 (42.0–7550.0) | 1298 (245.0–4764.0) | 0.94 |
| Creatine kinase-MB (U/I) | 161.0 (15.0–929.0) | 152.0 (19.5–500.0) | 0.88 |
| Troponin I (ng/mL) | 45.01 (0.01–180.0) | 5.46 (0.01–137.0) | 0.03 |
| C-reactive protein (mg/L) | 8.49 (±13.84) | 25.68(±54.47) | 0.17 |
| LDL cholesterol (mmol/L) | 3.34 (±1.08) | 3.68 (±0.82) | 0.063 |
| HDL cholesterol (mmol/L) | 1.01 (±0.32) | 1.17 (±0.40) | 0.043 |
| Multivessel coronary artery disease, n (%) | 7 (9.58) | 15 (20.54) | 0.54 |
| HbA1C, % | 6.34 (±1.10) | 5.93(±0.71) | 0.023 |
| Final TIMI grade flow ≤ 2, n (%) | 7 (9.58) | 5 (6.84) | 0.15 |
| Parameter | OR | 95% CI | p-Value |
|---|---|---|---|
| Age, years | 1.005 | 0.125–1.124 | 0.81 |
| Gender (male) | 0.375 | 0.000–12.44 | 0.08 |
| BMI (kg/m2) | 1.161 | 1.011–1.333 | 0.034 |
| Waist circumference (cm) | 1.051 | 1.0–1.106 | 0.51 |
| Systolic BP (mmHg) | 0.966 | 0.973–1.020 | 0.733 |
| Diastolic BP (mmHg) | 0.990 | 0.951–1.030 | 0.615 |
| Adiponectin (ng/mL) | 0.531 | 0.314–0.896 | 0.018 |
| HbA1C, % | 2.062 | 1.132–3.757 | 0.018 |
| LDL (mmol/L) | 1.125 | 0.683–1.853 | 0.643 |
| HDL (mmol/L) | 0.903 | 0.235–3.465 | 0.882 |
| CRP (mg/L) | 1.022 | 0.999–1.046 | 0.058 |
| Triglyceride (mmol/L) | 0.760 | 0.772–1.425 | 0.760 |
| Fasting glucose (mmol/L) | 1.351 | 1.051–1.736 | 0.019 |
| Urea (mmol/L) | 1.062 | 0.894–1.262 | 0.491 |
| Creatinine (μmol/L) | 1.0 | 0.981–1.020 | 0.998 |
| MACE | OR | 95% CI | p-Value |
|---|---|---|---|
| Adiponectin (ng/mL) | 2.964 | 1.27–6.86 | 0.011 |
| HbA1C, % | 0.687 | 0.326–1.44 | 0.324 |
| HDL (mmol/L) | 0.105 | 0.011–0.961 | 0.046 |
| LDL (mmol/L) | 0.68 | 0.289–1.599 | 0.376 |
| BMI (kg/m2) | 0.886 | 0.732–1.072 | 0.214 |
| Systolic BP (mmHg) | 1.011 | 0.969–1.056 | 0.605 |
| LVEF% | 0.946 | 0.842–1.062 | 0.345 |
| Heart failure (Killip class > 1) | 0.88 | 0.008–0.97 | 0.047 |
| Multiple vessel > 1 | 0.103 | 0.014–0.719 | 0.022 |
| Biomarker | AUC (95% CI) | Cut-Off Value | p-Value |
|---|---|---|---|
| Adiponectin (ng/mL) | 0.77 (0.66–0.89) | 1.80 | 0.01 |
| HbA1C, % | 0.74 (0.54–0.95) | 6.35 | 0.02 |
| Troponin I (ng/mL) | 0.60 (0.39–0.81) | 31.75 | 0.32 |
| Creatine kinase (U/I | 0.60 (0.44–0.77) | 1405 | 0.32 |
| Creatine kinase-MB (U/I) | 0.51 (0.33–0.69) | 169.5 | 0.90 |
| Hemoglobin (mg/dL) | 0.60 (0.41–0.79) | 140.5 | 0.32 |
| C-reactive protein (mg/L) | 0.78 (0.59–0.98) | 7.0 | 0.008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krasniqi, X.; Vincelj, J.; Bytyçi, I.; Berisha, B.; Bakalli, A. Predictive Value of Adiponectin for Long-Term MACEs in Non-Diabetic STEMI Patients. J. Clin. Med. 2025, 14, 7936. https://doi.org/10.3390/jcm14227936
Krasniqi X, Vincelj J, Bytyçi I, Berisha B, Bakalli A. Predictive Value of Adiponectin for Long-Term MACEs in Non-Diabetic STEMI Patients. Journal of Clinical Medicine. 2025; 14(22):7936. https://doi.org/10.3390/jcm14227936
Chicago/Turabian StyleKrasniqi, Xhevdet, Josip Vincelj, Ibadete Bytyçi, Blerim Berisha, and Aurora Bakalli. 2025. "Predictive Value of Adiponectin for Long-Term MACEs in Non-Diabetic STEMI Patients" Journal of Clinical Medicine 14, no. 22: 7936. https://doi.org/10.3390/jcm14227936
APA StyleKrasniqi, X., Vincelj, J., Bytyçi, I., Berisha, B., & Bakalli, A. (2025). Predictive Value of Adiponectin for Long-Term MACEs in Non-Diabetic STEMI Patients. Journal of Clinical Medicine, 14(22), 7936. https://doi.org/10.3390/jcm14227936

