Quantification of Skeletal Muscle Perfusion in Feet and Lower Legs of Patients with T2DM and Diabetic Foot Ulcers Using [15O]H2O PET
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. [15O]H2O PET Imaging of Skeletal Muscle Perfusion
2.3. Distal Blood Pressure Measurements
2.4. Image Analysis
2.5. Comparative Analyses and Definitions
2.6. Statistical Methods
3. Results
3.1. Subject Demographics
3.2. Lower Leg Perfusion in Patients with T2DM and Healthy Controls
3.3. Foot Perfusion of Patients with T2DM and DFUs Compared to Healthy Controls
3.4. Perfusion Differences Among Muscle Groups in Patients with T2DM and DFU
3.5. Foot/Leg Perfusion Ratio and Its Relationship with TBI in Patients with T2DM
4. Discussion
4.1. Toe Pressure/TBI and PET Perfusion Values
4.2. Increased Perfusion in DFU-Affected Foot Compared to Contralateral Foot
4.3. Future Perspectives
4.4. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABI | Ankle Brachial Index | 
| ADM | Abductor Digiti Minimi | 
| AH | Abductor Hallucis | 
| ARG | Autoradiographic Method | 
| BMI | Body Mass Index | 
| BPM | Beats per Minute | 
| CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration | 
| CT | Computed Tomography | 
| DFU | Diabetic Foot Ulcer | 
| eGFR | Estimated Glomerular Filtration Rate | 
| EANM | European Association of Nuclear Medicine | 
| FHB | Flexor Hallucis Brevis | 
| FDB | Flexor Digitorum Brevis | 
| GAS | Gastrocnemius | 
| HbA1c | Glycated Hemoglobin | 
| IQR | Interquartile Range | 
| MBq | Megabecquerel | 
| MRI | Magnetic Resonance Imaging | 
| NO | Nitric Oxide | 
| NYHA | New York Heart Association | 
| PET | Positron Emission Tomography | 
| PET/CT | Positron Emission Tomography/Computed Tomography | 
| PL | Peroneus Longus | 
| SD | Standard Deviation | 
| SPECT | Single Photon Emission Computed Tomography | 
| SOL | Soleus | 
| T2DM | Type 2 Diabetes Mellitus | 
| TA | Tibialis Anterior | 
| TAC | Time Activity Curve | 
| TBI | Toe Brachial Index | 
| [15O]H2O | Oxygen-15 Labeled Water | 
| [18F]FDG | Fluorine-18 Fluorodeoxyglucose | 
References
- Carstensen, B.; Ronn, P.F.; Jorgensen, M.E. Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996-2016. BMJ Open Diabetes Res. Care 2020, 8, e001071. [Google Scholar] [CrossRef] [PubMed]
- Sortso, C.; Green, A.; Jensen, P.B.; Emneus, M. Societal costs of diabetes mellitus in Denmark. Diabet. Med. 2016, 33, 877–885. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Calagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Rasmussen, B.S.B.; Yderstraede, K.B.; Carstensen, B.; Skov, O.; Beck-Nielsen, H. Substantial reduction in the number of amputations among patients with diabetes: A cohort study over 16 years. Diabetologia 2016, 59, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Barnes, J.A.; Eid, M.A.; Creager, M.A.; Goodney, P.P. Epidemiology and Risk of Amputation in Patients with Diabetes Mellitus and Peripheral Artery Disease. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1808–1817. [Google Scholar] [CrossRef]
- Pei, E.; Li, J.; Lu, C.; Xu, J.; Tang, T.; Ye, M.; Zhang, X.; Li, M. Effects of lipids and lipoproteins on diabetic foot in people with type 2 diabetes mellitus: A meta-analysis. J. Diabetes Complicat. 2014, 28, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Edmonds, M.; Manu, C.; Vas, P. The current burden of diabetic foot disease. J. Clin. Orthop. Trauma 2021, 17, 88–93. [Google Scholar] [CrossRef]
- Armstrong, D.G.; Swerdlow, M.A.; Armstrong, A.A.; Conte, M.S.; Padula, W.V.; Bus, S.A. Five year mortality and direct costs of care for people with diabetic foot complications are comparable to cancer. J. Foot Ankle Res. 2020, 13, 16. [Google Scholar] [CrossRef]
- Ciufo, D.J.; Thirukumaran, C.P.; Marchese, R.; Oh, I. Risk factors for reoperation, readmission, and early complications after below knee amputation. Injury 2019, 50, 462–466. [Google Scholar] [CrossRef]
- Hoyer, C.; Sandermann, J.; Paludan, J.P.; Pavar, S.; Petersen, L.J. Diagnostic accuracy of laser Doppler flowmetry versus strain gauge plethysmography for segmental pressure measurement. J. Vasc. Surg. 2013, 58, 1563–1570. [Google Scholar] [CrossRef]
- Ludyga, T.; Kuczmik, W.B.; Kazibudzki, M.; Nowakowski, P.; Orawczyk, T.; Glanowski, M.; Kucharzewski, M.; Ziaja, D.; Szaniewski, K.; Ziaja, K. Ankle-brachial pressure index estimated by laser Doppler in patients suffering from peripheral arterial obstructive disease. Ann. Vasc. Surg. 2007, 21, 452–457. [Google Scholar] [CrossRef]
- Forsythe, R.O.; Hinchliffe, R.J. Assessment of foot perfusion in patients with a diabetic foot ulcer. Diabetes Metab. Res. Rev. 2016, 32 (Suppl. S1), 232–238. [Google Scholar] [CrossRef] [PubMed]
- Alnaeb, M.E.; Crabtree, V.P.; Boutin, A.; Mikhailidis, D.P.; Seifalian, A.M.; Hamilton, G. Prospective assessment of lower-extremity peripheral arterial disease in diabetic patients using a novel automated optical device. Angiology 2007, 58, 579–585. [Google Scholar] [CrossRef]
- Scremin, O.U.; Figoni, S.F.; Norman, K.; Scremin, A.M.; Kunkel, C.F.; Opava-Rutter, D.; Schmitter, E.; Bert, A.; Mandelkern, M. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography. Am. J. Phys. Med. Rehabil. 2010, 89, 473–486. [Google Scholar] [CrossRef]
- Zheng, J.; Li, R.; Dickey, E.E.; Yan, Y.; Zayed, M.A.; Zellers, J.A.; Hastings, M.K. Regional skeletal muscle perfusion distribution in diabetic feet may differentiate short-term healed foot ulcers from non-healed ulcers. Eur Radiol. 2023, 33, 3303–3311. [Google Scholar] [CrossRef]
- Zheng, J.; Sorensen, C.; Li, R.; An, H.; Hildebolt, C.F.; Zayed, M.A.; Mueller, M.J.; Hastings, M.K. Deteriorated regional calf microcirculation measured by contrast-free MRI in patients with diabetes mellitus and relation with physical activity. Diabetes Vasc. Dis. Res. 2021, 18, 14791641211029002. [Google Scholar] [CrossRef]
- Mahmud, S.Z.; Gladden, L.B.; Kavazis, A.N.; Motl, R.W.; Denney, T.S.; Bashir, A. Simultaneous Measurement of Perfusion and T2* in Calf Muscle at 7T with Submaximal Exercise using Radial Acquisition. Sci. Rep. 2020, 10, 6342. [Google Scholar] [CrossRef] [PubMed]
- Suo, S.; Zhang, L.; Tang, H.; Ni, Q.; Li, S.; Mao, H.; Liu, X.; He, S.; Qu, J.; Lu, Q.; et al. Evaluation of skeletal muscle microvascular perfusion of lower extremities by cardiovascular magnetic resonance arterial spin labeling, blood oxygenation level-dependent, and intravoxel incoherent motion techniques. J. Cardiovasc. Magn. Reson. 2018, 20, 18. [Google Scholar] [CrossRef]
- Tang, H.; Yu, L.; Suo, S.; Hu, Y.; Wang, J.; Xu, J.; Lu, Q.; Zhou, Y. Evaluation of skeletal muscle perfusion changes in patients with peripheral artery disease before and after percutaneous transluminal angioplasty using multiparametric MR imaging. Magn. Reson. Imaging 2022, 93, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Alvelo, J.L.; Papademetris, X.; Mena-Hurtado, C.; Jeon, S.; Sumpio, B.E.; Sinusas, A.J.; Stacy, M.R. Radiotracer Imaging Allows for Noninvasive Detection and Quantification of Abnormalities in Angiosome Foot Perfusion in Diabetic Patients with Critical Limb Ischemia and Nonhealing Wounds. Circ. Cardiovasc. Imaging 2018, 11, e006932. [Google Scholar] [CrossRef]
- Stacy, M.R.; Yu, D.Y.; Maxfield, M.W.; Jaba, I.M.; Jozwik, B.P.; Zhuang, Z.W.; Lin, B.A.; Hawley, C.L.; Caracciolo, C.M.; Pal, P.; et al. Multimodality imaging approach for serial assessment of regional changes in lower extremity arteriogenesis and tissue perfusion in a porcine model of peripheral arterial disease. Circ. Cardiovasc. Imaging 2014, 7, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-H.; Atway, S.A.; Bobbey, A.J.; Sarac, T.P.; Go, M.R.; Stacy, M.R. SPECT/CT Imaging: A Noninvasive Approach for Evaluating Serial Changes in Angiosome Foot Perfusion in Critical Limb Ischemia. Adv. Wound Care 2020, 9, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Chou, T.-H.; Janse, S.; Sinusas, A.J.; Stacy, M.R. SPECT/CT imaging of lower extremity perfusion reserve: A non-invasive correlate to exercise tolerance and cardiovascular fitness in patients undergoing clinically indicated myocardial perfusion imaging. J. Nucl. Cardiol. 2020, 27, 1923–1933. [Google Scholar]
- Chou, T.H.; Alvelo, J.L.; Janse, S.; Papademetris, X.; Sumpio, B.E.; Mena-Hurtado, C.; Sinusas, A.J.; Stacy, M.R. Prognostic Value of Radiotracer-Based Perfusion Imaging in Critical Limb Ischemia Patients Undergoing Lower Extremity Revascularization. JACC Cardiovasc. Imaging 2021, 14, 1614–1624. [Google Scholar] [CrossRef]
- Birelli, B.; Oliveira, M.; Santos, A.O.; Manso, W.; Vicente, A.; Etchebehere, E. SPECT/CT with (99m)Tc-sestamibi for the evaluation of skeletal muscle perfusion after electrical muscle stimulation in athletes. Radiol. Bras. 2019, 52, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Rudroff, T.; Weissman, J.A.; Bucci, M.; Seppanen, M.; Kaskinoro, K.; Heinonen, I.; Kalliokoski, K.K. Positron emission tomography detects greater blood flow and less blood flow heterogeneity in the exercising skeletal muscles of old compared with young men during fatiguing contractions. J. Physiol. 2014, 592, 337–349. [Google Scholar] [CrossRef]
- Kalliokoski, K.K.; Kuusela, T.A.; Nuutila, P.; Tolvanen, T.; Oikonen, V.; Teras, M.; Takala, T.E.S.; Knuuti, J. Perfusion heterogeneity in human skeletal muscle: Fractal analysis of PET data. Eur. J. Nucl. Med. 2001, 28, 450–456. [Google Scholar] [CrossRef]
- Raitakari, M.; Nuutila, P.; Ruotsalainen, U.; Teras, M.; Eronen, E.; Laine, H.; Raitakari, O.T.; Iida, H.; Knuuti, M.J.; Yki-Järvinen, H. Relationship between limb and muscle blood flow in man. J Physiol. 1996, 496 Pt 2, 543–549. [Google Scholar] [CrossRef]
- Burchert, W.; Schellong, S.; van den Hoff, J.; Meyer, G.J.; Alexander, K.; Hundeshagen, H. Oxygen-15-Water PET Assessment of Muscular Blood Flow in Peripheral Vascular Disease. J. Nucl. Med. 1997, 38, 93–98. [Google Scholar]
- Ruotsalainen, U.; Raitakari, M.; Nuutila, P.; Oikonen, V.; Sipilä, H.; Teräs, M.; Knuuti, M.J. Bloomfield PM, Iida H. Quantitative Blood Flow Measurement of Skeletal Muscle Using Oxygen-15-Water and PET. J. Nucl. Med. 1997, 38, 314–319. [Google Scholar]
- Depairon, M.; Depresseux, J.C.; Petermans, J.; Zicot, M. Assessment of Flow and Oxygen Delivery to the Lower Extremity in Arterial Insufficiency: A PET-Scan Study Comparison with Other Methods. Angiology 1991, 42, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Depairon, M.; Zicot, M. The Quantitation of Blood Flow/Metabolism Coupling at Rest and After Exercise in Peripheral Arterial Insufficiency, Using PET and 15-O Labeled Tracers. Angiology 1996, 47, 991–999. [Google Scholar] [CrossRef]
- Christensen, N.L.; Sorensen, J.; Bouchelouche, K.; Madsen, M.A.; Buhl, C.S.; Tolbod, L.P. Repeatability of [15O]H2O PET imaging for lower extremity skeletal muscle perfusion: A test-retest study. EJNMMI Res. 2024, 14, 11. [Google Scholar] [CrossRef]
- Schaper, N.C.; van Netten, J.J.; Apelqvist, J.; Bus, S.A.; Fitridge, R.; Game, F.; Monteiro-Soares, M.; Senneville, E. Practical guidelines on the prevention and management of diabetes-related foot disease (IWGDF 2023 update). Diabetes Metab. Res. Rev. 2024, 40, e3657. [Google Scholar] [CrossRef]
- Abdulkhaleq, L.A.; Assi, M.A.; Abdullah, R.; Zamri-Saad, M.; Taufiq-Yap, Y.H.; Hezmee, M.N.M. The crucial roles of inflammatory mediators in inflammation: A review. Vet. World. 2018, 11, 627–635. [Google Scholar] [CrossRef]
- De Vriese, A.S.; Verbeuren, T.J.; Van de Voorde, J.; Lameire, N.H.; Vanhoutte, P.M. Endothelial dysfunction in diabetes. Br. J. Pharmacol. 2000, 130, 963–974. [Google Scholar] [CrossRef] [PubMed]
- Roy, T.K.; Secomb, T.W. Effects of impaired microvascular flow regulation on metabolism-perfusion matching and organ function. Microcirculation 2021, 28, e12673. [Google Scholar] [CrossRef]
- Stratton, I.M.; Adler, A.I.; Neil, H.A.W.; Matthews, D.R.; Manley, S.E.; Cull, C.A.; Hadden, D.; Turner, R.C.; Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 12, 412–419. [Google Scholar] [CrossRef]
- Pantoja, J.L.; Ali, F.; Baril, D.T.; Farley, S.M.; Boynton, S.; Finn, J.P.; Hu, P.; Lawrence, P.F. Arterial spin labeling magnetic resonance imaging quantifies tissue perfusion around foot ulcers. J. Vasc. Surg. Cases Innov. Tech. 2022, 8, 817–824. [Google Scholar] [CrossRef] [PubMed]
- Boonen, P.T.; Buls, N.; Vandemeulebroucke, J.; Van Gompel, G.; Van Den Bergh, F.; Leiner, T.; Aerden, D.; de Mey, J. Combined evaluation of blood flow and tissue perfusion in diabetic feet by intra-arterial dynamic 4DCT imaging. Eur. Radiol. Exp. 2023, 7, 44. [Google Scholar] [CrossRef]
- Lauri, C.; Noriega-Alvarez, E.; Chakravartty, R.M.; Gheysens, O.; Glaudemans, A.; Slart, R.; Kwee, T.C.; Lecouvet, F.; Panagiotidis, E.; Zhang, Y.J.; et al. Diagnostic imaging of the diabetic foot: An EANM evidence-based guidance. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2229–2246. [Google Scholar] [CrossRef] [PubMed]





| Controls (n = 10) | Patients (n = 26) | |
|---|---|---|
| Age (years) | 53.00 ± 7.75 | 62.07 ± 8.79 | 
| Male/female | 7/3 | 24/2 | 
| Height (m) | 1.78 ± 0.07 | 1.82 ± 0.06 | 
| Weight (kg) | 92.70 ± 24.40 | 98.85 ± 14.12 | 
| Body Mass Index (kg/m2) | 29.39 ± 7.67 | 29.82 ± 4.11 | 
| Systolic blood pressure (mmHg) * | 131.10 ± 26.67 | 124.73 ± 17.18 | 
| Diastolic blood pressure (mmHg) * | 76.60 ± 11.48 | 73.23 ± 9.71 | 
| Heart rate (bpm) * | 59.30 ± 9.45 | 74.65 ± 12.13 | 
| Ankle pressure (mmHg) | 154.65 ± 19.52 | 119.37 ± 34.75 | 
| Toe pressure (mmHg) | 110.00 ± 19.10 | 69.12 ± 31.51 | 
| Ankle-Brachial Index | 1.29 ± 0.08 | 1.00 ± 0.27 | 
| Toe-Brachial Index | 0.92 ± 0.11 | 0.56 ± 0.24 | 
| HbA1c (mmol/mol) | 37.50 ± 3.56 | 59.88 ± 17.21 | 
| Cholesterol (mmol/L) | 5.17 ± 1.12 | 3.58 ± 0.88 | 
| HDL Cholesterol (mmol/L) | 1.54 ± 0.56 | 1.05 ± 0.34 | 
| LDL Cholesterol (mmol/L) | 3.00 ± 1.00 | 1.54 ± 0.70 | 
| eGFR/1.73 m2 (CKD-EPI) (mL/min) | >90 [IQR 90–90] | 74.50 [IQR 64–90] | 
| Hemoglobin (mmol/L) | 8.75 [IQR 8.10–9.30] | 8.65 [IQR 7.90–9.30] | 
| Urine ACR (mg/g) | 6.00 [IQR 3.00–7.00] | 20.00 [IQR 9.00–62.00] | 
| Proportion of micro/macro albuminuria | 0/0 | 13/13 | 
| Peripheral ischemia ** | 0 (0%) | 9 (35%) | 
| Neuropathy | 0 (0%) | 26 (100%) | 
| Diabetes duration (years) | - | 13.5 ± 8.20 | 
| Biothesiometry left (volts) | - | 50 [IQR 45–50] | 
| Biothesiometry right (volts) | - | 50 [IQR 41–50] | 
| Baseline ulcer surface area (cm2) | - | 1.88 ± 3.47 | 
| Ulcer location (left/right) | - | 14/12 | 
| Controls | Patients | ||
|---|---|---|---|
| Non-Ulcerated Foot | Ulcerated Foot | ||
| Feet | |||
| Abductor digiti minimi | 0.95 [0.43–1.47] | 1.22 [0.67–1.77] # | 1.53 [0.97–2.09] | 
| Abductor hallucis | 1.06 [0.75–1.37] | 1.35 [0.91–1.79] # | 2.04 [1.38–2.70] * | 
| Flexor digitorum brevis | 1.28 [0.80–1.76] | 1.24 [0.76–1.72] # | 1.87 [0.96–2.78] * | 
| Flexor hallucis brevis | 0.94 [0.70–1.18] | 1.42 [0.84–2.00] # | 2.91 [1.60–4.22] * | 
| Foot perfusion | 1.06 [0.67–1.46] | 1.33 [0.82–1.85] # | 1.67 [1.05–2.30] * | 
| Lower legs | |||
| Gastrocnemius | 2.12 [1.72–2.52] | 1.68 [1.27–2.09] | 1.97 [1.49–2.45] | 
| Peroneus longus | 1.82 [1.49–2.15] | 1.59 [1.10–2.08] | 1.59 [1.26–1.92] | 
| Soleus | 2.42 [1.94–2.90] | 1.81 [0.92–2.70] | 2.23 [1.65–2.82] | 
| Tibialis anterior | 1.82 [1.63–2.30] | 1.54 [0.96–2.12] | 1.79 [1.15–2.43] | 
| Lower leg perfusion | 2.07 [1.84–2.30] | 1.85 [1.01–2.69] | 2.08 [1.58–2.57] | 
| Hemodynamic measurements | |||
| Toe pressure | 110 ± 19.10 | 82.5 ± 31.26 *# | 73.2 ± 30.90 * | 
| TBI | 0.92 ± 0.11 | 0.67 ± 0.24 *# | 0.59 ± 0.23 * | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christensen, N.L.; Tolbod, L.P.; Sörensen, J.; Bouchelouche, K.; Madsen, M.A.; Buhl, C.S. Quantification of Skeletal Muscle Perfusion in Feet and Lower Legs of Patients with T2DM and Diabetic Foot Ulcers Using [15O]H2O PET. J. Clin. Med. 2025, 14, 7704. https://doi.org/10.3390/jcm14217704
Christensen NL, Tolbod LP, Sörensen J, Bouchelouche K, Madsen MA, Buhl CS. Quantification of Skeletal Muscle Perfusion in Feet and Lower Legs of Patients with T2DM and Diabetic Foot Ulcers Using [15O]H2O PET. Journal of Clinical Medicine. 2025; 14(21):7704. https://doi.org/10.3390/jcm14217704
Chicago/Turabian StyleChristensen, Nana Louise, Lars Poulsen Tolbod, Jens Sörensen, Kirsten Bouchelouche, Michael Alle Madsen, and Christian Selmer Buhl. 2025. "Quantification of Skeletal Muscle Perfusion in Feet and Lower Legs of Patients with T2DM and Diabetic Foot Ulcers Using [15O]H2O PET" Journal of Clinical Medicine 14, no. 21: 7704. https://doi.org/10.3390/jcm14217704
APA StyleChristensen, N. L., Tolbod, L. P., Sörensen, J., Bouchelouche, K., Madsen, M. A., & Buhl, C. S. (2025). Quantification of Skeletal Muscle Perfusion in Feet and Lower Legs of Patients with T2DM and Diabetic Foot Ulcers Using [15O]H2O PET. Journal of Clinical Medicine, 14(21), 7704. https://doi.org/10.3390/jcm14217704
 
        



 
       